INRAX

PC56

ControlLogix Platform
In-Rack Industrial PC

DOS Developer's Guide

May 17, 2007

ProSoft

TECHNOLOGY

Please Read This Notice

Successful application of this module requires a reasonable working knowledge of the Allen-
Bradley hardware, the PC56 Module and the application in which the combination is to be used.
For this reason, it is important that those responsible for implementation satisfy themselves that the
combination will meet the needs of the application without exposing personnel or equipment to
unsafe or inappropriate working conditions.

This manual is provided to assist the user. Every attempt has been made to assure that the
information provided is accurate and a true reflection of the product's installation requirements. In
order to assure a complete understanding of the operation of the product, the user should read all
applicable Allen-Bradley documentation on the operation of the Allen-Bradley hardware.

Under no conditions will ProSoft Technology be responsible or liable for indirect or consequential
damages resulting from the use or application of the product.

Reproduction of the contents of this manual, in whole or in part, without written permission from
ProSoft Technology is prohibited.

Information in this manual is subject to change without notice and does not represent a
commitment on the part of ProSoft Technology Improvements and/or changes in this manual or the
product may be made at any time. These changes will be made periodically to correct technical
inaccuracies or typographical errors.

Warnings

Power, Input, and Output (I/O) wiring must be in accordance with Class 1,
Division 2 wiring methods, Article 501-4 (b) of the National Electrical Code, NFPA
70 for installation in the U.S., or as specified in Section 18—-1J2 of the Canadian
Electrical Code for installations in Canada, and in accordance with the authority
having jurisdiction.

a Warning — Explosion Hazard — Substitution of components may impair
suitability for Class 1, Division 2.

b Warning — Explosion Hazard — When in hazardous locations, turn off
power before replacing or wiring modules.

C Warning — Explosion Hazard — Do not disconnect equipment unless power

has been switched off or the area is known to be non-hazardous.

= These products are intended to be mounted in a IP54 enclosure.
The devices shall provide external means to prevent the rated voltage being
exceeded by transient disturbances of more than 40%.
This device must be used only with ATEX certified backplanes.

= DO NOT OPEN WHEN ENERGIZED.

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have
suggestions, comments, compliments or complaints about the product, documentation or support,
please write or call us.

ProSoft Technology

1675 Chester Avenue, Fourth Floor
Bakersfield, CA 93301

+1 (661) 716-5100

+1(661) 716-5101 (Fax)
http://www.prosoft-technology.com

Copyright © ProSoft Technology, Inc. 2000 - 2007. All Rights Reserved.

PC56 DOS Developer's Guide
May 17, 2007
PSFT...UM.07.05.17

ProSoft Technology ®, ProLinx ®, inRAx ®, ProTalk® and RadioLinx ® are Registered Trademarks
of ProSoft Technology, Inc.

http://www.prosoft-technology.com/

Contents PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

ProSoft Technology, Inc. Page 4 of 73
May 17, 2007

May 17, 2007

Contents PC56 ¢ ControlLogix Platform
In-Rack Industrial PC
Contents
PLEASE READ THIS NOTICE......oiiii ittt ettt et a e st a st e e e s nntae e e e ntbe e e s snnte e e e annnaeeeeees 2
AVAT = T o T o 1S PP PRRPR 2
YOUT FEEADACK PIEASE ...ceeiiiiiee ettt e e e et e e e e e e e s ababeeeeeaeannnes 3
1 INTRODUGCTION L.ettiiiiiiiiiteiiiiiee sttt e sttt e e st e e e ssstteeesassbeeesasbeeaeastaeeesassaeeeaassbeeesansbeeeesstaeennsees 7
1.1 (D2 1T 011 A o] o 1= PRSPPI 7
2 APPLICATION DEVELOPMENT OVERVIEW.......c.cootiiiiiiie ittt 9
2.1 F N o B] oY - 1 Y USSP 9
P20 I I @7 |11 o To T @7 0 1Y7=T 01 (o] o PR 9
2t I o T Vo [1 S 10
213 SAMPIE COUE ...ttt e e e e e 10
3 CIP APIREFERENCE.......ci oottt ettt s e et e e et e e e e st e e e e s sabaeeesantaeaeaas 11
3.1 (O | o o I o 1] =T o3 (1 | = SRR 11
3.2 BaCKPIaNe DEVICE DIIVET ...cciuiiiieiiiee ettt ettt 12
O O | N o I N (@ T N1 PSR 15
T TLAF= 1 2= 14 (o] o PP OPRPPPPI 17
(0109 ol T @] o 11 o T SOOI 17
10109 (ol o I O [1T T PRI 18
(@] o L=Tod B2 =T TR (- 1 Lo o SR 19
OCXcip_RegisterASSEMDBIYOD)ccoiiiiiie e 19
OCXcip_UnregisterASSEMDBIYOD]..........iiiiiiii e e 21
Special Callback ReQISTIAtiONcccii i e e e s e e e e e e e nnnnaes 22
OCXcip_RegisterFatalFaultRtNo 22
OCXcip_RegisterResetReqRIN ... 23
Connected Data Tran STl ... i e e e e s a e e e 24
OCXCIP_WHEECONNECIEA. ...t e e e e e e e e e e e raeeee s 24
OCXcip_ReAdCONNECIEA ... e e e e e e e e e aaanae s 25
Unconnected Data TraNSTEIooi it a e e e e e e e e s enneees 26
10109 Coi] o D= 1 e= 1 =1 o] (=X AT 1 (YRR 26
OCXcip_DataTablEREAM ... e e e e e e e e e s e nnraeee s 28
0109 (ol I CT=Yi DIV o7 (o (@] o)=Y o1 AP SRR 31
OCXCIp_GetDeVICeldStatusoiiiiiiie e 33
OCXCip_INITagDefTable ... 35
OCXcip_UninitTagDefTabIecooi e e 36
L0109 ol o TN - o B 1= 1o = S 37
L0109 ol o TN - o |8 1 g To 1= 1o TS 39
L0109 o1 o 1 4 1= Te | o S 40
10109 (o1 o T . 4 1= o |4 SRR 41
OCXcip_RAIASTAtUSDEING ... e 42
= LTl R YA 1Y A oo =T PSPPSR 44
10109 Coi] o AV=T= Lo ST Sy 1 PRSI 44
OCXCIP_WIEESRAM ...ttt e e e e e e e e e e e s st e e e e e e e s e saabesaeeeaeeseesnnnanaeeeeeas 45
[IESToT =1 F= T =T o TSP PRI 46
1010, (o1 o I €111 [[0 o] =T e: USSR 46
ProSoft Technology, Inc. Page 5 of 73

PC56 ¢ ControlLogix Platform Contents
In-Rack Industrial PC

OCXCip_GetVErSIONINTOuviiiiiii e e e e et e e e e e anrees 47
OCXCIP_SEIUSEILED ...ttt e e e e e e st e e e e e e e anbare e e e e e e e e snnrees 48
(0109 Coi] TS T=1{ D IES] o] F= VPSR 49
OCXCip_GetSWILCNPOSITIONccciiiiiiieee e e e e e e e e e e s ennreees 50
10109 (o1 o 1= =T 10T o1=T = 1 (N T PR RPRR 51
OCXCIP_SetMOAUIESTALUS.ooo it e e nee 52
1010, (o1 o I =1 4 {o] 157 (1 o TR PO RPPS 53
L0109 el o TS] 1= =T o LR 54
L0109 (el o T OF= 101U F=1 {=T 0 SR 55
L0 o - Tod X = U o ox {0 1= SRR 56
Lo70] a1 o 1= o2 S] o o J R 56

ST Vo7 Y o] o o 60

[pCo F=1 = T o] (o Yo RPPPPRPRPRNE 62

1= 1= 2= 101 L o] (o T3 SO PUPR 64

ESET S (=T (U TST] A o] oL oSSR 65

5 REFERENCE ..ottt ettt e e ettt e e e st e e e e st e e e e nbae e e s nntbe e e e ansbeeennnees 67
5.1 Specifying the Communications path..........cccevie e, 67
5.2 ControlLogix 5550 Tag Naming CONVENLIONScccoviiiiviiiiieee e 68
SUPPORT, SERVICE & WARRANTY ..ottt ettt et e e et e e e sntan e e s entaea e e e 69
Module SErviCe and REPAINccoi ittt et et b e e s nb e e 69
General Warranty Policy — Terms and ConditioNsSc.ccooiiiiiieiiiiiie e 70
Limitation Of LIADTTTYeeiii et ee e 71
LAY VN e Fo Tod =To [N PP PP UUPUPRTR 71
IN DX ... tttee e ittt e ettt ettt e e e ettt e e e ettt e e e sa b e e e e s ta e e e e aaEbe e e e e R he e e e e R Ea e e e e aREaeeeeaREae e e e e Eaeee e e nteeeanbaeeeearaeeeeans 73

Page 6 of 73 ProSoft Technology, Inc.

May 17, 2007

PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Introduction

1 Introduction

In This Chapter

P DEfiNItIONS oo 7

This document provides information needed for development of application
programs for the PC56 Applications Module for ControlLogix.

This document assumes the reader is familiar with software development in the
16-bit DOS environment using the C programming language. This document also
assumes that the reader is familiar with Allen-Bradley programmable controllers

and the ControlLogix platform.

1.1 Definitions

Term Definition

API Application Programming Interface

Backplane Refers to the electrical interface, or bus, to which modules connect
when inserted into the rack. The PC56 module communicates with
the control processor(s) through the ControlLogix backplane (a.k.a.
ControlBus).

BIOS Basic Input Output System. The BIOS firmware initializes the module
at power-on, performs self-diagnostics, and loads the operating
system.

CIP Control and Information Protocol. This is the messaging protocol
used for communications over the ControlLogix backplane. Refer to
the ControlNet Specification for information.

Connection A logical binding between two objects. A connection allows more
efficient use of bandwidth, because the message path is not included
after the connection is established.

Consumer A destination for data.

Library Refers to the library file containing the API functions. The library must
be linked with the developer's application code to create the final
executable program.

Originator A client which establishes a connection path to a target.

Producer A source of data.

Target The end-node to which a connection is established by an originator.

ProSoft Technology, Inc.

May 17, 2007

Page 7 of 73

PC56 ¢ ControlLogix Platform Introduction
In-Rack Industrial PC

Page 8 of 73 ProSoft Technology, Inc.
May 17, 2007

Application Development Overview PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

2 Application Development Overview

In This Chapter

P APLLIDrary ..o 9

The PC56 CIP API allows software developers to access the ControlLogix
backplane without needing detailed knowledge of the module's hardware design.
The PC56 API consists of two distinct components: the backplane device driver,
and the API library.

Applications for the PC56 module may be developed using industry-standard
DOS programming tools and the CIP API library.

This section provides general information pertaining to application development
for the PC56 module.

2.1 APILibrary

The API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

The APl library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Borland and Microsoft development tools.
The file name of the CIP API library is OCCIPAPI.LIB.

Note: The following compiler versions have been tested and are known to be
compatible with the API:

Borland C++ V3.1

Borland C++ V5.02

Microsoft VC++ V1.52

Note: Microsoft Visual C++ versions above 1.52 no longer support 16-bit
development. However, Visual C++ 1.52 is available from Microsoft for those
who own later versions of Visual C++.

211 Calling Convention

The API library functions are specified using the C programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

ProSoft Technology, Inc. Page 9 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform Application Development Overview
In-Rack Industrial PC

2.1.2 Header File

A header file is provided along with the API library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard C format. The file name of the CIP API
header file is OCCIPAPI.H.

