

MVI-ADM
'C' Programmable

Application Development Module

Developer's Guide

December 12, 2006

Please Read This Notice
Successful application of this module requires a reasonable working knowledge of the Rockwell
Automation hardware, the MVI-ADM Module and the application in which the combination is to be
used. For this reason, it is important that those responsible for implementation satisfy themselves
that the combination will meet the needs of the application without exposing personnel or
equipment to unsafe or inappropriate working conditions.

This manual is provided to assist the user. Every attempt has been made to assure that the
information provided is accurate and a true reflection of the product's installation requirements. In
order to assure a complete understanding of the operation of the product, the user should read all
applicable Rockwell Automation documentation on the operation of the Rockwell Automation
hardware.

Under no conditions will ProSoft Technology, Inc. be responsible or liable for indirect or
consequential damages resulting from the use or application of the product.

Reproduction of the contents of this manual, in whole or in part, without written permission from
ProSoft Technology, Inc. is prohibited.

Information in this manual is subject to change without notice and does not represent a
commitment on the part of ProSoft Technology, Inc. Improvements and/or changes in this manual
or the product may be made at any time. These changes will be made periodically to correct
technical inaccuracies or typographical errors.

Your Feedback Please
We always want you to feel that you made the right decision to use our products. If you have
suggestions, comments, compliments or complaints about the product, documentation or support,
please write or call us.

ProSoft Technology, Inc.
1675 Chester Avenue, Fourth Floor
Bakersfield, CA 93301
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
http://www.prosoft-technology.com

Copyright © ProSoft Technology, Inc. 2000 - 2006. All Rights Reserved.

MVI-ADM Developer's Guide
December 12, 2006

http://www.prosoft-technology.com/

Contents MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 3 of 318
December 12, 2006

Contents

PLEASE READ THIS NOTICE...2
Your Feedback Please ..2

1 INTRODUCTION ...9
1.1 Definitions ..9
1.2 Operating System..10

2 PREPARING THE MVI-ADM MODULE..11
2.1 Package Contents ...11
2.2 Jumper Locations and Settings...11

2.2.1 Setup Jumper...11
2.2.2 Port 1 and Port 2 Jumpers ...11

2.3 Cable Connections ..11
2.3.1 RS-232 Configuration/Debug Port ...12
2.3.2 RS-232...14
2.3.3 RS-422...16
2.3.4 RS-485...16

3 UNDERSTANDING THE MVI-ADM API ...17
3.1 API Libraries...17

3.1.1 Calling Convention...18
3.1.2 Header File...18
3.1.3 Sample Code ...18
3.1.4 Multithreading Considerations ...18

3.2 Development Tools ...18
3.3 Theory of Operation ..19

3.3.1 ADM API ..19
3.4 ADM Functional Blocks ..19

3.4.1 Database..19
3.4.2 Backplane Communications ..19
3.4.3 Serial Communications ..41
3.4.4 Main_app.c ..41
3.4.5 Debugprt.c..41
3.4.6 MVIcfg.c ...42
3.4.7 Commdrv.c...43
3.4.8 Using Compact Flash Disks...45

3.5 ADM API Architecture ...45
3.6 Example Code Files...46
3.7 ADM API Files ..47

3.7.1 ADM Interface Structure ..48
3.8 Backplane API Files ..51

3.8.1 Backplane API Architecture ...51
3.9 Serial API Files...53

3.9.1 Serial API Architecture...53
3.10 Side-Connect API Files ...54

3.10.1 Side-Connect API Architecture ..54
3.10.2 Data Transfer ...54

4 SETTING UP YOUR DEVELOPMENT ENVIRONMENT..55
4.1 Setting Up Your Compiler...55

http://www.prosoft-technology.com/

MVI-ADM ♦ 'C' Programmable Contents
Application Development Module

Page 4 of 318 ProSoft Technology, Inc.
December 12, 2006

4.1.1 Configuring Digital Mars C++ 8.49 .. 55
4.1.2 Configuring Borland C++5.02.. 65

4.2 Setting Up WINIMAGE .. 72
4.3 Installing and Configuring the Module ... 72

4.3.1 Using Side-Connect (Requires Side-Connect Adapter) (MVI71) 73

5 PROGRAMMING THE MODULE ... 77
5.1 ROM Disk Configuration .. 77

5.1.1 CONFIG.SYS File.. 78
5.1.2 Command Interpreter .. 80
5.1.3 Sample ROM Disk Image.. 80

5.2 Creating a ROM Disk Image ... 81
5.2.1 WINIMAGE: Windows Disk Image Builder.. 81

5.3 Downloading a ROM Disk Image... 83
5.3.1 MVI Flash Update.. 83

5.4 MVI System BIOS Setup ... 85
5.5 Debugging Strategies... 86

6 CREATING LADDER LOGIC ... 87
6.1 MVI46 Ladder Logic .. 87

6.1.1 Main Routine ... 87
6.2 MVI56 Ladder Logic .. 87

6.2.1 Main Routine ... 87
6.2.2 Read Routine... 87

6.3 MVI69 Ladder Logic .. 88
6.3.1 Main Routine ... 88
6.3.2 Read Routine... 88
6.3.3 Write Routine... 89

6.4 MVI71 Ladder Logic .. 90
6.4.1 Sample Ladder Logic .. 90

6.5 MVI94 Ladder Logic .. 96
6.5.1 Main Routine ... 96
6.5.2 ADM... 96

7 APPLICATION DEVELOPMENT FUNCTION LIBRARY: ADM API 99
7.1 ADM API Functions... 99
ADM API Initialization Functions... 102

ADM_Open.. 102
ADM_Close ... 103

ADM API Debug Port Functions .. 104
ADM_ProcessDebug... 104
ADM_DAWriteSendCtl .. 105
ADM_DAWriteRecvCtl .. 106
ADM_DAWriteSendData ... 107
ADM_DAWriteRecvData ... 108
ADM_ConPrint... 109
ADM_CheckDBPort... 110

ADM API Database Functions.. 111
ADM_DBOpen... 111
ADM_DBClose .. 112
ADM_DBZero .. 113
ADM_DBGetBit.. 114
ADM_DBSetBit .. 115
ADM_DBClearBit... 116

Contents MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 5 of 318
December 12, 2006

ADM_DBGetByte ...117
ADM_DBSetByte ...118
ADM_DBGetWord..119
ADM_DBSetWord ..120
ADM_DBGetLong ..121
ADM_DBSetLong...122
ADM_DBGetFloat ..123
ADM_DBSetFloat...124
ADM_DBGetDFloat..125
ADM_DBSetDFloat ..126
ADM_DBGetBuff..127
ADM_DBSetBuff ..128
ADM_DBGetRegs..129
ADM_DBSetRegs ..130
ADM_DBGetString...131
ADM_DBSetString ...132
ADM_DBSwapWord ..133
ADM_DBSwapDWord..134
ADM_GetDBCptr ...135
ADM_GetDBIptr ...136
ADM_GetDBInt ..137
ADM_DBChanged ...138
ADM_DBBitChanged ...139
ADM_DBOR_Byte ...140
ADM_DBNOR_Byte...141
ADM_DBAND_Byte ...142
ADM_DBNAND_Byte...143
ADM_DBXOR_Byte ...144
ADM_DBXNOR_Byte ..145

