ProSoft Technology Gives NASA a Boost

On July 20, 1969, Apollo 11 successfully touched down on the moon’s surface and the world sat glued to their television sets waiting for Neil Armstrong and Buzz Aldrin to be the first men to walk on the moon.


The unflappable news anchor, Walter Cronkite took off his glasses, rubbed his hands together and shot a boyish grin at the camera. His body language spoke volumes to the millions of people watching with bated breath to see what is considered by many to be one of man’s greatest feats.
In April 1981, the first Space Shuttle, Columbia, launched and orbited the earth 37 times before landing on a runway at Edwards Airforce Base in California. It was also the first U.S. manned space vehicle launched without an unmanned powered test flight. NASA described the mission as: "The boldest test flight in history.”
The NASA space program has been the source of many such feats that have sparked the imagination of children and writers for the past half century. But each of these missions is preceded by years of stringent adherence to safety and production requirements.
Safety, Precision and Accuracy

After each countdown to ignition, a shuttle is propelled into space by trademark twin flames streaming from Solid Rocket Boosters (SRB). Boosters provide 80 percent of the shuttle launch thrust before they burn out, separate, and jettison into the Atlantic Ocean. NASA recovery ships retrieve the boosters and tow them to Hangar A/F Cape Canaveral Air Force Station (CCAFS) in Florida, where they are disassembled.
The refurbishing of the boosters for reuse takes place in two locations. The solid rocket booster subassemblies – the frustum, forward skirt and aft skirt – are initially refurbished at Hangar A/F then transported to the United Space Alliance (USA) Assembly and Refurbishment Facility (ARF) at NASA's Kennedy Space Center in Florida for final assembly and testing. Parachutes are refurbished and packed at the Parachute Refurbishment Facility then shipped to the ARF. The Reusable Solid Rocket Motor segments and the nozzle, which steers the rockets during flight, are transported via railcar to Alliant Techsystems (ATK) in Utah, where they are reassembled, tested and returned to Kennedy for remating.
The entire process from retrieval to completion takes approximately a year.
The Application: Refurbishment and Reuse

The engineering teams at USA’s Assembly and Refurbishment Facility are bound by incredibly rigid production specifications, because anything more than a hairline deviation can severely affect the safety of a mission. Of the SRB’s total weight of 1.25 million pounds, propellant accounts for 1.1 million pounds, which burns hot enough to damage the structural integrity of the boosters. One of the materials used to protect the rocket boosters during ascent, descent and splashdown, is a USA-developed thermal protection system called booster trowelable ablative (BTA). Its consistency resembles that of automotive body filler, but holds much better thermal properties, which is important because it protects the booster components from damage, enabling them to be reused time and time again.
The batch mixing of the insulation for use on the flight components are automated processes. The batching process is handled by two functionally identical machines, using Micro Motion flow meters to release precise measures of resin and a catalyst into a mixing vessel, where a Charles Ross mixer blends them together to form the BTA insulation. The Kennedy facility sees an average of five 3000 g batch cycles per day.
Controlling the process for each machine are a Rockwell Automation Allen-Bradley ControlLogix PAC and an SLC-500, respectively. USA tried using a 4-20 mA feedback between the controller and the flow meters, but found they were unable to obtain the needed level of accuracy and precision.

“We contacted Micro Motion and they pointed us to ProSoft Technology’s Modbus communication modules which integrate directly into the ControlLogix and SLC-500 platforms,” explains Dan Dermody, Control Systems Engineer at USA and the machine builder for this application. “We tested them out and quickly discovered that they provided the accuracy and precision we needed.
“The module collects flow data and feeds it directly into the ControlLogix data tables,” Dermody continues. “This type of flow control system maintains all of the process parameters, ensuring that nothing goes out of specification during mixing. The ProSoft module made the architecture we wanted to use possible and we’ve stuck with that type of philosophy on our flow meters ever since.”


With specifications allowing for only plus or minus 2% deviation on any given batch, USA has a challenging job.
“In normal industry you can produce a similar product and get away with being 10-15% off and it wouldn’t make any difference. But because of the environment that these Solid Rocket Boosters operate in, there is absolutely no room for error.”
The initial challenge was reaching the data transfer rates required, which could not be accomplished using a standard 4-20 mA analog input module.
“Once we brought the information over digitally it was a night-and-day difference. Still, we were only barely achieving our goal and I knew something wasn’t right with the update rate. So, we worked with ProSoft to identify a controller programming problem which essentially caused the controller to write over data within a millisecond of when I was trying to read it. We now have the performance we need.”

“Now we’re getting millisecond update times and we can control down to the gram level in a 2000 gram batch.”
Because of the level of repeatable precision USA is able to accomplish with this solution, they are not required to continually test the adhesive delivery system to prove their accuracy.
The Future

NASA and the space program are currently undergoing a major directional shift with the end of the space shuttle program.
Presently, USA is building up the parts for a second test flight for the Ares Program. While there has been no official decision on the exact architecture of the post shuttle human spaceflight program, one fact will remain; the demanding environment in which rockets must perform will require materials with the highest quality standards made possible by innovative solutions.