2.1.3 Sample Code

A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is included, along with make files for both
Borland and Microsoft compilers. The sample application may be compiled using
Borland C++ or Microsoft Visual C++.

Page 10 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Reference PC56 ¢ ControlLogix Platform

In-Rack Industrial PC

CIP API Reference

In This Chapter
» CIP API ArchiteCtureccoovevveeeeeeeeeeeeee e, 1"

» Backplane Device DIVEr...........cooiiiiiiiiiiiiiiie e 12

The CIP API provides access to the ControlLogix backplane interface. It allows
data to be transferred between the module and one or more controllers.

3.1 CIP API Architecture
The CIP APl communicates with the ControlBus through the backplane device
driver. The backplane driver must be loaded before running an application which
uses the CIP API.
The following illustration shows the relationship between the module application,
CIP API, and backplane driver.
ControlBus (Backplane)
: ‘ Midrange ASIC ‘
Control
Processor : jt
(Logix 5550) :
: Backplane Device
Driver
= =
CIP API Library
Application
-------------- 5- éé.p‘.l\}lll.\}]‘c).d.u'lle"..'."..'.".
ProSoft Technology, Inc. Page 11 of 73

May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Reference
In-Rack Industrial PC

3.2 Backplane Device Driver

The backplane device driver contains the functionality necessary to perform CIP
messaging over the ControlLogix backplane using the Midrange 3E ASIC. The
user application interfaces with the backplane device driver through the CIP API
library.

The backplane device driver executable file for the PC56 module is
OCX56BP.EXE. This file must be executed before executing an application
which uses the CIP API. This file may be loaded from the AUTOEXEC.BAT file.

The backplane device driver implements the following components and objects:

= Communications Device (CD)
= Unconnected message manager (UCMM)
= Message router object (MR)
= Connection manager object (CM)
= Transports
= Identity object
= |CP object
= Assembly object (with API access)
Page 12 of 73 ProSoft Technology, Inc.

May 17, 2007

CIP API Reference PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

For more information about these components, refer to the ControlNet
Specification.

ControlBus

e

Backplane /
Device Driver / \

CPI API Interface I

Application
Code

All data exchange between the application and the backplane occurs through the
Assembly Object, using functions provided by the CIP API. Included in the API
are functions to register or unregister the object, accept or deny Class 1

scheduled connection requests, access scheduled connection data, and service
unscheduled messages.

ProSoft Technology, Inc. Page 13 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Reference
In-Rack Industrial PC

Page 14 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions

PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

4 CIP API Functions

In This Chapter

> Initializationccccoceiiii
» Object Registration...........cccccoeevivennnen.
» Special Callback Registration
> Connected Data Transfer.....................
» Unconnected Data Transfer
> Static RAM Access.........ccoceeereviiieenneen.
> Miscellaneousccccocoiiiiiiiinnnen.

» Callback Functions........cccccceeevvvvveveeenns

The following table lists the CIP API library functions. Details for each function

are presented in subsequent sections.

Function Function Name Description

Category

Initialization OCXcip_Open Initializes access to the CIP API
OCXcip_Close Terminates access to the CIP API

Object Registration OCXcip_RegisterAssemblyObj

Registers all instances of the Assembly
Object, enabling other devices in the
CIP system to establish connections
with the object. Callbacks are used to
handle connection and service
requests.

OCXcip_UnregisterAssemblyObj

Unregisters all instances of the
Assembly Object that had previously
been registered. Subsequent
connection requests to the object will
be refused.

Callback OCXcip_RegisterFatalFaultRtn

Registers a fatal fault handler routine

Registration OCXcip_RegisterResetReqRtn

Registers a reset request handler
routine

Connected Data OCXcip_WriteConnected

Writes data to a connection

Transfer OCXcip_ReadConnected

Reads data from a connection

Unconnected Data
Transfer

OCXcip_DataTableRead

Reads a tag's data from the
Logix5550's data table.

OCXcip_DataTableWrite

Writes data to a tag in the Logix5550's
data table.

OCXcip_GetDeviceldObject

Reads the Id object data from a device.

ProSoft Technology, Inc.
May 17, 2007

Page 15 of 73

PC56 ¢ ControlLogix Platform

In-Rack Industrial PC

CIP API Functions

Function
Category

Function Name

Description

OCXcip_GetDeviceldStatus

Reads the Id Status word from a
device.

OCXcip_RdldStatusDefine

Defines a handle to access the Id
status word of a device.

OCXcip_InitTagDefTable

Initialize the tag access definition table.

OCXcip_UninitTagDefTable

Un-initialize the tag definition table and
free all resources.

OCXcip_TagDefine

Define a handle to access the tag
specified.

OCXcip_TagUndefine

Deletes the handle and all resources of
the specified tag handle.

OCXcip_DtTagRd

Reads data from the specified handle.

OCXcip_DtTagWr

Writes data to the specified handle.

Callback Functions

connect_proc

Application function called by the CIP
API when a connection request is
received for the registered object

service_proc

Application function called by the CIP
API when a message is received for
the registered object

rxdata_proc

Application function called by the CIP
API when data is received on an open
connection.

fatalfault_proc

Application function called if the
backplane device driver detects a fatal
fault condition

Static RAM Access

OCXcip_ReadSRAM

Read data from battery-backed Static
RAM

OCXcip_WriteSRAM

Write data to battery-backed Static
RAM

Miscellaneous

OCXcip_GetldObject

Returns data from the module's Identity
Object

OCXcip_GetVersioninfo

Get the CIP API version information

OCXcip_SetUserLED

Set the state of the user LED

OCXcip_SetModuleStatus

Set the state of the status LED

OCXcip_ErrorString

Get a text description of an error code

OCXcip_SetDisplay

Display characters on the alphanumeric
display

OCXcip_GetSwitchPosition

Get the state of the 3-position switch

OCXcip_GetTemperature

Read the current temperature within
the module

OCXcip_Sleep

Delay for specified time.

Page 16 of 73

ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Initialization

OCXcip_Open
Syntax
int OCXcip_Open(OCXHANDLE *apiHandle);
Parameters
apiHandle Pointer to variable of type OCXHANDLE

Description

OCXcip_Open acquires access to the CIP API and sets apiHandle to a unique ID
that the application uses in subsequent functions. This function must be called
before any of the other CIP API functions can be used.

IMPORTANT: Once the API has been opened, OCXcip_Close should always be
called before exiting the application.

Return Value

OCX_SUCCESS API was opened successfully

OCX_ERR_REOPEN APl is already open

OCX_ERR_NODEVICE Backplane driver could not be accessed
Note: OCX_ERR_NODEVICE will be returned if the backplane device driver is
not loaded.

Example

OCXHANDLE apiHandle;
if (OCXcip_Open(&apiHandle) = OCX_SUCCESS)
{

}

else

{

}
See Also

OCXcip_Close

printf("'Open failed!\n");

printf(*'Open succeeded\n');

ProSoft Technology, Inc. Page 17 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_Close
Syntax
int OCXcip_Close(OCXHANDLE apiHandle);
Parameters
apiHandle Handle returned by previous call to
OCXcip_Open
Description

This function is used by an application to release control of the CIP API.
apiHandle must be a valid handle returned from OCXcip_Open.

IMPORTANT: Once the CIP API has been opened, this function should always
be called before exiting the application.

Return Value

OCX_SUCCESS API was closed successfully
OCX_ERR_NOACCESS apiHandle does not have access
Example

OCXHANDLE apiHandle;
OCXcip_Close(apiHandle);

See Also
OCXcip_Open

Page 18 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions

PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Object Registration

OCXcip_RegisterAssemblyObj

Syntax

int OCXcip_RegisterAssemblyObj(
OCXHANDLE apiHandle,

OCXHANDLE *objHandle,

DWORD reg_param,

OCXCALLBACK (*connect_proc)(),
OCXCALLBACK (*service_proc)(),
OCXCALLBACK (*rxdata_proc)(Q):;

Parameters

apiHandle Handle returned by previous call to
OCXcip_Open

objHandle Pointer to variable of type OCXHANDLE. On
successful return, this variable will contain a
value which identifies this object.

reg_param Value that will be passed back to the

application as a parameter in the connect_proc
and service_proc callback functions.

connect_proc

Pointer to callback function to handle
connection requests

service_proc

Pointer to callback function to handle service
requests

rxdata_proc

Pointer to callback function to receive data from
an open connection

Description

This function is used by an application to register all instances of the Assembly
Object with the CIP API. The object must be registered before a connection can
be established with it. apiHandle must be a valid handle returned from

OCXcip_Open.

reg_param is a value that will be passed back to the application as a parameter
in the connect_proc and service_proc callback functions. The application may
use this to store an index or pointer. It is not used by the CIP API.

connect_proc is a pointer to a callback function to handle connection requests to
the registered object. This function will be called by the backplane device driver
when a Class 1 scheduled connection request for the object is received. It will
also be called when an established connection is closed. Refer to Callback

Functions (page 56) for information.

service_proc is a pointer to a callback function which handles service requests to
the registered object. This function will be called by the backplane device driver
when an unscheduled message is received for the object. Refer to Callback

Functions (page 56) for information.

rxdata_proc is a pointer to a callback function which handles data received on an
open connection. If rxdata_proc is NULL, then the CIP API buffers the received

ProSoft Technology, Inc.
May 17, 2007

Page 19 of 73

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

data and the application must retrieve the data using the
OCXcip_ReadConnected() function. If rxdata_proc is not NULL, then the
rxdata_proc callback routine must copy the received data to a local buffer. It is
recommended that this pointer be set to NULL; refer to Callback Functions
(page 56) for information.

Return Value

OCX_SUCCESS Object was registered successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM connect_proc or service_proc is NULL
OCX_ERR_ALREADY_REGISTERED Object has already been registered
Example

OCXHANDLE apiHandle;
OCXHANDLE objHandle;
MY_STRUCT mystruct;
int rc;

OCXCALLBACK MyConnectProc(OCXHANDLE, OCXCIPCONNSTRUC *);
OCXCALLBACK MyServiceProc(OCXHANDLE, OCXCIPSERVSTRUC *);
// Register all instances of the assembly object
rc = OCXcip_RegisterAssemblyObj(apiHandle, &objHandle,
(DWORD)&mystruct, MyConnectProc, MyServiceProc, NULL);
if (rc = OCX_SUCCESS)
printf(""Unable to register assembly object\n");

See Also
OCXcip_UnregisterAssemblyObj

connect_proc
service_proc
rxdata_proc

Page 20 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_UnregisterAssemblyObj
Syntax

int OCXcip_UnregisterAssemblyObj(
OCXHANDLE apiHandle,
OCXHANDLE objHandle);

Parameters

apiHandle Handle returned by previous call to
OCXcip_Open

objHandle Handle for object to be unregistered

Description

This function is used by an application to unregister all instances of the Assembly
Object with the CIP API. Any current connections for the object specified by
objHandle will be terminated.

apiHandle must be a valid handle returned from OCXcip_Open. objHandle must
be a handle returned from OCXcip_RegisterAssemblyObj.