ADM API Clock Functions ..146
ADM_StartTimer ..146
ADM_CheckTimer..147

ADM API Backplane Functions ..148
ADM_BtOpen...148
ADM_BtClose ..149
ADM_BtNext ..150
ADM_ReadBtCfg ...151
ADM_BtFunc..152
ADM_SetStatus ...153
ADM_SetBtStatus ..154

ADM LED Functions..155
ADM_SetLed..155

ADM API Flash Functions...156
ADM_FileGetString ..156
ADM_FileGetInt ...157
ADM_FileGetChar..158
ADM_GetVal ..159
ADM_GetChar ...160
ADM_GetStr...161
ADM_SkipToNext ..162
ADM_Getc ...163

ADM API Miscellaneous Functions ...164
ADM_GetVersionInfo ...164
ADM_SetConsolePort..165

MVI-ADM ♦ 'C' Programmable Contents
Application Development Module

Page 6 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_SetConsoleSpeed ... 166
ADM Side-Connect Functions ... 167

ADM_ScOpen ... 167
ADM_ScClose ... 168
ADM_ReadScFile.. 169
ADM_ReadScCfg .. 170
ADM_ScScan .. 171

ADM API RAM Functions ... 172
ADM_EEPROM_ReadConfiguration... 172
ADM_RAM_Find_Section ... 173
ADM_RAM_GetString ... 174
ADM_RAM_GetInt... 175
ADM_RAM_GetLong... 176
ADM_RAM_GetFloat... 177
ADM_RAM_GetDouble ... 178
ADM_RAM_GetChar... 179

8 BACKPLANE API FUNCTIONS... 181
Backplane API Initialization Functions... 183

MVIbp_Open ... 183
MVIbp_Close... 184

Backplane API Configuration Functions .. 185
MVIbp_GetIOConfig .. 185
MVIbp_SetIOConfig .. 187

Backplane API Synchronization Functions.. 189
MVIbp_WaitForInputScan ... 189
MVIbp_WaitForOutputScan .. 191

Backplane API Direct I/O Access .. 193
MVIbp_ReadOutputImage... 193
MVIbp_WriteInputImage.. 194

Backplane API Messaging Functions ... 195
MVIbp_ReceiveMessage .. 195
MVIbp_SendMessage ... 197

Backplane API Miscellaneous Functions ... 199
MVIbp_GetVersionInfo .. 199
MVIbp_GetModuleInfo .. 200
MVIbp_ErrorStr ... 201
MVIbp_SetUserLED .. 202
MVIbp_SetModuleStatus... 203
MVIbp_GetConsoleMode.. 204
MVIbp_GetSetupMode.. 205
MVIbp_GetProcessorStatus.. 206
MVIbp_Sleep... 207
MVIbp_SetConsoleMode .. 208

Platform Specific Functions .. 209
MVIbp_ReadModuleFile (MVI46).. 209
MVIbp_WriteModuleFile (MVI46) .. 210
MVIbp_SetModuleInterrupt (MVI46) ... 211

9 SERIAL PORT LIBRARY FUNCTIONS ... 213
Serial Port API Initialization Functions... 215

MVIsp_Open.. 215
MVIsp_OpenAlt ... 217
MVIsp_Close ... 219

Contents MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 7 of 318
December 12, 2006

Serial Port API Configuration Functions...220
MVIsp_Config ..220
MVIsp_SetHandshaking ..222

Serial Port API Status Functions ...223
MVIsp_SetRTS ..223
MVIsp_GetRTS..224
MVIsp_SetDTR..225
MVIsp_GetDTR..226
MVIsp_GetCTS..227
MVIsp_GetDSR ...228
MVIsp_GetDCD ...229
MVIsp_GetLineStatus ..230

Serial Port API Communications ...231
MVIsp_Putch..231
MVIsp_Getch ...233
MVIsp_Puts..234
MVIsp_PutData..236
MVIsp_Gets ...238
MVIsp_GetData ...240
MVIsp_GetCountUnsent ..242
MVIsp_GetCountUnread..243
MVIsp_PurgeDataUnsent ..244
MVIsp_PurgeDataUnread..245

Serial Port API Miscellaneous Functions..246
MVIsp_GetVersionInfo...246

10 CIP MESSAGING LIBRARY FUNCTIONS...247
10.1 CIP Messaging API Files...247
10.2 CIP API Architecture ...247

10.2.1 Backplane Device Driver..247
CIP API Initialization Functions ...249

MVIcip_Open ...249
MVIcip_Close...250

CIP Object Registration ..251
MVIcip_RegisterAssemblyObj ...251
MVIcip_UnregisterAssemblyObj ..253

CIP Connected Data Transfer...254
MVIcip_WriteConnected ..254
MVIcip_ReadConnected..255

CIP Callback Functions...257
connect_proc ...257
service_proc...261
rxdata_proc ..263
fatalfault_proc ..265
flashupdate_proc ...266
resetrequest_proc ..267

CIP Special Callback Registration ...268
MVIcip_RegisterFatalFaultRtn...268
MVIcip_RegisterResetReqRtn...269
MVIcip_RegisterFlashUpdateRtn ..270

CIP Miscellaneous Functions...271
MVIcip_GetIdObject...271
MVIcip_GetVersionInfo..272
MVIcip_SetUserLED..273

MVI-ADM ♦ 'C' Programmable Contents
Application Development Module

Page 8 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIcip_SetModuleStatus .. 274
MVIcip_ErrorString .. 275
MVIcip_GetSetupMode ... 276
MVIcip_GetConsoleMode ... 277
MVIcip_Sleep .. 278

11 SIDE-CONNECT API LIBRARY FUNCTIONS... 279
11.1 Initialization ... 279

11.1.1 PLC Data Table Access .. 279
11.1.2 Synchronization... 279

11.2 PLC Message Handling .. 280
11.2.1 Block Transfer ... 280
11.2.2 PLC Status and Control... 280
11.2.3 Miscellaneous.. 280

Side-connect API Initialization Functions .. 281
MVIsc_Open.. 281
MVIsc_Close ... 282

Side-connect API PLC Data Table Access Functions... 283
MVIsc_GetPLCFileInfo.. 283
MVIsc_WritePLC ... 285
MVIsc_ReadPLC... 287
MVIsc_RMWPLC .. 289

Side-connect API Synchronization Functions... 291
MVIsc_WaitForEos.. 291

Side-connect API PLC Message Handling Functions ... 292
MVIsc_PLCMsgRead .. 292
MVIsc_PLCMsgWrite .. 294
MVIsc_PLCMsgWait ... 295

Side-connect API Block Transfer Functions.. 296
MVIsc_PLCBTRead .. 296
MVIsc_PLCBTWrite .. 297

Side-connect API PLC Status and Control Functions .. 298
MVIsc_GetPLCStatus ... 298
MVIsc_GetPLCClock... 300
MVIsc_SyncPLCClock .. 301
MVIsc_ClearFault .. 302
MVIsc_SetPLCMode ... 303

Side-connect API Miscellaneous Functions .. 304
MVIsc_GetVersionInfo .. 304
MVIsc_ErrorStr .. 305
MVIsc_GetLastPcccError .. 306
MVIsc_BCD2BIN... 307
MVIsc_BIN2BCD... 308

12 DOS 6 XL REFERENCE MANUAL .. 309

SUPPORT, SERVICE & WARRANTY... 311
Module Service and Repair .. 311
General Warranty Policy – Terms and Conditions .. 312
Limitation of Liability.. 313
RMA Procedures ... 313

INDEX... 315

Introduction MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 9 of 318
December 12, 2006

1 Introduction

In This Chapter

 Definitions .. 9

 Operating System .. 10

This document provides information needed for development of application
programs for the MVI ADM Serial Communication Module. The MVI suite of
modules is designed to allow devices with a serial port to be accessed by a PLC.
The modules and their corresponding platforms are as follows:

 MVI46 - 1746 (SLC)
 MVI56 - 1756 (ControlLogix)
 MVI69 - 1769 (CompactLogix)
 MVI71 - 1771 (PLC)
 MVI94 - 1794 (Flex)

The modules are programmable to accommodate devices with unique serial
protocols.

Included in this document is information about the available software API libraries
and tools, module configuration and programming information, and example code
for both the module and the PLC. This document assumes the reader is familiar
with software development in the 16-bit DOS environment using the C
programming language. This document also assumes that the reader is familiar
with Rockwell Automation programmable controllers and the PLC platform.

1.1 Definitions
Term Definition
API Application Programming Interface
Backplane Refers to the electrical interface, or bus, to which modules connect when

inserted into the rack. The MVI-ADM module communicates with the
control processor(s) through the processor backplane.

BIOS Basic Input Output System. The BIOS firmware initializes the module at
power up, performs self-diagnostics, and provides a DOS-compatible
interface to the console and Flashes the ROM disk.

Controller The PLC or other controlling processor that communicates with the MVI
module directly over the backplane or via a network or remote I/O
adapter.

Input Image Refers to a contiguous block of data that is written by the module
application and read by the controller. The input image is read by the
controller once each scan. Also referred to as the input file.

Library Refers to the library file containing the API functions. The library must be
linked with the developer's application code to create the final executable
program.

MVI-ADM ♦ 'C' Programmable Introduction
Application Development Module

Page 10 of 318 ProSoft Technology, Inc.
December 12, 2006

Term Definition
Long 32-bit value.
Word 16-bit value
Byte 8-bit value
MVI Suite The MVI suite consists of line products for the following Rockwell

Automation platforms:
 Flex I/O
 ControlLogix
 SLC
 PLC
 CompactLogix

MVI46 MVI46 is sold by ProSoft Technology under the MVI46-ADM product
name.

MVI56 MVI56 is sold by ProSoft Technology under the MVI56-ADM product
name.

MVI69 MVI69 is sold by ProSoft Technology under the MVI69-ADM product
name.

MVI71 MVI71 is sold by ProSoft Technology under the MVI71-ADM product
name.

Side-connect Refers to the electronic interface or connector on the side of the PLC-5,
to which modules connect directly through the PLC using a connector
that provides a fast communication path between the MVI module and
the PLC-5.

MVI94 MVI94 and MVI94AV are the same modules. The MVI94AV is now sold
by ProSoft Technology under the MVI94-ADM product name

1.2 Operating System
The MVI module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multi-tasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Digital Mars C++ and Borland compilers. User programs may be
executed automatically by loading them from either the CONFIG.SYS file or an
AUTOEXEC.BAT file.

Note: DOS programs that try to access the video or keyboard hardware
directly will not function correctly on the MVI module. Only programs that use
the standard DOS and BIOS functions to perform console I/O are compatible.

Refer to the General Software Embedded DOS 6-XL Developer's Guide (page
309) on the MVI-ADM CD-ROM for more information.

Preparing the MVI-ADM Module MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 11 of 318
December 12, 2006

2 Preparing the MVI-ADM Module

In This Chapter

 Package Contents.. 11

 Jumper Locations and Settings.. 11

 Cable Connections... 11

2.1 Package Contents
Your MVI-ADM package includes:

 MVI-ADM Module
 ProSoft Technology Solutions CD-ROM (includes all documentation, sample

code, and sample ladder logic).
 Null Modem Cable
 Config/Debug Port to DB-9 adapter

2.2 Jumper Locations and Settings
Each module has three jumpers:

 Setup
 Port 1
 Port 2 (Not available on MVI94)

2.2.1 Setup Jumper
The Setup jumper, located at the bottom of the module, should have the two pins
jumpered when programming the module. After programming is complete, the
jumper should be removed.

2.2.2 Port 1 and Port 2 Jumpers
These jumpers, located at the bottom of the module, configure the port settings
to RS-232, RS-422, or RS-485. By default, the jumpers for both ports are set to
RS-232. These jumpers must be set properly before using the module.

2.3 Cable Connections
The application ports on the MVI-ADM module support RS-232, RS-422, and RS-
485 interfaces. Please look at the module to ensure that the jumpers are set
correctly to correspond with the type of interface you are using.

MVI-ADM ♦ 'C' Programmable Preparing the MVI-ADM Module
Application Development Module

Page 12 of 318 ProSoft Technology, Inc.
December 12, 2006

Note: When using RS-232 with radio modem applications, some radios or
modems require hardware handshaking (control and monitoring of modem
signal lines). Enable this in the configuration of the module by setting the
UseCTS parameter to 1.

2.3.1 RS-232 Configuration/Debug Port
This port is physically an RJ45 connection. An RJ45 to DB-9 adapter cable is
included with the module. This port permits a PC based terminal emulation
program to view configuration and status data in the module and to control the
module. The cable for communications on this port is shown in the following
diagram:

Disabling the RSLinx Driver for the Com Port on the PC

The communication port driver in RSLinx can occasionally prevent other
applications from using the PC's COM port. If you are not able to connect to the
module's configuration/debug port using HyperTerminal or a similar terminal
emulator, follow these steps to disable the RSLinx Driver.

1 Open RSLinx and go to Communications>RSWho
2 Make sure that you are not actively browsing using the driver that you wish to

stop. The following shows an actively browsed network:

Preparing the MVI-ADM Module MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 13 of 318
December 12, 2006

3 Notice how the DF1 driver is opened, and the driver is looking for node 1 (an
SLC processor). If the network is being browsed, then you will not be able to
stop this driver. To stop the driver your RSWho screen should look like this:

Branches are displayed or hidden by clicking on the or the icons.

4 When you have verified that the driver is not being browsed, go to
Communications>Configure Drivers
You may see something like this:

If you see the status as running, you will not be able to use this com port for
anything other than communication to the processor. To stop the driver press
the "Stop" on the side of the window:

5 After you have stopped the driver you will see the following:

6 Upon seeing this, you may now use that com port to connect to the debug
port of the module.

MVI-ADM ♦ 'C' Programmable Preparing the MVI-ADM Module
Application Development Module

Page 14 of 318 ProSoft Technology, Inc.
December 12, 2006

Note: You may need to shut down and restart your PC before it will allow you
to stop the driver (usually only on Windows NT machines). If you have followed
all of the above steps, and it will not stop the driver, then make sure you do not
have RSLogix open. If RSLogix is not open, and you still cannot stop the
driver, then reboot your PC.

2.3.2 RS-232
When the RS-232 interface is selected, the use of hardware handshaking
(control and monitoring of modem signal lines) is user definable. If no hardware
handshaking will be used, the cable to connect to the port is as shown below:

RS-232 -- Modem Connection

This type of connection is required between the module and a modem or other
communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for
most modem applications.

Preparing the MVI-ADM Module MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 15 of 318
December 12, 2006

RS-232 -- Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module
requires hardware handshaking (control and monitoring of modem signal lines).

RS-232 -- Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field
device communication port.

NOTE: If the port is configured with the "Use CTS Line" set to 'Y', then a
jumper is required between the RTS and the CTS line on the module
connection.