Return Value

OCX_SUCCESS Object was unregistered successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_INVALID_OBJHANDLE objhandle is invalid

Example

OCXHANDLE apiHandle;
OCXHANDLE objHandle;

// Unregister all instances of the object
OCXcip_UnregisterAssemblyObj(apiHandle, objHandle);

See Also
OCXcip_RegisterAssemblyObj

ProSoft Technology, Inc. Page 21 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

Special Callback Registration

OCXcip_RegisterFatalFaultRtn
Syntax

int OCXcip_RegisterFatalFaultRtn(
OCXHANDLE apiHandle,
OCXCALLBACK (*fatalfault_proc)()):

Parameters

apiHandle Handle returned by previous call to
OCXcip_Open

fatalfault_proc Pointer to fatal fault callback routine

Description

This function is used by an application to register a fatal fault callback routine.
Once registered, the backplane device driver will call fatalfault_proc if a fatal fault
condition is detected.

apiHandle must be a valid handle returned from OCXcip_Open. fatalfault_proc
must be a pointer to a fatal fault callback function.

A fatal fault condition will result in the module being taken offline; that is, all
backplane communications will halt. The application may register a fatal fault
callback in order to perform recovery, safe-state, or diagnostic actions.

Return Value

OCX_SUCCESS Routine was registered successfully
OCX_ERR_NOACCESS apiHandle does not have access
Example

OCXHANDLE apiHandle;
// Register a fatal fault handler
OCXcip_RegisterFatalFaultRtn(apiHandle, fatalfault_proc);

See Also
fatalfault_proc

Page 22 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_RegisterResetReqRtn
Syntax

int OCXcip_RegisterResetReqRtn(
OCXHANDLE apiHandle,
OCXCALLBACK (*resetrequest_proc)());

Parameters

apiHandle Handle returned by previous call to
OCXcip_Open

resetrequest_proc Pointer to reset request callback routine

Description

This function is used by an application to register a reset request callback
routine. Once registered, the backplane device driver will call resetrequest_proc
if a module reset request is received.

apiHandle must be a valid handle returned from OCXcip_Open.
resetrequest_proc must be a pointer to a reset request callback function.

If the application does not register a reset request handler, receipt of a module
reset request will result in a software reset (that is, reboot) of the module. The
application may register a reset request callback in order to perform an orderly
shutdown, reset special hardware, or to deny the reset request.

Return Value

OCX_SUCCESS Routine was registered successfully
OCX_ERR_NOACCESS apiHandle does not have access
Example

OCXHANDLE apiHandle;
// Register a reset request handler
OCXcip_RegisterResetReqRtn(apiHandle, resetrequest_proc);

See Also
resetrequest_proc

ProSoft Technology, Inc. Page 23 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform

In-Rack Industrial PC

Connected Data Transfer

OCXcip_WriteConnected

Syntax

int OCXcip_WriteConnected(
OCXHANDLE apiHandle,
OCXHANDLE connHandle,

BYTE *dataBuf,

WORD offset,

WORD dataSize);

Parameters

apiHandle Handle returned by previous call to
OCXcip_Open

connHandle Handle of open connection

dataBuf Pointer to data to be written

offset Offset of byte to begin writing

dataSize Number of bytes of data to write

Description

This function is used by an application to update data being sent on the open
connection specified by connHandle.

apiHandle must be a valid handle returned from OCXcip_Open. connHandle
must be a handle passed by the connect_proc callback function.

offset is the offset into the connected data buffer to begin writing. dataBuf is a
pointer to a buffer containing the data to be written. dataSize is the number of
bytes of data to be written.

Return Value

OCX_SUCCESS Data was updated successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM connHandle or offset/dataSize is invalid
Example

OCXHANDLE apiHandle;
OCXHANDLE connHandle;
BYTE buffer[128];

// Write 128 bytes to the connected data buffer
OCXcip_WriteConnected(apiHandle, connHandle, buffer, 0, 128);

See Also
OCXcip_ReadConnected

Page 24 of 73

CIP API Functions

ProSoft Technology, Inc.

May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_ReadConnected
Syntax

int OCXcip_ReadConnected(
OCXHANDLE apiHandle,
OCXHANDLE connHandle,

BYTE *dataBuf,

WORD offset,

WORD dataSize);

Parameters

apiHandle Handle returned by previous call to
OCXcip_Open

connHandle Handle of open connection

dataBuf Pointer to buffer to receive data

offset Offset of byte to begin reading

dataSize Number of bytes to read

Description

This function is used by an application read data being received on the open
connection specified by connHandle.

apiHandle must be a valid handle returned from OCXcip_Open. connHandle
must be a handle passed by the connect_proc callback function.

offset is the offset into the connected data buffer to begin reading. dataBuf is a
pointer to a buffer to receive the data. dataSize is the number of bytes of data to
be read.

Notes:

When a connection has been established with a ControlLogix 5550 controller, the
first 4 bytes of received data are processor status and are automatically set by
the 5550. The first byte of data appears at offset 4 in the receive data buffer.

This function can only be used if the rxdata_proc callback function pointer was
set to NULL in the call to OCXcp_RegisterAssemblyObject().

Return Value

OCX_SUCCESS Data was read successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM connHandle or offset/dataSize is invalid
OCX_ERR_INVALID A rxdata_proc callback has been registered
Example

OCXHANDLE apiHandle;
OCXHANDLE connHandle;
BYTE buffer[128];

// Read 128 bytes from the connected data buffer
OCXcip_ReadConnected(apiHandle, connHandle, buffer, 0, 128);

See Also
OCXcip_WriteConnected

ProSoft Technology, Inc. Page 25 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

CIP API Functions

Unconnected Data Transfer

OCXcip_DataTableWrite

Syntax

int OCXcip_DataTableWrite(

OCXHANDLE apiHandle,

BYTE *req_tagstring,

WORD req_offset,

WORD req_length,

BYTE req_type,

BYTE *req_buffer,

BYTE target_slot,
WORD timeout);

Parameters

apiHandle

Handle returned by previous call to OCXcip_Open or
OCXcip_ClientOpen

req_tagstring

Pointer to string containing the tag name to access

req_offset Offset of Member number to begin writing data
req_length Number of tag members to write

req_type Data type of tag being written

req_buffer Pointer to buffer containing the data to be written
target_slot Slot number to write data into

timeout Number of milliseconds to wait for the write to complete
Description

This function is used by an application to write data to a tag in a Logix5550

processor.

apiHandle must be a valid handle returned from OCXcip_Open.

req_tagstring is a pointer to a ASCII string containing the tag name to write data

into.

req_offset is the offset in members into the tag's data to begin writing. req_length
is the number of members to be written. The size of a member depends on the
tag's req_type. req_type is the data type of the tag's members. Valid data types
are shown in the following table.

Data type Number of Description
bytes
OCX_CIP_BOOL 4 Logical Boolean with values True and False
OCX_CIP_SINT 1 Signed 8-bit integer
OCX_CIP_INT 2 Signed 16-bit integer
OCX_CIP_DINT 4 Signed 32-bit integer
OCX_CIP_LINT 8 Signed 64-bit integer
OCX_CIP_USINT 1 Unsigned 8-bit integer
OCX_CIP_UINT 2 Unsigned 16-bit integer
OCX_CIP_UDINT 4 Unsigned 32-bit integer

Page 26 of 73

ProSoft Technology, Inc.
May 17, 2007

CIP API Functions

PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Data type Number of Description
bytes
OCX_CIP_ULINT 8 Unsigned 64-bit integer

OCX_CIP_REAL 32-bit floating point value

OCX_CIP_LREAL 64-bit floating point value

bit string, 8-bits

OCX_CIP_WORD bit string, 16-bits

4
8
OCX_CIP_BYTE 1
2
4

OCX_CIP_DWORD bit string, 32-bits

OCX_CIP_LWORD 8 bit string, 64-bits

req_buffer is a pointer to a buffer containing the data being written.
target_slot is the slot number of the Logix5550 to which data is being written.

timeout is used to specify the amount of time in milliseconds the application
should wait for a response from the Logix5550.

Return Value

OCX_SUCCESS

Data was updated successfully

OCX_ERR_NOACCESS

apiHandle does not have access

OCX_ERR_BADPARAM

req_tagstring, req_offset, req_length, or
req_type is invalid

OCX_ERR_MEMALLOC

Unable to allocate memory

OCX_CIP_INVALID_TAG

Invalid Tag name specified

OCX_CIP_INSUFF_PKT_SPACE

Insufficient packet space for response data

OCX_CIP_INVALID_REQUEST

The data table request was invalid

OCX_CIP_DATATYPE_MISMATCH

Data type in request does not match response
type

OCX_CIP_GENERAL_ERROR

General Error associated with unconnected
message

OCX_CIP_MEMBER_UNDEFINED

Destination unknown, class unsupported,
instance undefined or structure element
undefined

Client Application

This function is supported for both host and client applications.

Example

OCXHANDLE apiHandle;

BYTE tag[]={""SINT_BUFFER"};
WORD offset = 0;

WORD length = 128;

BYTE req_type = OCX_CIP_SINT;
BYTE reqgbuffer[128];

BYTE slot = 1;

// Write 128 SINT"s to slot 1 tag named SINT_BUFFER
OCXcip_DataTableWrite(apiHandle, tag, offset, length, req_type,

regbuffer, slot, 5000);

See Also
OCXcip_DataTableRead

ProSoft Technology, Inc.
May 17, 2007

Page 27 of 73

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_DataTableRead

Syntax

int OCXcip_DataTableRead(
OCXHANDLE apiHandle,
BYTE *req_tagstring,
WORD req_offset,
WORD req_length,
BYTE req_type,
BYTE *rsp_buf,
WORD *rsp_size,
BYTE target_slot,
WORD timeout);

Parameters

apiHandle Handle returned by previous call to OCXcip_Open
req_tagstring Pointer to string containing the tag name to access
req_offset Offset of Member number to begin reading data
req_length Number of tag members to read

req_type Data type of tag being read

rsp_buffer Pointer to buffer in which to copy the data read
rsp_size Pointer to the size in bytes of the response

target_slot Slot number to read data from

timeout Number of milliseconds to wait for the read to complete
Description

This function is used by an application to read data from a tag in a Logix5550
processor.

apiHandle must be a valid handle returned from OCXcip_Open.

req_tagstring is a pointer to a ASCII string containing the tag name to read data
from.

req_offset is the offset in members into the tag's data to being read from.
req_length is the number of members to be read. The size of a member depends
on the tag's req_type. req_type is the data type of the tag's members. Valid data
types are shown in the following table.

Note: When reading data from a tag whose data type is BOOL, the response
type will be DWORD. This is due to the fact that the Logix5550 never stores data
as bits. All BOOL data will always be a minimum of 32-bits long.

Data type Number of Description
bytes
OCX_CIP_BOOL 4 Logical Boolean with values True and False
OCX_CIP_SINT 1 Signed 8-bit integer
OCX_CIP_INT 2 Signed 16-bit integer
OCX_CIP_DINT 4 Signed 32-bit integer
OCX_CIP_LINT 8 Signed 64-bit integer
OCX_CIP_USINT 1 Unsigned 8-bit integer

Page 28 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Data type Number of Description
bytes
OCX_CIP_UINT 2 Unsigned 16-bit integer

OCX_CIP_UDINT
OCX_CIP_ULINT
OCX_CIP_REAL
OCX_CIP_LREAL
OCX_CIP_BYTE
OCX_CIP_WORD bit string, 16-bits

OCX_CIP_DWORD bit string, 32-bits

OCX_CIP_LWORD 8 bit string, 64-bits

rsp_buffer is a pointer to a buffer in which the data being read will be copied into.

Unsigned 32-bit integer

Unsigned 64-bit integer

32-bit floating point value

64-bit floating point value
bit string, 8-bits

AIN| 2|00

rsp_size is a pointer to a word that should contain the size in bytes of the
response buffer. On return, this value will be updated with the actual number of
bytes of response data. If the actual response size is greater than the buffer size,
the data will be truncated and OCX_ERR_MSGTOOBIG will be returned.

target_slot is the slot number of the Logix5550 from which data is being read.

timeout is used to specify the amount of time in milliseconds the application
should wait for a response from the Logix5550.

Return Value

OCX_SUCCESS Data was updated successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM req_tagstring, req_offset, req_length, or
req_type is invalid
OCX_ERR_MEMALLOC Unable to allocate memory
OCX_ERR_MSGTOOBIG Response buffer too small for requested data
OCX_CIP_INVALID_TAG Invalid Tag name specified
OCX_CIP_INSUFF_PKT_SPACE Insufficient packet space for response data
OCX_CIP_INVALID_REQUEST The data table request was invalid
OCX_CIP_DATATYPE_MISMATCH Data type in request does not match response
type
OCX_CIP_GENERAL_ERROR General Error associated with unconnected
message
OCX_CIP_MEMBER_UNDEFINED Destination unknown, class unsupported,
instance undefined or structure element
undefined

Client Application
This function is supported for both host and client applications.

ProSoft Technology, Inc. Page 29 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

Example

OCXHANDLE apiHandle;

BYTE tag[]={""SINT_BUFFER"};
WORD offset = 0;

WORD length = 128;

BYTE reqg_type = OCX_CIP_SINT;
BYTE rspbuffer[128];

BYTE rspsize = 128;

BYTE slot = 1;

// Read 128 SINT"s from slot 1 tag named SINT_BUFFER

OCXcip_DataTableRead(apiHandle, tag, offset, length, req_type,
rspbuffer, &rspsize, slot, 5000);

See Also

OCXcip_DataTableWrite

Page 30 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions

PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_GetDeviceldObject

Syntax

int OCXcip_GetDeviceldObject(

OCXHANDLE apiHandle,
BYTE *pPathStr,
OCXCIPIDOBJ *idobject
WORD timeout);

Parameters

apiHandle Handle returned from OCXcip_Open call

pPathStr Path to device being read

idobject Pointer to structure receiving the Identity Object
data

timeout Number of milliseconds to wait for the read to
complete

Description

OCXcip_GetDeviceldObject retrieves the identity object from the device at the
address specified in pPathStr. apiHandle must be a valid handle returned from

OCXcip_Open.

idobject is a pointer to a structure of type OCXCIPIDOBJ. The members of this
structure will be updated with the module identity data.

timeout is used to specify the amount of time in milliseconds the application
should wait for a response from the device.

The OCXCIPIDOBJ structure is defined below:

typedef struct tagOCXCIPIDOBJ

{
WORD VendorlD;

WORD DeviceType;
WORD ProductCode;
BYTE MajorRevision;
BYTE MinorRevision;
DWORD SerialNo;
BYTE Name[32];

} OCXCIPIDOBJ;

Return Value

/7/
//
//
//
//
//
/7/

Vendor ID number

General product type
Vendor-specific product identifier
Major revision level

Minor revision level

Module serial number

Text module name (null-terminated)

OCX_SUCCESS

ID object was retrieved successfully

OCX_ERR_NOACCESS

apiHandle does not have access

OCX_ERR_MEMALLOC

If not enough memory is available

OCX_ERR_BADPARAM

If path was bad

ProSoft Technology, Inc.
May 17, 2007

Page 31 of 73

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

Example

OCXHANDLE apiHandle;
OCXCIPIDOBJ idobject;

BYTE Path[]="p:1,s:0";

// Read Id Data from 5550 in slot O

OCXcip_GetDeviceldObject(apiHandle, &Path, &idobject, 5000);
printFC"\r\n\rDevice Name: ');

printf((char *)idobject_Name);

printf(C"\n\rVendorlID: %2X DeviceType: %d', idobject.VendorlD,
idobject._DeviceType);

printf(""\n\rProdCode: %d SerialNum: %Ild", idobject.ProductCode,
idobject._SerialNo);

printFC"\n\rRevision: %d.%d", idobject.MajorRevision, idobject._MinorRevision);

Page 32 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_GetDeviceldStatus
Syntax

int OCXcip_GetDeviceldStatus(
OCXHANDLE apiHandle,

BYTE *pPathStr,

WORD *status,

WORD timeout);

Parameters

apiHandle Handle returned from OCXcip_Open call

pPathStr Path to device being read

status Pointer to location receiving the Identity Object status word
timeout Number of milliseconds to wait for the read to complete
Description

OCXcip_GetDeviceldStatus retrieves the identity object status word from the
device at the address specified in pPathStr. apiHandle must be a valid handle
returned from OCXcip_Open.

status is a pointer to a WORD that will receive the identity status word data. The
following bit masks and bit defines may be used to decode the status word:

OCX_ID_STATUS_DEVICE_STATUS_MASK
OCX_ID_STATUS_FLASHUPDATE - Flash update in progress
OCX_ID_STATUS_FLASHBAD - Flash is bad
OCX_ID_STATUS_FAULTED - Faulted

OCX_ID_STATUS_RUN - Run mode

OCX_ID_STATUS_PROGRAM - Program mode
OCX_ID_STATUS_FAULT_STATUS_MASK
OCX_ID_STATUS_RCV_MINOR_FAULT - Recoverable minor fault
OCX_ID_STATUS_URCV_MINOR_FAULT - Unrecoverable minor fault
OCX_ID_STATUS_RCV_MAJOR_FAULT - Recoverable maijor fault
OCX_ID_STATUS_URCV_MAJOR_FAULT - Unrecoverable major fault
The key and controller mode bits are 555x specific
OCX_ID_STATUS_KEY_SWITCH_MASK - Key switch position mask
OCX_ID_STATUS_KEY_RUN - Keyswitch in run
OCX_ID_STATUS_KEY_PROGRAM - Keyswitch in program

OCX ID_STATUS_KEY_ REMOTE - Keyswitch in remote
OCX_ID_STATUS_CNTR_MODE_MASK - Controller mode bit mask
OCX_ID_STATUS_MODE_CHANGING - Controller is changing modes
OCX_ID_STATUS_DEBUG_MODE - Debug mode if controller is in Run mode
timeout is used to specify the amount of time in milliseconds the application
should wait for a response from the device.

Return Value

OCX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memory is available
OCX_ERR_BADPARAM If path was bad

ProSoft Technology, Inc. Page 33 of 73

May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

Example

OCXHANDLE apiHandle;
WORD status;

BYTE Path[]="p:1,s:0";

// Read Id Status from 5550 in slot O
OCXcip_GetDeviceldStatus(apiHandle, &Path, &status, 5000);
printf(C"\n\r");

switch(Status & OCX_ID_STATUS DEVICE_STATUS_MASK)

{
case OCX_ID_STATUS_FLASHUPDATE: // Flash update in progress
printf(*'Status: Flash Update in Progress™);

break;
case OCX_ID_STATUS FLASHBAD: // Flash is bad
printf("'Status: Flash is bad™);
break;
case OCX_ID_STATUS_FAULTED: // Faulted
printf("'Status: Faulted™);
break;
case OCX_ID_STATUS RUN: // Run mode
printf(*'Status: Run mode'™);
break;
case OCX_ID_STATUS_PROGRAM: // Program mode
printf(*'Status: Program mode');
break;
default:
printf(""ERROR: Bad status mode');
break;

}

printf(C"\n\r);
switch(Status & OCX_ID_STATUS_KEY_SWITCH_MASK)
{
case OCX_ID_STATUS_KEY_RUN: // Key switch in run
printf(’Key switch position: Run');
break;
case OCX_ID_STATUS KEY_PROGRAM: // Key switch In program
printf("'’Key switch position: program');
break;
case OCX_ID_STATUS_KEY_REMOTE: // Key switch In remote
printf("’Key switch position: remote'™);
break;
default:
printf("'ERROR: Bad key position™);
break;

Page 34 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_InitTagDefTable

Syntax

int OCXcip_InitTagbefTable(OCXHANDLE apiHandle);

Parameters

apiHandle Handle returned from OCXcip_Open call
Description

OCXcip_InitTagDefTable initializes the tag definition table internal to the API.
apiHandle must be a valid handle returned from OCXcip_Open.

OCXcip_InitTagDefTable must be called before tags can be defined or accessed
using the OCXcip_TagDefine, OCXcip_DtTagRd and OCXcip_DtTagWr
functions.

IMPORTANT: Once the Tag definition table has been initialized,
OCXcip_UninitTagDefTable should always be called before exiting the
application.

Return Value

OCX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memory is available
Example

OCXHANDLE apiHandle;

int rc;

rc = OCXcip_InitTagDefTable(apiHandle);
if (rc = OCX_SUCCESS)

{
printfF(C'"\n\roCXcip_InitTagDefTable failed: %d\n\r', rc);
}
else
{
printf(C\n\rTag table initialized successfully.");
}
See Also

OCXcip_UninitTagDefTable

ProSoft Technology, Inc. Page 35 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_UninitTagDefTable

Syntax

int OCXcip_UninitTagDefTable(OCXHANDLE apiHandle);

Parameters

apiHandle Handle returned from OCXcip_Open call
Description

OCXcip_UninitTagDefTable unallocates the tag definition table internal to the API
and deletes all defined tags. apiHandle must be a valid handle returned from
OCXcip_Open.

IMPORTANT: Once the Tag definition table has been initialized,
OCXcip_UninitTagDefTable should always be called before exiting the
application.

Return Value

OCX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memory is available
Example

OCXHANDLE apiHandle;

OCXcip_UninitTagDefTable(apiHandle);

See Also

OCXcip_InitTagDefTable

Page 36 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_TagDefine

Syntax

int OCXcip_TagDefine(OCXHANDLE apiHandle, OCXTAGDEFSTRUC *tagDef, TAGHANDLE

*tagHandle);

Parameters

apiHandle Handle returned from OCXcip_Open call

tagDef Structure containing the information required to
access the tag

tagHandle Handle returned and used to access the tag
defined

Description

OCXcip_TagDefine adds the tag defined by the data in tagDef to the tag
definition table. The tag can then be read or written to using the handle returned
in tagHandle. apiHandle must be a valid handle returned from OCXcip_Open.

tagDef is a pointer to a structure of type OCXTAGDEFSTRUC. The
OCXCIPIDOBUJ structure is defined below:

typedef struct tagOCXTAGDEFSTRUC
{
BYTE *pName;
WORD data_type;
WORD size;
WORD access_type;
BYTE *pPath;
WORD timeout;
} OCXTAGDEFSTRUC;

pName is a pointer to a string containing the name of the tag in the 5550 that will
be registered. The tag name can be up to 40 characters in length. Refer to the
Reference chapter for tag naming conventions.

data_type is the data type of the tag being registered. Allowable data types are:

Data Type Number of Description
Bytes
OCX_CIP_BOOL 4 Logical Boolean with values True and False
OCX_CIP_SINT 1 Signed 8-bit integer
OCX_CIP_INT 2 Signed 16-bit integer
OCX_CIP_DINT 4 Signed 32-bit integer
OCX_CIP_REAL 4 32-bit floating point value

size defines the number of tags in an array to be accessed. In the case of a
single tag, this should be set to 1.

access_type determines how the tag being defined can be accessed. The access
types are:

OCX_ACCESS_TYPE_READ_ONLY - Tag access is read only
OCX_ACCESS_TYPE_RDWR - Tag access is read/write

ProSoft Technology, Inc. Page 37 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

CIP API Functions

pPath is a pointer to a string containing the path used to access the tag being
registered. For information on specifying paths, refer to the Reference chapter.

timeout is used to specify the amount of time in milliseconds the application

should wait for a response from the device.