MVI-ADM ♦ 'C' Programmable Preparing the MVI-ADM Module
Application Development Module

Page 16 of 318 ProSoft Technology, Inc.
December 12, 2006

2.3.3 RS-422

2.3.4 RS-485
The RS-485 interface requires a single two or three wire cable. The Common
connection is optional and dependent on the RS-485 network. The cable required
for this interface is shown below:

RS-485 and RS-422 Tip

If communication in the RS-422/RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret +/-
and A/B polarities differently.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 17 of 318
December 12, 2006

3 Understanding the MVI-ADM API

In This Chapter

 API Libraries .. 17

 Development Tools .. 18

 Theory of Operation ... 19

 ADM Functional Blocks .. 19

 ADM API Architecture .. 45

 Example Code Files ... 46

 ADM API Files.. 47

 Backplane API Files ... 51

 Serial API Files... 53

 Side-Connect API Files .. 54

The MVI ADM API Suite allows software developers to access the PLC
backplane and serial ports without needing detailed knowledge of the module's
hardware design. The MVI ADM API Suite consists of three distinct components:
the Serial Port API, the MVI Backplane/CIP API and the ADM API.

 The MVI Backplane API provides access to the processor
 The Serial Port API provides access to the serial ports
 The ADM API provides functions designed to ease development.
 In addition to the MVI Backplane API, MVI71 also provides the MVI Side-

Connect API as an alternative interface.
Applications for the MVI ADM module may be developed using industry-standard
DOS programming tools and the appropriate API components.

This section provides general information pertaining to application development
for the MVI ADM module.

3.1 API Libraries
Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars C++ and Borland development
tools.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 18 of 318 ProSoft Technology, Inc.
December 12, 2006

Note: The following compiler versions are intended to be compatible with the
MVI module API:

Digital Mars C++ 8.49 (included on CD)

Borland C++ V5.02

More compilers will be added to the list as the API is tested for compatibility
with them.

3.1.1 Calling Convention
The API library functions are specified using the C programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

3.1.2 Header File
A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard C format.

3.1.3 Sample Code
A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is provided. The sample application may be
compiled using Digital Mars C++ or Borland C++.

3.1.4 Multithreading Considerations
The DOS 6-XL operating system supports the development of multithreaded
applications. Multithreading is fully supported by the API. Critical sections of the
API are protected from simultaneous access; a thread attempting to access a
critical API function at the same time as another thread will be blocked until the
previous thread has completed the function.

Note: The MVI ADM DOS 6-XL operating system has a system tick of 5
milliseconds. Therefore, thread scheduling and timer servicing occur at 5ms
intervals. Refer to the DOS 6-XL Developer's Guide on the MVI-ADM CD-ROM
for more information.

3.2 Development Tools
An application that is developed for the MVI ADM module must be executed from
the module's Flash ROM disk. Tools are provided with the API to build the disk
image and download it to the module's Config/Debug port.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 19 of 318
December 12, 2006

3.3 Theory of Operation

3.3.1 ADM API
The ADM API is one component of the MVI ADM API Suite. The ADM API
provides a simple module level interface that is portable between members of the
MVI Family. This is useful when developing an application that implements a
serial protocol for a particular device, such as a scale or bar code reader. After
an application has been developed, it can be be used on any of the MVI family
modules.

3.4 ADM Functional Blocks

3.4.1 Database
The database functions of the ADM API allow the creation of a database in
memory to store data to be accessed via the backplane interface and the
application ports. The database consists of word registers that can be accessed
as bits, bytes, words, longs, floats or doubles. Functions are provided for reading
and writing the data in the various data types. The database serves as a holding
area for exchanging data with the processor on the backplane, and with a foreign
device attached to the application port. Data transferred into the module from the
processor can be requested via the serial port. Conversely, data written into the
module database by the foreign device can be transferred to the processor over
the backplane.

3.4.2 Backplane Communications

MVI46 Backplane Data Transfer

The MVI46-ADM module communicates directly over the backplane. All data for
the module is contained in the module's M1 file. Data is moved between the
module and the SLC processor across the backplane using the module's M-files.
The SLC scan rate and the communication load on the module determine the
update frequency of the M-files. The COP instruction can be used to move data
between user data files and the module's M1 file.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 20 of 318 ProSoft Technology, Inc.
December 12, 2006

The following illustration shows the data transfer method used to move data
between the SLC processor, the MVI46-ADM module and the foreign network.

As shown in the diagram above, all data transferred between the module and the
processor over the backplane is through the M0 and M1 files. Ladder logic must
be written in the SLC processor to interface the M-file data with data defined in
the user-defined data files in the SLC.

All data used by the module is stored in its internal database. The following
illustration shows the layout of the database:

User data contained in this database is continuously read from the M1 file. The
configuration data is only updated in the M1 file after each configuration request
by the module to the SLC. All data in the M1 file is available to devices on the
foreign networks. This permits data to be transferred from these devices to the

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 21 of 318
December 12, 2006

SLC using the user data area. Additionally, remote devices can alter the
module's configuration, read the status data and issue control commands. Block
identification codes define specific functions to the module.

The block identification codes used by the module are listed below:

Block Range Descriptions
9000 Configuration request from module
9001 Configuration ready from controller
9997 Write configuration to controller
9998 Warm-boot control block
9999 Cold-boot control block
Each block has a defined structure depending on the data content and the
function of the data transfer as defined in the following topics.

Normal Data Transfer

This version of the module provides for direct access to the data in the module.
All data related to the module is stored in the module's M1 file. To read data from
the module, use the COP instruction to copy data from the module's M1 file to a
user data file. To write data to the module, use the COP instruction to copy data
from a user file to the module's M1 file. Registers 0 to 4999 should be used for
user data. All other registers are reserved for other module functions.

Configuration Data Transfer

When the module performs a restart operation, it will request configuration
information from the SLC processor. This data is transferred to the module in a
specially formatted write block in the M0 file. The module will poll for this
information by placing the value 9000 in word 0 of the M0 file. The ladder logic
must construct the requested block in order to configure the module. The format
of the block for configuration is given in the following section.

Module Configuration Data

This block sends configuration information from the processor to the module. The
data is transferred in a block with an identification code of 9001. The structure of
the block is displayed below:

M0 Offset Description Length
0 9001 1
1 to 6 Backplane Set Up 6
7 to 15 Port 1 Configuration 9
16 to 24 Port 2 Configuration 9
If there are any errors in the configuration, the bit associated with the error will be
set in one of the two configuration error words. The error must be corrected
before the module starts operating.

Command Control Blocks

Command control blocks are special blocks used to control the module or
request special data from the module. The current version of the software

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 22 of 318 ProSoft Technology, Inc.
December 12, 2006

supports three command control blocks: write configuration, warm boot and cold
boot.