Return Value

OCX_SUCCESS Tag definition has been registered successfully

OCX_ERR_NOACCESS apiHandle does not have access

OCX_ERR_MEMALLOC If not enough memory is available

OCX_ERR_NOINIT Tag definition table has not been initialized

OCX_ERR_BADPARAM If invalid parameter is passed

Example

OCXHANDLE apiHandle;
OCXTAGDEFSTRUC tagdef;

BYTE Name[]=""Tag_1";
BYTE Path[]="p:1,s:0";
TAGHANDLE tagHandle;

tagdef.pName Name;

tagdef.pPath Path;

tagdef.size = 1;

tagdef.data_type = OCX_CIP_INT;
tagdef.access_type = OCX_ACCESS_TYPE_RDWR;
tagdef.timeout = 5000;

rc = OCXcip_TagDefine(handle, &tagdef, &tagHandle);
if (rc !'= OCX_SUCCESS)

{

printfFC"\n\rOCXcip_TagDefine failed: %d\n\r", rc);
}
See Also

OCXcip_TagUndefine

Page 38 of 73

ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_TagUndefine

Syntax

int OCXcip_TagUndefine(OCXHANDLE apiHandle, TAGHANDLE tagHandle);
Parameters

apiHandle Handle returned from OCXcip_Open call
tagHandle Handle of tag being undefined.
Description

OCXcip_TagUndefine unallocates the resources for the tag identified by
tagHandle. apiHandle must be a valid handle returned from OCXcip_Open.

Return Value

OCX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_NOINIT If tag access has not been initialized
OCX_ERR_BADPARAM If and invalid tag handle is passed
Example

OCXHANDLE apiHandle;

OCXcip_TagUndefine(apiHandle, tagHandle);
See Also
OCXcip_TagDefine

ProSoft Technology, Inc. Page 39 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_DtTagRd

Syntax
int OCXcip_DtTagRd(OCXHANDLE apiHandle, TAGHANDLE tagHandle, void *tagData);
Parameters
apiHandle Handle returned from OCXcip_Open call
tagHandle Handle of tag to read data from
tagData Pointer to location that will receive the tag data
being read
Description

OCXcip_DtTagRd function sends a unconnected unscheduled message to the
data table object of a ControlLogix 5550 to read the data from a previously
defined tag referenced by tagHandle. The data read is copied to the location
pointed to by tagData. apiHandle must be a valid handle returned from

OCXcip_Open.

Return Value

OCX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_NOINIT If tag access has not been initialized
OCX_ERR_BADPARAM If and invalid tag handle is passed
Example

OCXHANDLE apiHandle;

TAGHANDLE tagHandle;

WORD tagData

OCXcip_DtTagRd(apiHandle, tagHandle, &tagData);

See Also
OCXcip_DtTagWr

Page 40 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform

In-Rack Industrial PC

OCXcip_DtTagWr

Syntax
int OCXcip_DtTagWr(OCXHANDLE apiHandle, TAGHANDLE tagHandle, void *tagData);
Parameters

apiHandle Handle returned from OCXcip_Open call
tagHandle Handle of tag to read data from

tagData Pointer to location the tag data being written
Description

OCXcip_DtTagWr function sends a unconnected unscheduled message to the
data table object of a ControlLogix 5550 to write the data from a previously
defined tag referenced by tagHandle. The data read is copied to the location
pointed to by tagData to the 5550. apiHandle must be a valid handle returned
from OCXcip_Open.

Return Value

OCX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_NOINIT If tag access has not been initialized
OCX_ERR_BADPARAM If and invalid tag handle is passed
Example

OCXHANDLE apiHandle;

TAGHANDLE tagHandle;

WORD tagData

OCXcip_DtTagWr(apiHandle, tagHandle, &tagData);

See Also
OCXcip_DtTagRd

ProSoft Technology, Inc. Page 41 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_RdldStatusDefine
Syntax

int OCXcip_RdldStatusDefine(OCXHANDLE apiHandle, OCXTAGDEFSTRUC *tagDef,
TAGHANDLE *tagHandle);

Parameters

apiHandle Handle returned from OCXcip_Open call

tagDef Structure containing the information required to
access the Id Status word

tagHandle Handle returned and used to access the status
word

Description

OCXcip_RdldStatusDefine defines a handle to access the Identity Objects status
word. The status word can then be read using the handle returned in tagHandle.
apiHandle must be a valid handle returned from OCXcip_Open.

tagDef is a pointer to a structure of type OCXTAGDEFSTRUC. The
OCXCIPIDOBUJ structure is defined below:

typedef struct tagOCXTAGDEFSTRUC

{
BYTE *pName;

WORD data_type;

WORD access_type;

BYTE *pPath;

WORD timeout;
} OCXTAGDEFSTRUC;
pName is a NULL pointer. No name string is required to access the Id Status
word.

data_type is the always OCX_CIP_INT. All other values will return an error.

access_type is always OCX _ACCESS _TYPE_READ_ONLY. The Id status word
cannot be written to.

pPath is a pointer to a string containing the path used to access the Id status
word. For information on specifying paths, see Specifying the Communications
path (page 67).

timeout is used to specify the amount of time in milliseconds the application
should wait for a response from the device.

Return Value

OCX_SUCCESS Tag definition has been registered successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_MEMALLOC If not enough memory is available
OCX_ERR_NOINIT Tag definition table has not been initialized
OCX_ERR_BADPARAM If invalid parameter is passed

Page 42 of 73 ProSoft Technology, Inc.

May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Example

OCXHANDLE apiHandle;
OCXTAGDEFSTRUC tagdef;

BYTE Path[]="p:1,s:0";
TAGHANDLE tagHandle;

tagdef.pPath = Path;

tagdef.data_type = OCX_CIP_INT;
tagdef.access_type = OCX_ACCESS_TYPE_READ ONLY;
tagdef.timeout = 5000;

rc = OCXcip_RdldStatusDefine(handle, &tagdef, &tagHandle);
if (rc = OCX_SUCCESS)

{

printf(C"'\n\rOoCXcip_RdldStatusDefine failed: %d\n\r', rc);
}
See Also

OCXcip_TagUndefine

ProSoft Technology, Inc. Page 43 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

Static RAM Access

OCXcip_ReadSRAM

Syntax

int OCXcip_ReadSRAM(
OCXHANDLE apiHandle,
BYTE *dataBuf,

DWORD offset,

DWORD dataSize);

Parameters

apiHandle Handle returned by previous call to
OCXcip_Open

dataBuf Pointer to buffer to receive data

offset Offset of byte to begin reading

dataSize Number of bytes to read

Description

This function is used by an application read data from the battery-backed Static
RAM. Data stored to the Static RAM is preserved when the system is powered
down as long as the battery is good. The Static RAM on the PC56 module is
512K bytes in size.

apiHandle must be a valid handle returned from OCXcip_Open.

offset is the offset into the Static RAM to begin reading. dataBuf is a pointer to a
buffer to receive the data. dataSize is the number of bytes of data to be read.

Notes:
Accessing the Static RAM increases system interrupt latency (MS-DOS only).

Return Value

OCX_SUCCESS Data was read successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM offset or dataSize is invalid
Example

OCXHANDLE apiHandle;

BYTE buffer[128];

// Read first 128 bytes from Static RAM
OCXcip_ReadSRAM(apiHandle, buffer, 0, 128);

See Also
OCXcip_WriteSRAM

Page 44 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_WriteSRAM

Syntax

int OCXcip_WriteSRAM(
OCXHANDLE apiHandle,
BYTE *dataBuf,

DWORD offset,

DWORD dataSize);

Parameters

apiHandle Handle returned by previous call to
OCXcip_Open

dataBuf Pointer to buffer of data to write

offset Offset of byte to begin writing

dataSize Number of bytes to write

Description

This function is used by an application write data to the battery-backed Static
RAM. Data stored in the Static RAM is preserved when the system is powered
down as long as the battery is good. The Static RAM on the PC56 module is
512K bytes in size.

apiHandle must be a valid handle returned from OCXcip_Open.

offset is the offset into the Static RAM to begin writing. dataBuf is a pointer to a
buffer of data to write. dataSize is the number of bytes of data to be written.

Notes:
Accessing the Static RAM increases system interrupt latency (MS-DOS only).

Return Value

OCX_SUCCESS Data was written successfully
OCX_ERR_NOACCESS apiHandle does not have access
OCX_ERR_BADPARAM offset or dataSize is invalid
Example

OCXHANDLE apiHandle;

BYTE buffer[128];

// Write to first 128 bytes of Static RAM
OCXcip_WriteSRAM(apiHandle, buffer, 0, 128);

See Also
OCXcip_ReadSRAM

ProSoft Technology, Inc. Page 45 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

Miscellaneous

OCXcip_GetldObject

Syntax

Int OCXcip_GetldObject(OCXHANDLE apiHandle, OCXCIPIDOBJ *idobject);
Parameters

apiHandle Handle returned from OCXcip_Open call
Description

OCXcip_GetldObject retrieves the identity object for the module. apiHandle must
be a valid handle returned from OCXcip_Open.

idobject is a pointer to a structure of type OCXCIPIDOBJ. The members of this
structure will be updated with the module identity data.

The OCXCIPIDOBJ structure is defined below:

typedef struct tagOCXCIPIDOBJ
{
WORD VendorlD; // Vendor 1D number
WORD DeviceType; // General product type
WORD ProductCode; // Vendor-specific product identifier
BYTE MajorRevision; // Major revision level
BYTE MinorRevision; // Minor revision level
DWORD SerialNo; // Module serial number
BYTE Name[32]; // Text module name (null-terminated)
3} OCXCIPIDOBJ;

Return Value

OCX_SUCCESS ID object was retrieved successfully
OCX_ERR_NOACCESS apiHandle does not have access
Example

OCXHANDLE apiHandle;

OCXCIPIDOBJ idobject;

OCXcip_GetldObject(apiHandle, &idobject);
printf("'Module Name: %s serial Number: %lu\n*, idobject_Name,
idobject.SerialNo);

Page 46 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_GetVersioninfo

Syntax

int OCXcip_GetVersionInfo(OCXHANDLE handle, OCXCIPVERSIONINFO *verinfo);

Parameters

handle Handle returned by previous call to
OCXcip_Open

verinfo Pointer to structure of type
OCXCIPVERSIONINFO

Description

OCXcip_GetVersioninfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.
handle must be a valid handle returned from OCXcip_Open.

The OCXCIPVERSIONINFO structure is defined as follows:

typedef struct tagOCXCIPVERSIONINFO
{

WORD APlISeries; /* APl series */

WORD APIRevision; /* APl revision */
WORD BPDDSeries; /* Backplane device driver series */
WORD BPDDRevision; /* Backplane device driver revision */
} OCXCIPVERSIONINFO;

Return Value

OCX_SUCCESS The version information was read successfully.
OCX_ERR_NOACCESS handle does not have access

Example

OCXHANDLE Handle;

OCXCIPVERSIONINFO verinfo;

/* print version of APl library */

OCXcip_GetVersionlnfo(Handle,&verinfo);

printf("'Library Series %d, Rev %d\n", verinfo.APISeries, verinfo_APIRevision);
printf("'Driver Series %d, Rev %d\n', verinfo.BPDDSeries, verinfo_BPDDRevision);

ProSoft Technology, Inc. Page 47 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_SetUserLED

Syntax

int OCXcip_SetUserLED(OCXHANDLE handle, int ledstate);

Parameters

handle Handle returned by previous call to
OCXcip_Open

ledstate Specifies the state for the LED

Description

OCXcip_SetUserLED allows an application to set the user LED indicator to red,
green, or off. handle must be a valid handle returned from OCXcip_Open.

ledstate must be set to OCX_LED_STATE_RED, OCX_LED_STATE_GREEN,
or OCX _LED STATE_OFF to set the indicator Red, Green, or Off, respectively.

Return Value

OCX_SUCCESS The LED state was set successfully.
OCX_ERR_NOACCESS handle does not have access
OCX_ERR_BADPARAM ledstate is invalid.

Example

OCXHANDLE Handle;

/* Set User LED RED */
OCXcip_SetUserLED(Handle, OCX_LED_STATE_RED);

Page 48 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_SetDisplay
Syntax
int OCXcip_SetDisplay(OCXHANDLE handle, char *display_string);

Parameters

handle Handle returned by previous call to
OCXcip_Open

display_string 4-character string to be displayed

Description

OCXcip_SetDisplay allows an application to load 4 ASCII characters to the
alphanumeric display. handle must be a valid handle returned from
OCXcip_Open.

display_string must be a pointer to a NULL-terminated string whose length is
exactly 4 (not including the NULL).

Return Value

OCX_SUCCESS The LED state was set successfully.
OCX_ERR_NOACCESS handle does not have access
OCX_ERR_BADPARAM display_string length is not 4.
Example

OCXHANDLE Handle;

char buf[5];

/* Display the time as HHMM */
sprintf(buf, "%02d%02d", tm_hour, tm _min);
OCXcip_SetDisplay(Handle, buf);

ProSoft Technology, Inc. Page 49 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_GetSwitchPosition
Syntax
int OCXcip_GetSwitchPosition(OCXHANDLE handle, int *sw_pos)

Parameters

handle Handle returned by previous call to
OCXcip_Open

SW_pos Pointer to integer to receive switch state

Description

OCXcip_GetSwitchPosition retrieves the state of the 3-position switch on the
front panel of the module. The information is returned in the integer pointed to by
sw_pos. handle must be a valid handle returned from OCXcip_Open.

If OCX_SUCCESS is returned, the integer pointed to by sw_pos will be set to
one of the following values:

OCX_SWITCH_TOP Switch is in uppermost position

OCX_SWITCH_MIDDLE Switch is in center position

OCX_SWITCH_BOTTOM Switch is in lowermost position

Return Value

OCX_SUCCESS The switch position information was read
successfully.

OCX_ERR_NOACCESS handle does not have access

Example

OCXHANDLE Handle;

int swpos;

/* check switch position */
OCXcip_GetSwitchPosition(Handle,&swpos) ;
it (swpos == OCX_SWITCH_TOP)
printfF(""Switch is in TOP position™);

Page 50 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_GetTemperature
Syntax
int OCXcip_GetTemperature(OCXHANDLE handle, int *temperature)

Parameters

handle Handle returned by previous call to
OCXcip_Open

temperature Pointer to integer to receive
temperature

Description

OCXcip_GetTemperature retrieves current temperature within the module. The
information is returned in the integer pointed to by temperature. handle must be a
valid handle returned from OCXcip_Open.

The temperature is returned in degrees Celsius.

Return Value

OCX_SUCCESS The switch position information was read
successfully.

OCX_ERR_NOACCESS handle does not have access.

OCX_ERR_TIMEOUT An error occurred while reading the
temperature.

Example

OCXHANDLE Handle;

int temp;

/* display temperature */
OCXcip_GetTemperature(Handle,&temp);
printf("'Temperature is %dC', temp);

ProSoft Technology, Inc. Page 51 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_SetModuleStatus
Syntax
int OCXcip_SetModuleStatus(OCXHANDLE handle, int status);

Parameters

handle Handle returned by previous call to
OCXcip_Open

status Module status, OK or Faulted

Description

OCXcip_SetModuleStatus allows an application set the status of the module to
OK or Faulted. handle must be a valid handle returned from OCXcip_Open.

state must be set to OCX_MODULE_STATUS_OK or

OCX _MODULE_STATUS_FAULTED. If the state is Ok, the module status LED
indicator will be set to Green. If the state is Faulted, the status indicator will be
set to Red.

Return Value

OCX_SUCCESS The module status was set successfully.
OCX_ERR_NOACCESS handle does not have access
OCX_ERR_BADPARAM status is invalid.

Example

OCXHANDLE Handle;
/* Set the Status indicator to Red */
OCXcip_SetModuleStatus(Handle, OCX_MODULE_STATUS_FAULTED);

Page 52 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_ErrorString

Syntax

int OCXcip_ErrorString(int errcode, char *buf);

Parameters

errcode Error code returned from an API function
buf Pointer to user buffer to receive message
Description

OCXcip_ErrorString returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

OCX_SUCCESS Message returned in buf
OCX_ERR_BADPARAM Unknown error code
Example

char buf[80];

int rc;

/* print error message */
OCXcip_ErrorString(rc, buf);
printf("Error: %s", buf);

ProSoft Technology, Inc. Page 53 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

OCXcip_Sleep
Syntax
int OCXcip_Sleep(OCXHANDLE apiHandle, WORD msdelay);
Parameters
apiHandle Handle returned by previous call to

OCXcip_Open

msdelay Time in milliseconds to delay
Description

OCXcip_Sleep delays for msdelay milliseconds.

Return Value

OCX_SUCCESS Success
OCX_ERR_NOACCESS apiHandle does not have access
Example

OCXHANDLE apiHandle;
int timeout=200;

// Simple timeout loop
while(timeout--)

{
// Poll for data, etc.
// Break if condition is met (no timeout)
// Else sleep a bit and try again
OCXcip_Sleep(apiHandle, 10);
}
Page 54 of 73 ProSoft Technology, Inc.

May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

OCXcip_CalculateCRC

Syntax

int OCXcip_CalculateCRC (BYTE *dataBuf, DWORD dataSize, WORD *crc);
Parameters

dataBuf Pointer to buffer of data

dataSize Number of bytes of data

crc Pointer to 16-bit word to receive CRC value
Description

OCXcip_CalculateCRC computes a 16-bit CRC for a range of data. This can be
useful for validating a block of data; for example, data retrieved from the battery-
backed Static RAM.

Return Value
OCX_SUCCESS Success

Example

WORD crc;
BYTE buffer[100];

// Compute a crc for our buffer
OCXcip_CalculateCRC(buffer, 100, &crc);

ProSoft Technology, Inc. Page 55 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

Callback Functions

Note: The functions in this section are not part of the CIP API, but must be
implemented by the application. The CIP API calls the connect_proc or
service_proc functions when connection or service requests are received for
the registered object. If registered, the optional rxdata proc function is called
when data is received on a connection. The optional fatalfault_proc function
is called when the backplane device driver detects a fatal fault condition. The
optional resetrequest_proc function is called when a reset request is received
by the backplane device driver.

Special care must be taken when coding the callback functions, because these
functions are called directly from the backplane device driver. In particular, no
assumptions can be made about the segment registers DS or SS. Therefore, the
compiler options or directives used must disable stack probes and reload DS. For
convenience, the macro OCXCALLBACK has been defined to include the
__loadds compiler directive, which forces the data segment register to be
reloaded upon entry to the callback function.

Stack probes (or stack checking) must be disabled using compiler command line
arguments or pragmas. Stack checking is off by default for the Borland compiler.
For the Microsoft compiler, it must be disabled either with the /Gs command line
option, or with "pragma checkstack(off)".

Callback functions may be called at any time; therefore, they should never call
any functions that are non-reentrant. Many C-runtime library functions may be
non-reentrant, such as file system operations or memory allocation/deallocation.

In general, the callback routines should be as short as possible, especially
rxdata_proc. Stack size is limited, so keep stack variables to a minimum. Do as
little work as possible in the callback; for example, copy data to a buffer, set a
flag, and let the mainline code complete the work.

connect_proc

Syntax

OCXCALLBACK connect_proc(OCXHANDLE objHandle, OCXCIPCONNSTRUC *sConn);

Parameters

objHandle Handle of registered object instance

sConn Pointer to structure of type
OCXCIPCONNSTRUCT

Description

connect_proc is a callback function which is passed to the CIP APl in the
OCXcip_RegisterAssemblyObj call. The CIP API calls the connect_proc
function when a Class 1 scheduled connection request is made for the registered
object instance specified by objHandle.

sConn is a pointer to a structure of type OCXCIPCONNSTRUCT. This structure
is shown below:

Page 56 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

typedef struct tagOCXCIPCONNSTRUC

{

OCXHANDLE connHandle; // unique value which identifies this connection

DWORD reg_param; // value passed via OCXcip_RegisterAssemblyObj

WORD reason; // specifies reason for callback

WORD instance; // instance specified in open

WORD producerCP; // producer connection point specified in open

WORD consumerCP; // consumer connection point specified in open

DWORD *10TApi ; // pointer to originator to target packet
interval

DWORD *1TOApi ; // pointer to target to originator packet
interval

DWORD 10DeviceSn; // Serial number of the originator

WORD iOVendorld; // Vendor Id of the originator

WORD rxDataSize; // size in bytes of receive data

WORD txDataSize; // size in bytes of transmit data

BYTE *configData; // pointer to configuration data sent in open

WORD configSize; // size of configuration data sent in open

WORD *extendederr; // Contains an extended error code if an error
occurs

} OCXCIPCONNSTRUC;

connHandle is used to identify this connection. This value must be passed to the
OCXcip_SendConnected and OCXcip_ReadConnected functions.

reg_param is the value that was passed to OCXcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

reason specifies whether the connection is being opened or closed. A value of
OCX_CIP_CONN_OPEN indicates the connection is being opened,
OCX_CIP_CONN_OPEN_COMPLETE indicates the connection has been
successfully opened, OCX_CIP_CONN_NULLOPEN indicates there is new
configuration data for a currently open connection, and
OCX_CIP_CONN_CLOSE indicates the connection is being closed. If reason is
OCX_CIP_CONN_CLOSE, the following parameters are unused: producerCP,
consumerCP, api, rxDataSize, and txDataSize.

instance is the instance number that is passed in the forward open.

Note: This corresponds to the Configuration Instance on the RSLogix 5000
generic profile.

producerCP is the producer connection point from the open request.

Note: This corresponds to the Input Instance on the RSLogix 5000 generic
profile.

consumerCP is the consumer connection point from the open request.

Note: This corresponds to the Output Instance on the RSLogix 5000 generic
profile.

IOTApi is a pointer to the originator-to-target actual packet interval for this
connection, expressed in microseconds. This is the rate at which connection data

ProSoft Technology, Inc. Page 57 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

packets will be received from the originator. This value is initialized according to
the requested packet interval from the open request. The application may choose
to reject the connection if the value is not within a predetermined range. If the
connection is rejected, return OCX_CIP_FAILURE and set extendederr to
OCX_CIP_EX_BAD_RPI.

Note: The minimum RPI value supported by the PC56 module is 200us.

ITOApiI is a pointer to the target-to-originator actual packet interval for this
connection, expressed in microseconds. This is the rate at which connection data
packets will be transmitted by the module. This value is initialized according to
the requested packet interval from the open request. The application may choose
to increase this value if necessary.