Write Configuration

This block is sent from the processor to the module to force the module to write
its current configuration back to the processor. This function is used when the
module's configuration has been altered remotely using database write
operations. The write block contains a value of 9997 in the first word. The module
will respond with a block containing the module configuration data. Ladder logic
must handle the receipt of the block. The block transferred from the module is as
follows:

M0 Offset Description Length
0 9997 1
1 to 6 Backplane Set Up 6
7 to 15 Port 1 Configuration 9
16 to 24 Port 2 Configuration 9
Ladder logic must process this block of information and place the data received
in the correct data files in the . The processor requests this block of information
using the following write block:

M1 Offset Description Length
7800 9997 1

Warm Boot

This block is sent from the SLC processor to the module when the module is
required to perform a warm-boot (software reset) operation. This block is
commonly sent to the module any time configuration data modifications are made
in the configuration data area. This will force the module to read the new
configuration information and to restart. The structure of the control block is
shown in the following table:

M1 Offset Description Length
7800 9998 1

Cold Boot

This block is sent from the SLC processor to the module when the module is
required to perform the cold boot (hardware reset) operation. This block is sent to
the module when a hardware problem is detected by the ladder logic that
requires a hardware reset. The structure of the control block is shown in the
following table:

M1 Offset Description Length
7800 9999 1

MVI56 Backplane Data Transfer

The MVI56-ADM module communicates directly over the backplane. Data is
paged between the module and the ControlLogix processor across the backplane
using the module's input and output images. The update frequency of the images

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 23 of 318
December 12, 2006

is determined by the scheduled scan rate defined by the user for the module, and
by the communication load on the module. Typical updates are in the range of 2
to 10 milliseconds.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module is set to 250 words. This large data area permits fast
throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module is set to 248 words. This
large data area permits fast throughput of data from the processor to the module.

The following illustration shows the data transfer method used to move data
between the ControlLogix processor, the MVI56-ADM module and the foreign
device.

As shown in the diagram above, all data transferred between the module and the
processor over the backplane is through the input and output images. Ladder
logic must be written in the ControlLogix processor to interface the input and
output image data with data defined in the Controller Tags.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 24 of 318 ProSoft Technology, Inc.
December 12, 2006

All data used by the module is stored in its internal database. The following
illustration shows the layout of the database:

Data contained in this database is paged through the input and output images by
coordination of the ControlLogix ladder logic and the MVI56-ADM module's
program. Up to 248 words of data can be transferred from the module to the
processor at a time. Up to 247 words of data can be transferred from the
processor to the module. Each image has a defined structure depending on the
data content and the function of the data transfer as defined in the following
topics.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module's
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics.

Read Block

These blocks of data transfer information from the module to the ControlLogix
processor. The structure of the input image used to transfer this data is shown in
the following table:

Offset Description Length
0 Reserved 1
1 Write Block ID 1
2 to 201 Read Data 200
202 Program Scan Counter 1
203 to 204 Product Code 2
205 to 206 Product Version 2
207 to 208 Operating System 2
209 to 210 Run Number 2
211 to 217 Port 1 Error Status 7
218 to 224 Port 2 Error Status 7

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 25 of 318
December 12, 2006

Offset Description Length
225 to 230 Data Transfer Status 6
231 Port 1 Current Error/Index 1
232 Port 1 Last Error/Index 1
233 Port 2 Current Error/Index 1
234 Port 2 Last Error/Index 1
235 to 248 Spare 14
249 Read Block ID 1
The Read Block ID is an index value used to determine the location of where the
data will be placed in the ControlLogix processor controller tag array of module
read data. Each transfer can move up to 200 words (block offsets 2 to 201) of
data. In addition to moving user data, the block also contains status data for the
module. This last set of data is transferred with each new block of data and is
used for high-speed data movement.

The Write Block ID associated with the block requests data from the ControlLogix
processor. Under normal, program operation, the module sequentially sends
read blocks and requests write blocks. For example, if three read and two write
blocks are used with the application, the sequence will be as follows:

R1W1-->R2W2-->R3W1-->R1W2-->R2W1-->R3W2-->R1W1-->

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the network or operator
control through the module's Configuration/Debug port.

Write Block

These blocks of data transfer information from the processor to the module. The
structure of the output image used to transfer this data is shown in the following
table:

Offset Description Length
0 Write Block ID 1
1 to 200 Write Data 200
201 to 247 Spare 47
The Write Block ID is an index value used to determine the location in the
module's database where the data will be placed. Each transfer can move up to
200 words (block offsets 1 to 200) of data.

Configuration Data Transfer

When the module performs a restart operation, it will request configuration
information from the ControlLogix processor. This data is transferred to the
module in specially formatted write blocks (output image). The module will poll for
each block by setting the required write block number in a read block (input
image). The format of the blocks for configuration is given in the following topics.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 26 of 318 ProSoft Technology, Inc.
December 12, 2006

Module Configuration data

This block sends general configuration information from the processor to the
module. The data is transferred in a block with an identification code of 9000.
The structure of the block is shown in the following table:

Offset Description Length
0 9000 1
1-6 Backplane Set Up 6
7 to 15 Port 1 Configuration 9
16 to 24 Port 2 Configuration 9
25 to 247 Spare 223
The read block used to request the configuration has the following structure:

Offset Description Length
0 Reserved 1
1 9000 1
2 Module Configuration Errors 1
3 Port 1 Configuration Errors 1
4 Port 2 Configuration Errors 1
5 to 248 Spare 244
249 –2 or –3 1
If there are any errors in the configuration, the bit associated with the error will be
set in one of the three configuration error words. The error must be corrected
before the module starts operating.

MVI69 Backplane Data Transfer

The MVI69-ADM module communicates directly over the backplane. Data is
paged between the module and the CompactLogix processor across the
backplane using the module's input and output images. The update frequency of
the images is determined by the scheduled scan rate defined by the user for the
module and the communication load on the module. Typical updates are in the
range of 2 to 10 milliseconds.

You can configure the size of the blocks using the Block Transfer Size parameter
in the configuration file. You can configure blocks of 60, 120, or 240 words of
data depending on the number of words allowed for your own application.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module may be set to 62, 122, or 242 words depending on
the block transfer size parameter set in the configuration file.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module may be set to 61, 121, or 241
words depending on the block transfer size parameter set in the configuration
file.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 27 of 318
December 12, 2006

The following illustration shows the data transfer method used to move data
between the CompactLogix processor and the MVI69-ADM module.

As shown in the diagram above, all data transferred between the module and the
processor over the backplane is through the input and output images. Ladder
logic must be written in the CompactLogix processor to interface the input and
output image data with data defined in the Controller Tags. All data used by the
module is stored in its internal database. The following illustration shows the
layout of the database:

Data contained in this database is paged through the input and output images by
coordination of the CompactLogix ladder logic and the MVI69-ADM module's
program. Up to 242 words of data can be transferred from the module to the
processor at a time. Up to 241 words of data can be transferred from the
processor to the module. The read and write block identification codes in each
data block determine the function to be performed or the content of the data
block. The block identification codes used by the module are listed below:

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 28 of 318 ProSoft Technology, Inc.
December 12, 2006

Block Range Descriptions
–1 Status Block
0 Status Block
1 to 999 Read or write data
9998 Warm-boot control block
9999 Cold-boot control block
Each image has a defined structure depending on the data content and the
function of the data transfer as defined in the following topics.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module's
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics:

Read Block

These blocks of data transfer information from the module to the CompactLogix
processor. The structure of the input image used to transfer this data is shown
below:

Offset Description Length
0 Read Block ID 1
1 Write Block ID 1
2 to (n+1) Read Data n
where

n = 60, 120, or 240 depending on the Block Transfer Size parameter (refer to the
configuration file).

The Read Block ID is an index value used to determine the location of where the
data will be placed in the CompactLogix processor controller tag array of module
read data. The number of data words per transfer depends on the configured
Block Transfer Size parameter in the configuration file (possible values are 60,
120, or 240).

The Write Block ID associated with the block requests data from the
CompactLogix processor. Under normal, program operation, the module
sequentially sends read blocks and requests write blocks. For example, if three
read and two write blocks are used with the application, the sequence will be as
follows:

R1W1-->R2W2-->R3W1-->R1W2-->R2W1-->R3W2-->R1W1-->

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the network or operator
control through the module's Configuration/Debug port.