IODeviceSn is the serial number of the originating device, and iOVendorld is the
vendor ID. The combination of vendor ID and serial number is guaranteed to be

unique, and may be used to identify the source of the connection request. This is
important when connection requests may be originated by multiple devices.

rxDataSize is the size in bytes of the data to be received on this connection.
txDataSize is the size in bytes of the data to be sent on this connection.

configData is a pointer to a buffer containing any configuration data that was sent
with the open request. configSize is the size in bytes of the configuration data.

extendederr is a pointer to a word which may be set by the callback function to
an extended error code if the connection open request is refused.

Return Value
The connect_proc routine must return one of the following values if reason is
OCX_CIP_CONN_OPEN:

Note: If reason is OCX_CIP_CONN_OPEN_COMPLETE or
OCX_CIP_CONN_CLOSE, the return value must be OCX_SUCCESS.

OCX_SUCCESS Connection is accepted

OCX_CIP_BAD_INSTANCE instance is invalid

OCX_CIP_NO_RESOURCE Unable to support connection due to resource
limitations

OCX_CIP_FAILURE Connection is rejected — extendederr may be
set

Extended Error Codes:
If the open request is rejected, extendederr can be set to one of the following

values:
OCX_CIP_EX_CONNECTION_USED The requested connection is already in use.
OCX_CIP_EX_BAD_RPI The requested packet interval cannot be
supported.
OCX_CIP_EX_BAD_SIZE The requested connection sizes do not match
the allowed sizes.
Page 58 of 73 ProSoft Technology, Inc.

May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Example

OCXHANDLE Handle;
OCXCALLBACK connect_proc(OCXHANDLE objHandle, OCXCIPCONNSTRUCT *sConn)
{
// Check reason for callback
switch(sConn->reason)
{
case OCX_CIP_CONN_OPEN:
// A new connection request is being made. Validate the
// parameters and determine whether to allow the connection.
// Return OCX_SUCCESS if the connection is to be established,
// or one of the extended error codes if not. Refer to the sample
// code for more details.
return(OCX_SUCCESS) ;

case OCX_CIP_CONN_OPEN_COMPLETE:
// The connection has been successfully opened. 1If necessary,
// call OCXcip_WriteConnected to initialize transmit data.
return(OCX_SUCCESS) ;
case OCX_CIP_CONN_NULLOPEN:
// New configuration data is being passed to the open connection.
// Process the data as necessary and return success.
return(OCX_SUCCESS) ;
case OCX_CIP_CONN_CLOSE:
// This connection has been closed — inform the application
return(OCX_SUCCESS) ;
}
}

See Also
OCXcip_RegisterAssemblyObj

OCXcip_SendConnected
OCXcip_ReadConnected

ProSoft Technology, Inc. Page 59 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

service_proc

Syntax

OCXCALLBACK service_proc(OCXHANDLE objHandle, OCXCIPSERVSTRUC *sServ);

Parameters

objHandle Handle of registered object

sServ Pointer to structure of type
OCXCIPSERVSTRUC

Description

service_proc is a callback function which is passed to the CIP APl in the
OCXcip_RegisterAssemblyObj call. The CIP API calls the service_proc function
when an unscheduled message is received for the registered object specified by
objHandle.

sServ is a pointer to a structure of type OCXCIPSERVSTRUC. This structure is
shown below:

typedef struct tagOCXCIPSERVSTRUC

{
DWORD reg_param; // value passed via OCXcip_RegisterAssemblyObj
WORD instance; // instance number of object being accessed
BYTE serviceCode; // service being requested
WORD attribute; // attribute being accessed
BYTE **msgBuf; // pointer to pointer to message data
WORD offset; // member offset
WORD *msgSize; // pointer to size in bytes of message data
WORD *extendederr; // Contains an extended error code if an error
occurs

} OCXCIPSERVSTRUC;

reg_param is the value that was passed to OCXcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

instance specifies the instance of the object being accessed. serviceCode
specifies the service being requested. attribute specifies the attribute being
accessed.

msgBuf is a pointer to a pointer to a buffer containing the data from the message.
This pointer should be updated by the callback routine to point to the buffer
containing the message response upon return.

offset is the offset of the member being accessed.

msgSize points to the size in bytes of the data pointed to by msgBuf. The
application should update this with the size of the response data before returning.

extendederr is a pointer to a word which can be set by the callback function to an
extended error code if the service request is refused.

Page 60 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Return Value
The service_proc routine must return one of the following values:

OCX_SUCCESS The message was processed successfully
OCX_CIP_BAD_INSTANCE Invalid class instance
OCX_CIP_BAD_SERVICE Invalid service code
OCX_CIP_BAD_ATTR Invalid attribute
OCX_CIP_ATTR_NOT_SETTABLE Attribute is not settable
OCX_CIP_PARTIAL_DATA Data size invalid
OCX_CIP_BAD_ATTR_DATA Attribute data is invalid
OCX_CIP_FAILURE Generic failure code

Example

OCXHANDLE Handle;
OCXCALLBACK service_proc(OCXHANDLE objHandle, OCXCIPSERVSTRUC *sServ)

{
// Select which instance is being accessed.
// The application defines how each instance is defined.
switch(sServ->instance)
{
case 1: // Instance 1
// Check serviceCode and attribute; perform
// requested service if appropriate
break;
case 2: // Instance 2
// Check serviceCode and attribute; perform
// requested service if appropriate
break;
default:
return(OCX_CIP_BAD_INSTANCE); // Invalid instance
by
}
See Also

OCXcip_RegisterAssemblyObj

ProSoft Technology, Inc. Page 61 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

rxdata_proc

Syntax

OCXCALLBACK rxdata_proc(OCXHANDLE objHandle, OCXCIPRECVSTRUC *sRecv);

Parameters

objHandle Handle of registered object

sRecv Pointer to structure of type
OCXCIPRECVSTRUC

Description

rxdata_proc is an optional callback function which may be passed to the CIP
APl in the OCXcip_RegisterAssemblyObj call. If the rxdata_proc callback has
been registered, the CIP API calls it when Class 1 scheduled data is received for
the registered object specified by objHandle.

sRecv is a pointer to a structure of type OCXCIPRECVSTRUC. This structure is
shown below:

typedef struct tagOCXCIPRECVSTRUC

{
DWORD reg_param; // value passed via OCXcip_RegisterAssemblyObj
OCXHANDLE connHandle; // unique value which identifies this connection
BYTE *rxData; // pointer to buffer of received data
WORD dataSize; // size of received data in bytes

} OCXCIPRECVSTRUC;
reg_param is the value that was passed to OCXcip_RegisterAssemblyObj. The

application may use this to store an index or pointer. It is not used by the CIP
API.

connHandle is the connection identifier passed to the connect_proc callback
when this connection was opened.

rxData is a pointer to a buffer containing the received data. dataSize is the size of
the received data in bytes.

Notes:

Use of the rxdata_proc callback is not recommended. Registering this callback
increases CPU overhead and reduces overall performance, especially for
relatively small RPI values. It is recommended that this callback only be used
when the RPI is set to 2ms or greater.

This routine is called directly from an interrupt service routine in the backplane
device driver. It should not perform any library or operating system calls and
should execute as quickly as possible (200us maximum). Its only function should
be to copy the data to a local buffer. The data must not be processed in the
callback routine, or backplane communications may be disrupted.

Return Value
The rxdata_proc routine must return OCX_SUCCESS.

Page 62 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Example

OCXHANDLE Handle;
OCXCALLBACK rxdata_proc(OCXHANDLE objHandle, OCXCIPRECVSTRUC *sRecv)

{
// Copy the data to our local buffer.
memcpy(RxDataBuf, sRecv->rxData, sRecv->dataSize);
// Indicate that new data has been received
RxDataCnt++;

return(OCX_SUCCESS) ;
}
See Also

OCXcip_RegisterAssemblyObj

ProSoft Technology, Inc. Page 63 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

fatalfault_proc
Syntax
OCXCALLBACK fatalfault_proc();
Parameters
None

Description

fatalfault_proc is an optional callback function which may be passed to the CIP
APl in the OCXcip_RegisterFatalFaultRtn call. If the fatalfault_proc callback has
been registered, it will be called if the backplane device driver detects a fatal fault
condition. This allows the application an opportunity to take appropriate actions.

Return Value
The fatalfault_proc routine must return OCX_SUCCESS.

Example

OCXHANDLE Handle;
OCXCALLBACK fatalfault_proc(void)

{
// Take whatever action is appropriate for the application:
// - Set local 1/0 to safe state
// - Log error
// - Attempt recovery (for example, restart module)
return(OCX_SUCCESS) ;
}
See Also

OCXcip_RegisterFatalFaultRtn

Page 64 of 73 ProSoft Technology, Inc.
May 17, 2007

CIP API Functions PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

resetrequest_proc
Syntax
OCXCALLBACK resetrequest_proc();
Parameters
None

Description

resetrequest_proc is an optional callback function which may be passed to the
CIP API in the OCXcip_RegisterResetReqRtn call. If the resetrequest_proc
callback has been registered, it will be called if the backplane device driver
receives a module reset request (Identity Object reset service). This allows the
application an opportunity to take appropriate actions to prepare for the reset, or
to refuse the reset.

Return Value

OCX_SUCCESS The module will reset upon return from the
callback.
OCX_ERR_INVALID The module will not be reset and will continue

normal operation.

Example

OCXHANDLE Handle;
OCXCALLBACK resetrequest_proc(void)

{
// Take whatever action is appropriate for the application:
// - Set local 1/0 to safe state
// - Perform orderly shutdown
// - Reset special hardware
// - Refuse the reset
return(OCX_SUCCESS) ; // allow the reset
}
See Also

OCXcip_RegisterResetRegRtn

ProSoft Technology, Inc. Page 65 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform CIP API Functions
In-Rack Industrial PC

Page 66 of 73 ProSoft Technology, Inc.
May 17, 2007

Reference PC56 ¢ ControlLogix Platform

In-Rack Industrial PC

5.1

Reference

In This Chapter
» Specifying the Communications path...........ccccccoeiiiiiiinenne. 67

» ControlLogix 5550 Tag Naming Conventions..............cc......... 68

Specifying the Communications path

To construct a communications path, enter one or more path segments that lead
to the target device. Each path segment takes you from one module to another
module over the ControlBus backplane or over a ControlNet or Ethernet network.

Each path segment contains:

p:x,{s,c,t}:y
Where:

p:x specifies the device's port number to communicate through.
Where x is:

backplane from any 1756 module

ControlNet port from a 1756-CNB module

Ethernet port from a 1756-ENET module

separates the starting point and ending point of the path segment

{s c,t}:y specifies the address of the module you are going to.
Where:

sy ControlBus backplane slot number

cy ControlNet network node number (1 to 99 decimal)

ty Ethernet network IP address (for example, 10.0.104.140)

If there are multiple path segments, separate each path segment with a comma

()
Examples:

To communicate from a module in slot 4 of the ControlBus backplane to a
module in slot 0 of the same backplane.

p:1,s:0

To communicate from a module in slot 4 of the ControlBus backplane, through a
1756-CNB in slot 2 at node 15, over ControlNet, to a 1756-CNB in slot 4 at node
21, to a module in slot 0 of a remote backplane.

p:1,s:2,p:2,c:21,p:1,s:0

ProSoft Technology, Inc. Page 67 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform Reference
In-Rack Industrial PC

To communicate from a module in slot 4 of the ControlBus backplane, through a
1756-ENET in slot 2, over Ethernet, to a 1756-ENET (IP address of 10.0.104.42)
in slot 4, to a module in slot 0 of a remote backplane.

p:1,s:2,p:2,t:10.0.104.42,p:1,s:0

5.2 ControlLogix 5550 Tag Naming Conventions
ControlLogix 5550 tags fall into 2 categories:Controller Tags and Program Tags.
Controller tags have global scope. To access a controller scope tag, just the
controller tag name must be specified.
Examples
TagName Single Tag
Array[11] Single Dimensioned Array Element
Array[1,3] 2 — Dimensional Array Element
Array[1,2,3] 3 — Dimensional Array Element
Structure.Element Structure element
StructureArray[1].Element Single Element of an array of structures
Program Tags are tags declared in a program and scoped only within the
program in which they are declared.
To correctly address a Program Tag, you must specify the identifier
"PROGRAM:" followed by the program name. A dot (.) is used to separate the
program name and the tag name:
PROGRAM:ProgramName.TagName
Examples
PROGRAM:MainProgram.TagName Tag "TagName" in program called

"MainProgram"

PROGRAM:MainProgram.Array[11] An array element in program "MainProgram"
PROGRAM:MainProgram.Structure.Element Structure element in program "MainProgram"
(Note: A tag name can contain up to 40 characters. It must start with a letter or
underscore ("_"), however, all other characters can be letters, numbers, or
underscores. Names cannot contain two contiguous underscore characters and
cannot end in an underscore. Letter case is not considered significant. The
naming conventions are based on the IEC-1131 rules for identifiers.)
For additional information on ControlLogix 5550 CPU tag addressing, refer to the
ControlLogix 5550 Users Manual.

Page 68 of 73 ProSoft Technology, Inc.

May 17, 2007

Reference PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Support, Service & Warranty

ProSoft Technology, Inc. survives on its ability to provide meaningful support to
its customers. Should any questions or problems arise, please feel free to
contact us at:

Internet Web Site: http://www.prosoft-technology.com/support

E-mail address: support@prosoft-technology.com

Phone +1(661) 716-5100
+1(661) 716-5101 (Fax)
Postal Mail ProSoft Technology, Inc.

1675 Chester Avenue, Fourth Floor
Bakersfield, CA 93301

Before calling for support, please prepare yourself for the call. In order to provide
the best and quickest support possible, we will most likely ask for the following
information:

1 Product Version Number
2 System architecture
3 Module configuration and contents of configuration file
4 Module Operation
o Configuration/Debug status information
o0 LED patterns
5 Information about the processor and user data files as viewed through the
processor configuration software and LED patterns on the processor
6 Details about the serial devices interfaced
An after-hours answering system allows pager access to one of our qualified
technical and/or application support engineers at any time to answer the
questions that are important to you.

Module Service and Repair

The PC56 device is an electronic product, designed and manufactured to
function under somewhat adverse conditions. As with any product, through age,
misapplication, or any one of many possible problems the device may require
repair.

When purchased from ProSoft Technology, Inc., the device has a 1 year parts
and labor warranty (3 years for RadioLinx) according to the limits specified in the
warranty. Replacement and/or returns should be directed to the distributor from
whom the product was purchased. If you must return the device for repair, obtain
an RMA (Returned Material Authorization) number from ProSoft Technology, Inc.
Please call the factory for this number, and print the number prominently on the
outside of the shipping carton used to return the device.

ProSoft Technology, Inc. Page 69 of 73
May 17, 2007

http://www.prosoft-technology.com/support
mailto:support@prosoft-technology.com

PC56 ¢ ControlLogix Platform Reference
In-Rack Industrial PC

General Warranty Policy — Terms and Conditions

ProSoft Technology, Inc. (hereinafter referred to as ProSoft) warrants that the
Product shall conform to and perform in accordance with published technical
specifications and the accompanying written materials, and shall be free of
defects in materials and workmanship, for the period of time herein indicated,
such warranty period commencing upon receipt of the Product. Limited warranty
service may be obtained by delivering the Product to ProSoft in accordance with
our product return procedures and providing proof of purchase and receipt date.
Customer agrees to insure the Product or assume the risk of loss or damage in
transit, to prepay shipping charges to ProSoft, and to use the original shipping
container or equivalent. Contact ProSoft Customer Service for more information.

This warranty is limited to the repair and/or replacement, at ProSoft's election, of
defective or non-conforming Product, and ProSoft shall not be responsible for the
failure of the Product to perform specified functions, or any other non-
conformance caused by or attributable to: (a) any misuse, misapplication,
accidental damage, abnormal or unusually heavy use, neglect, abuse, alteration
(b) failure of Customer to adhere to ProSoft’s specifications or instructions, (c)
any associated or complementary equipment, software, or user-created
programming including, but not limited to, programs developed with any
IEC1131-3 programming languages, 'C' for example, and not furnished by
ProSoft, (d) improper installation, unauthorized repair or modification (e)
improper testing, or causes external to the product such as, but not limited to,
excessive heat or humidity, power failure, power surges or natural disaster,
compatibility with other hardware and software products introduced after the time
of purchase, or products or accessories not manufactured by ProSoft; all of
which components, software and products are provided as-is. In no event will
ProSoft be held liable for any direct or indirect, incidental consequential damage,
loss of data, or other malady arising from the purchase or use of ProSoft
products.

ProSoft’s software or electronic products are designed and manufactured to
function under adverse environmental conditions as described in the hardware
specifications for this product. As with any product, however, through age,
misapplication, or any one of many possible problems, the device may require
repair.

ProSoft warrants its products to be free from defects in material and
workmanship and shall conform to and perform in accordance with published
technical specifications and the accompanying written materials for up to one
year (12 months) from the date of original purchase (3 years for RadioLinx
products) from ProSoft. If you need to return the device for repair, obtain an RMA
(Returned Material Authorization) number from ProSoft Technology, Inc. in
accordance with the RMA instructions below. Please call the factory for this
number, and print the number prominently on the outside of the shipping carton
used to return the device.

If the product is received within the warranty period ProSoft will repair or replace
the defective product at our option and cost.

Page 70 of 73 ProSoft Technology, Inc.
May 17, 2007

Reference PC56 ¢ ControlLogix Platform
In-Rack Industrial PC

Warranty Procedure: Upon return of the hardware product ProSoft will, at its
option, repair or replace the product at no additional charge, freight prepaid,
except as set forth below. Repair parts and replacement product will be furnished
on an exchange basis and will be either reconditioned or new. All replaced
product and parts become the property of ProSoft. If ProSoft determines that the
Product is not under warranty, it will, at the Customer's option, repair the Product
using then current ProSoft standard rates for parts and labor, and return the
product freight collect.

Limitation of Liability

EXCEPT AS EXPRESSLY PROVIDED HEREIN, PROSOFT MAKES NO
WARRANT OF ANY KIND, EXPRESSED OR IMPLIED, WITH RESPECT TO
ANY EQUIPMENT, PARTS OR SERVICES PROVIDED PURSUANT TO THIS
AGREEMENT, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. NEITHER PROSOFT OR ITS DEALER SHALL BE LIABLE FOR
ANY OTHER DAMAGES, INCLUDING BUT NOT LIMITED TO DIRECT,
INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES,
WHETHER IN AN ACTION IN CONTRACT OR TORT (INCLUDING
NEGLIGENCE AND STRICT LIABILITY), SUCH AS, BUT NOT LIMITED TO,
LOSS OF ANTICIPATED PROFITS OR BENEFITS RESULTING FROM, OR
ARISING OUT OF, OR IN CONNECTION WITH THE USE OR FURNISHING OF
EQUIPMENT, PARTS OR SERVICES HEREUNDER OR THE PERFORMANCE,
USE OR INABILITY TO USE THE SAME, EVEN IF ProSoft OR ITS DEALER'S
TOTAL LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT.

Where directed by State Law, some of the above exclusions or limitations may
not be applicable in some states. This warranty provides specific legal rights;
other rights that vary from state to state may also exist. This warranty shall not be
applicable to the extent that any provisions of this warranty are prohibited by any
Federal, State or Municipal Law that cannot be preempted. Contact ProSoft
Customer Service at +1 (661) 716-5100 for more information.

RMA Procedures

In the event that repairs are required for any reason, contact ProSoft Technical
Support at +1 661.716.5100. A Technical Support Engineer will ask you to
perform several tests in an attempt to diagnose the problem. Simply calling and
asking for a RMA without following our diagnostic instructions or suggestions will
lead to the return request being denied. If, after these tests are completed, the
module is found to be defective, we will provide the necessary RMA number with
instructions on returning the module for repair.

ProSoft Technology, Inc. Page 71 of 73
May 17, 2007

PC56 ¢ ControlLogix Platform Reference
In-Rack Industrial PC

Page 72 of 73 ProSoft Technology, Inc.
May 17, 2007

Index

PC56 ¢ ControlLogix Platform

In-Rack Industrial PC

Index

A
API Library * 9

Application Development Overview ¢ 9

B

Backplane Device Driver * 12

C

Callback Functions ¢ 19, 20, 56

Calling Convention « 9
CIP API Architecture « 11
CIP API Functions « 15
CIP API Reference * 11
connect_proc « 56

Connected Data Transfer * 24
ControlLogix 5550 Tag Naming Conventions

* 68

D

Definitions « 7

F

fatalfault_proc * 64

H

Header File « 10

Initialization « 17
Introduction « 7

M

Miscellaneous « 46

O

Object Registration « 19

OCXcip_CalculateCRC - 55

OCXcip_Close * 18

OCXcip_DataTableRead * 28
OCXcip_DataTableWrite « 26

OCXcip_DtTagRd « 40
OCXcip_DtTagWr « 41

OCXcip_ErrorString « 53

OCXcip_GetDeviceldObject « 31
OCXcip_GetDeviceldStatus * 33

OCXcip_GetldObject « 46

OCXcip_GetSwitchPosition « 50
OCXcip_GetTemperature * 51
OCXcip_GetVersioninfo « 47
OCXcip_InitTagDefTable « 35

OCXcip_Open « 17

OCXcip_RdldStatusDefine * 42
OCXcip_ReadConnected « 25

OCXcip_ReadSRAM - 44

OCXcip_RegisterAssemblyObj « 19
OCXcip_RegisterFatalFaultRtn « 22
OCXcip_RegisterResetReqRtn « 23

OCXcip_SetDisplay « 49

OCXcip_SetModuleStatus « 52

OCXcip_SetUserLED - 48

OCXcip_Sleep * 54
OCXcip_TagDefine « 37

OCXcip_TagUndefine * 39

OCXcip_UninitTagDefTable * 36
OCXcip_UnregisterAssemblyObj « 21
OCXcip_WriteConnected « 24

OCXcip_WIriteSRAM -« 45

P

Please Read This Notice * 2

R

Reference « 67
resetrequest_proc ¢ 65
rxdata_proc « 62

S

Sample Code * 10
service_proc * 60

Special Callback Registration « 22
Specifying the Communications path « 42, 67

Static RAM Access « 44

Support, Service & Warranty « 69

U

Unconnected Data Transfer « 26

w

Warnings « 2

Y

Your Feedback Please * 3

ProSoft Technology, Inc.
May 17, 2007

Page 73 of 73

	Introduction
	Definitions

	Application Development Overview
	API Library
	Calling Convention
	Header File
	Sample Code

	CIP API Reference
	CIP API Architecture
	Backplane Device Driver

	CIP API Functions
	Initialization
	Object Registration
	Special Callback Registration
	Connected Data Transfer
	Unconnected Data Transfer
	Static RAM Access
	Miscellaneous
	Callback Functions

	Reference
	Specifying the Communications path
	ControlLogix 5550 Tag Naming Conventions

	Index