The following example shows a typical backplane communication application.

If the backplane parameters are configured as follows:

Read Register Start: 0

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 29 of 318
December 12, 2006

Read Register Count: 480
Write Register Start: 480
Write Register Count: 480

The backplane communication would be configured as follows:

Database address 0 to 479 will be continuously transferred from the module to
the processor. Database address 480 to 959 will continuously be transferred
from the processor to the module.

The Block Transfer Size parameter basically configures how the Read Data and
Write Data areas are broken down into data blocks (60, 120, or 240).

If Block Transfer Size = 60:

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 30 of 318 ProSoft Technology, Inc.
December 12, 2006

If Block Transfer Size = 120:

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 31 of 318
December 12, 2006

If Block Transfer Size = 240:

Write Block

These blocks of data transfer information from the processor to the module. The
structure of the output image used to transfer this data is shown below:

Offset Description Length
0 Write Block ID 1
1 to n Write Data n
where n = 60, 120, or 240 depending on the Block Transfer Size parameter (refer
to the configuration file).

The Write Block ID is an index value used to determine the location in the
module's database where the data will be placed.

Warm Boot

This block is sent from the processor to the module (output image) when the
module is required to perform a warm-boot (software reset) operation. The
structure of the control block is shown below:

Offset Description Length
0 9998 1
1 to n Spare n

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 32 of 318 ProSoft Technology, Inc.
December 12, 2006

n=60, 120, or 240 depending on what is entered in the Block Transfer Size
parameter (refer to the configuration file).

MVI71 Backplane Data Transfer

The MVI71-ADM module communicates directly over the backplane. Data is
paged between the module and the PLC processor across the backplane using
the module's input and output images or directly to the processor using the side-
connect interface (requires a side-connect adapter). The update frequency of the
images is determined by the scheduled scan rate defined by the user for the
module and the communication load on the module. Typical updates are in the
range of 2 to 10 milliseconds.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module is set to 64 words. This large data area permits fast
throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module is set to 64 words. This large
data area permits fast throughput of data from the processor to the module.

The following illustration shows the data transfer method used to move data
between the PLC processor, the MVI71-ADM module and the foreign device.

Block Transfer

The following illustration shows the data transfer operations used when using the
side-connect interface (requires the side-connect adapter):

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 33 of 318
December 12, 2006

Side-Connect

When the side connect interface is used, data is transferred directly between the
processor and the module. The module's program interfaces directly to the set of
user data files established in the PLC to pass all data between the two devices.
No ladder logic is required for data transfer, only the establishment of the data
files.

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic must be written in the PLC
processor to interface the input and output image data with data defined in the
Controller Tags. All data used by the module is stored in its internal database.

Data contained in this database is paged through the input and output images by
coordination of the PLC ladder logic and the MVI71-ADM module's program. Up
to 60 words of data can be transferred from the module to the processor at a
time. Up to 60 words of data can be transferred from the processor to the
module. Each image has a defined structure depending on the data content and
the function of the data transfer as defined in the following topics.

Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module's
internal database in registers 0 to 4999 and the status data. These data are
transferred through read (input image) and write (output image) blocks. The
structure and function of each block is discussed in the following topics.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 34 of 318 ProSoft Technology, Inc.
December 12, 2006

Read Block

These blocks of data transfer information from the module to the PLC processor.
The structure of the input image used to transfer this data is shown in the
following table:

Offset Description Length
0 Read Block ID 1
1 Write Block ID 1
2 to 61 Read Data 60
62 to 63 Spare 2
The Read Block ID is an index value used to determine the location of where the
data will be placed in the PLC processor user data table. Each transfer can move
up to 60 words (block offsets 2 to 61) of data.

The Write Block ID associated with the block requests data from the PLC
processor. Under normal program operation, the module sequentially sends read
blocks and requests write blocks. For example, if three read and two write blocks
are used with the application, the sequence will be as follows:

R1W1-->R2W2-->R3W1-->R1W2-->R2W1-->R3W2-->R1W1-->

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the foreign network or
operator control through the module's Configuration/Debug port.

If the ladder logic does not send a BTW instruction to the module quickly enough,
it is possible for the MVI71-ADM module to send a new BTR instruction
requesting the same write block ID.

Write Block

These blocks of data transfer information from the PLC processor to the module.
The structure of the output image used to transfer this data is shown in the
following table:

Offset Description Length
0 Write Block ID 1
1 to 60 Write Data 60
61 to 63 Spare 3
The Write Block ID is an index value used to determine the location in the
module's database where the data will be placed. Each transfer can move up to
60 words (block offsets 1 to 60) of data.

Configuration Data Transfer

When the module performs a restart operation, it will request configuration
information from the PLC processor. This data is transferred to the module in
specially formatted write blocks (output image). The module will poll for each
block by setting the required write block number in a read block (input image).
The module will request all command blocks, according to the number of
commands configured by the user for each Master port.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 35 of 318
December 12, 2006

Module Configuration data

This block sends general configuration information from the processor to the
module. The data is transferred in a block with an identification code of 9000.
The structure of the block is displayed in the following table:

Write Block
Offset Description Length
0 9000 1
1 to 6 Backplane Setup 6
7 to 31 Port 1 Configuration 25
32 to 56 Port 2 Configuration 25
57 to 63 Spare 7
The read block used to request the configuration has the following structure:

Read Block
Offset Description Length
0 -2 1
1 9000 1
2 Module Configuration Errors 1
3 Port 1 Configuration Errors 1
4 Port 2 Configuration Errors 1
5 to 63 Spare 59
If there are any errors in the configuration, the bit associated with the error will be
set in one of the three configuration error words. The error must be corrected
before the module starts operating.

Command Control Blocks

Command control blocks are special blocks used to control the module or
request special data from the module. The current version of the software
supports three command control blocks: write configuration, warm boot and cold
boot.

Write Configuration

This block is sent from the PLC processor to the module to force the module to
write its current configuration back to the processor. This function is used when
the module's configuration has been altered remotely using database write
operations. The write block contains a value of -9000 in the first word. The
module will respond with blocks containing the module configuration data. Ladder
logic must handle the receipt of these blocks. The blocks transferred from the
module are as follows:

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 36 of 318 ProSoft Technology, Inc.
December 12, 2006

Block -9000, General Configuration Data:
Offset Description Length
0 -9000 1
1 -9000 1
2 to 7 Backplane Setup 6
8 to 32 Port 1 Configuration 25
33 to 57 Port 2 Configuration 25
58 to 63 Spare 6
Blocks -6000 to -6003 and -6100 to 6103, Master Command List Data for ports 1
and 2, respectively:

Offset Description Length
0 -6000 to 6016 and -6100 to 6116 1
1 -6000 to 6016 and -6100 to 6116 1
2 to 11 Command Definition 10
12 to 21 Command Definition 10
22 to 31 Command Definition 10
32 to 41 Command Definition 10
42 to 51 Command Definition 10
52 to 61 Command Definition 10
62 to 63 Spare 2
Each of these blocks must be handled by the ladder logic for proper module
operation. The processor can request the module's configuration by sending a
configuration read request block, block code 9997, to the module. The format of
this request block is as follows:

Offset Description Length
0 9997 1
1 to 63 Spare 63
When the module receives this command block, it transfers the module's current
configuration to the processor. If the block transfer interface is used, the blocks
defined in the previous tables (-9000 and -6000 series blocks) will be sent from
the module. If the side-connect interface is used, the user data files will be
updated directly by the module.

Warm Boot

This block is sent from the PLC processor to the module (output image) when the
module is required to perform a warm-boot (software reset) operation. This block
is commonly sent to the module any time configuration data modifications are
made in the controller tags data area. This will force the module to read the new
configuration information and to restart. The structure of the control block is
shown in the following table:

Offset Description Length
0 9998 1
1 to 63 Spare 63

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 37 of 318
December 12, 2006

Cold Boot

This block is sent from the PLC processor to the module (output image) when the
module is required to perform the cold boot (hardware reset) operation. This
block is sent to the module when a hardware problem is detected by the ladder
logic that requires a hardware reset. The structure of the control block is shown
in the following table:

Offset Description Length
0 9999 1
1 to 63 Spare 63

MVI94 Backplane Data Transfer

Central to the functionality of the module is the database. This database is used
as the interface between remote foreign slave devices or foreign master devices
and the Flex I/O bus. The size, content and structure of the database are
completely user defined.

The Flex I/O bus reads data from and write data to the database using the
backplane interface. The module interfaces data contained in remote foreign
slave devices to the database when using the MVI94-ADM as a master. User
commands are issued out of the master port from a command list. These
commands gather or control data in the foreign slave devices. When configured
as a slave, control information from the foreign master and data from the
processor are exchanged over the backplane. The following illustration shows
the relationships discussed above:

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 38 of 318 ProSoft Technology, Inc.
December 12, 2006

Data Transfer

Data is transferred over the backplane using the module's input and output
images. The module is configured with an eight-word input image and a seven-
word output image. The module and the Flex processor use these images to
page data and commands. The input image is set (written) by the module and is
read by the Flex processor. The output image is set (written) by the Flex
processor and read by the module. The following illustration shows this
relationship.

The module's program is responsible for setting the block identification code
used to identify the data block written and the block identification code of the
block it wants to read from the processor. User configuration information
determines the read (Read Start Register) and write (Write Start Register)
locations in the database and the amount of data transferred (Read Register
Count and Write Register Count).

Each read and write operation transfers a six-word data area. The write operation
contains a two-word header that defines the block identification code of the write
data and the block identification code of the read block requested. These
identification codes are in the range of 0 to 666. A value of zero indicates that the
block contains no data and should be ignored. The first valid block identification
code is one and refers to the first block of six words to be read or written.

The module and the processor constantly monitor input and output images. How
does either one know when a new block of data is available? Recognizing a
change in the header information of the image (word 0) solves the problem. For
example, when the module recognizes a different value in the first word of the
output image, new read data is available. When the processor recognizes a new

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 39 of 318
December 12, 2006

value in the first word of the input image, new write data is available. This
technique requires the storage of the previously processed data block
identification code. The following illustration shows the normal sequence of
events for data transfer:

1 During program initialization, the write and read block identification codes are
set to one. The last block read variable is set to zero.

2 The program copies the first six-word block of the database starting at the
user defined Write Start Register to the input image (words 2 to 7). It then
sets the current read block code in word 1 of the input image. To "trigger" the
write operation, the program places the current write block code into word 0
of the input image.
The Flex processor recognizes a new value in word 0 of the input image
(based on the last_write_block_code not equal to write_block_code) in its
ladder logic. The ladder logic computes the offset into the file based on the
following formula:
write_file_offset = (write_block_code - 1) * 6

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 40 of 318 ProSoft Technology, Inc.
December 12, 2006

The new data contained in the input image (words 2 to 7) is copied to the
offset in the processor's user data file. The last_write_block_code storage
register in the processor is updated with the new write_block_code.

Note: If the data area transferred from the module exceeds the size of a single
user file in the Flex processor, logic will be required to handle multiple files.

3 The ladder logic next examines the value of the read_block_code and
computes the offset into the read data file as follows:
read_file_offset = (read_block_code - 1) * 6
The required 6-word, read data is copied to the module's output image
(words 1 to 6). To "trigger" the transfer operation, the ladder logic moves the
read_block_code into word 0 of the output image.

4 The module's program recognizes the new read_block_code. It transfers the
data to the correct offset in the database using the following function:
offset = Read_Start_Register + (read_block_code - 1) * 6
The module sets the last_read_block_code to the value of read_block_code.

5 The module now selects the next read and write blocks. The data for the write
operation is placed in the input image and the read_block_code is set. The
module "triggers" the transfer operation by setting the new write_block_code
in word 0 of the input image. The sequence continues at step 3.

The discussion above is for normal data transfer operation. The following table
lists the block identification codes used by the module.

Block Identification Codes

Type Number Description
R/W 1 to 666 Data blocks used to transfer data from the module to the

backplane and from the backplane to the module. The
module's input/output images are used for the data transfers.

R 9998 Warm boot the module. When the module receives this block, it
will reset all program values using the configuration data.

R 9999 Cold boot the module. When the module receives this block, it
will perform a hardware restart.

Data is transferred between the processor and the module using the block
identification codes of 1 to 666. The other block codes control the module from
the processors ladder logic. They are implemented when the ladder logic needs
to control the module. In order to use one of the blocks, the ladder logic inserts
the data and code in the output image of the module. The data should be set
before the code is placed in the block. This operation should be performed after
the receipt of a new write block from the module. Each set of codes is described
in the following topics.

Warm Boot (Block 9998)

This block does not contain any data. When the processor places a value of
9998 in word 0 of the output image, the module will perform a warm-start. This
involves clearing the configuration and all program status data. Finally, the
program will load in the configuration information from the Flash ROM and begin
running. There is no positive response to this message other than the status data
being set to zero and the block polling starting over.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 41 of 318
December 12, 2006

Cold Boot (Block 9999)

This block does not contain any data. When the processor places a value of
9999 in word 0 of the output image, the module will perform a hardware restart.
This will cause the module to reboot and reload the program. There is no positive
response to this message other than the status data being set to zero and the
block polling starting over.

3.4.3 Serial Communications
The developer must provide the serial communication driver code. The serial API
has many useful functions to facilitate writing a driver. A sample communication
driver is included in the example programs.

3.4.4 Main_app.c
The application starts by opening the ADM API, initializing variables, structure
members and pointers to structures. Next, the database is created and initialized
to 0. The backplane driver is then opened and startup() is called. The function
startup(), loads the module configuration, initializes the com. ports and
finishes by showing the application version information. Now the main loop is
entered. The processing that occurs in the loop cycles through the backplane
transfer logic, the com. driver, and the debug menu logic. If the application is quit
by the user, shutdown() is called. The function shutdown() closes the com.
ports, closes the backplane driver, closes the database and closes the ADM API.

3.4.5 Debugprt.c
The debug port code shows how a sub-menu can be added to the main menu.
When "X" (Auxiliary menu) is selected, the function pointed to by
user_menu_ptr in the interface structure: that is,
interface.user_menu_ptr = DebugMenu;. The function name is
DebugMenu() but it can be named anything the developer wishes. Code can be
added for additional menu items within DebugMenu() by adding additional case
statements. It is recommended that if long strings must be sent to the debug port,
that the output buffering is used. An example of this is the "?" case. The string is
placed into the buffer (interface_ptr->buff) using sprintf.
interface_ptr->buff_ch is the pointer to the first character of the string
and should be set to 0. interface_ptr->buff_len must be set to the
number of characters placed into the buffer. The writing of the characters is
handled when ADM_ProcessDebug() is called.

Example:

sprintf(interface_ptr->buff,"\nAUXILLIARY MENU\n\
 ?=Display Menu\n\
 1=Selection 1\n\
 2=Selection 2\n\
 M=Main Menu\n\n");
 interface_ptr->buff_ch = 0;
 interface_ptr->buff_len = strlen(interface_ptr->buff);

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 42 of 318 ProSoft Technology, Inc.
December 12, 2006

3.4.6 MVIcfg.c
The configuration section of the example code is intended to qualify the module
configuration after it is transferred to the module. The logic must be modified to
match any changes to the configuration data structure.

MVI46

For the MVI46, the function ProcessCfg() checks the data values transferred
from the configuration file in the SLC processor. If configuration values are added
to the configuration structure in the SLC, then logic to perform boundary checking
on the added data must be added to ProcessCfg().

MVI56

In the case of the MVI56, the function ProcessCfg() checks the data values
transferred from the configuration data tags in the ControlLogix processor. If data
tags are added to the configuration structure in the ControlLogix, then logic to
perform boundary checking on the added data must be added to
ProcessCfg().

MVI69

The MVI69 stores its configuration in EEPROM, downloaded via the debug port.
The EEPROM has 129 KB of configuration space. The function ReadCfg()
parses the file and qualifies the configuration data. The configuration file uses
headings in square brackets to define the sections. Each item is parsed using the
ADM RAM file functions. The file is searched for a configuration item. If a match
is found, the value is saved into a variable. Boundary checking is then performed
on the data. An example of a configuration item search follows:

ptr= ADM_RAM_find_Section (adm_handle, "[Port]");
ports[0].stopbits = ADM_RAM_GetInt(adm_handle, "[Port]");
 switch(ports[0].stopbits)
 {
 case 1:
 ports[0].stopbits = STOPBITS1;
 case 2:
 ports[0].stopbits = STOPBITS2;
 break;
 default :
 ports[0].CfgErr |= 0x0100;
 ports[0].stopbits = STOPBITS1;
 }

Here the file is being parsed for "Stop Bits" under the heading of [Port]. Refer to
the example code for a sample configuration file.

Because a pointer to a function is used by the ADM API to access this function,
the name can be anything the developer wishes. However, the function must
take the same arguments and the same return value.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 43 of 318
December 12, 2006

MVI71

In the case of the MVI71, the function ProcessCfg() checks the data values
transferred from the configuration file in the PLC processor. If configuration
values are added to the configuration structure in the PLC, then the logic to
perform boundary checking on the added data must be added to
ProcessCfg().

MVI94

The MVI94 stores its configuration in flash memory, downloaded via the debug
port. The function ReadCfg() parses the file and qualifies the configuration
data. The configuration file uses headings in square brackets to define the
sections. Each item is parsed using the ADM flash file functions. The file is
searched for a configuration item. If a match is found, the value is saved into a
variable. Boundary checking is then performed on the data. An example of a
configuration item search follows:

ports[0].stopbits = ADM_FileGetInt("[Port]", "Stop Bits");
 switch(ports[0].stopbits)
 {
 case 1:
 ports[0].stopbits = STOPBITS1;
 case 2:
 ports[0].stopbits = STOPBITS2;
 break;
 default :
 ports[0].CfgErr |= 0x0100;
 ports[0].stopbits = STOPBITS1;
 }

Here the file is being parsed for "Stop Bits" under the heading of [Port]. Refer to
the example code for a sample configuration file.

Because a pointer to a function is used by the ADM API to access this function,
the name can be anything the developer wishes. However, the function must
take the same arguments and the same return value.

3.4.7 Commdrv.c
The communication driver demonstrates how a simple driver might be written.
The driver is an ASCII slave that echoes the characters it receives back to the
host. The end of a new string is detected when an LF is received. The
communication driver is called for each application port on the module. The
following figure shows information on the communication driver state machine.

The state machine is entered at state –1. It waits there until data is detected in
the receive buffer. When data is present, the state machine advances to state 1.
It will remain in state 1 receiving data from the buffer until a line feed (LF) is
found. At this time the state advances to 2. The string will be saved to the
database and the state changes to 2000.

State 2000 contains a sub-state machine for handling the sending of the
response. State 2000:2 sets RTS on. The state now changes to 2000:3. The
driver now waits for the RTS timeout period to expire. When it does, it checks for

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 44 of 318 ProSoft Technology, Inc.
December 12, 2006

CTS to be asserted. If CTS detection is disabled or CTS is detected, RTS is set
to off (CTS enabled only) and the state advances to 2000:4. Otherwise it is an
error and RTS is set to off and returns to state –1. The response is now placed in
the transmit buffer. The state is advanced to 2000:5 where it waits for the
response to be sent. If the response times out, RTS is set to off and the state
returns to –1. If the response is sent before timeout, the state changes to 2000:6
where it waits for the RTS timer to expire. When the timer expires, RTS is set to
off and the state returns to –1 where it is ready for the next packet.

RS-485 Programming Note

Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 45 of 318
December 12, 2006

Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; // send 10 characters
int CharsLeft;
BYTE buffer[10];
// Set RTS on
MVIsp_SetRTS(COM2, ON);
// Optional delay here (depends on application)
// Transmit message
MVIsp_PutData(COM2, buffer, &length, TIMEOUT_ASAP);
// Check to see that message is done
MVIsp_GetCountUnsent(COM2, &CharsLeft);
// Keep checking until all characters sent
while(CharsLeft)
{
MVIsp_GetCountUnsent(COM2, &CharsLeft);
}
// Optional delay here (depends on application)
// Set RTS off
MVIsp_SetRTS(COM2, OFF);

3.4.8 Using Compact Flash Disks
In order to use Compact Flash disks, you must enable Compact Flash in BIOS
Setup. Once enabled, the Compact Flash Disk should appear as a DOS C: drive.
Use standard C file access functions to read and write to the Compact Flash
disk.

3.5 ADM API Architecture
The ADM API is composed of a statically-linked library (called the ADM library).
Applications using the ADM API must be linked with the ADM library. The ADM
API encapsulates the hardware, making it possible to design MVI applications
that can be run on any of the MVI family of modules.

The following figure shows the relationship between the API components.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 46 of 318 ProSoft Technology, Inc.
December 12, 2006

3.6 Example Code Files
The source files containing the example program are provided with the ADM
module. They are also available on our web site: http://www.prosoft-
technology.com.

The source files included are:

File Name Description
Main_app.c application main program
Commdrv.c communication driver
Debugprt.c debug port user menu
MVIcfg.c module configuration
Main_app.h application header file
Adm.ide project file for Digital Mars C++ or Borland C++ V5.02
The configuration files included are:

File Name Description
94ADM.cfg MVI94 configuration file
MVI69ADM.cfg MVI69 configuration file

The image files included are:

File Name Description
MVI46ADM.ima Disk image file for MVI46
MVI56ADM.ima Disk image file for MVI56
MVI69ADM.ima Disk image file for MVI69
MVI71ADM.ima Disk image file for MVI71
MVI94ADM.ima Disk image file for MVI94

MVI56-ADM Sample Files
MVI56-Samples\MVI56-ADM\MVI56-ADM-Serial-In
56ADM-SI.exe
ADM.CSM
ADMAPI.H
ADMAPI.LIB
AUTOEXEC.BAT
CIPAPI.H
CIPAPI.LIB
mssccprj.scc
MVI56-ADM-Serial-In.DSW
MVI56-ADM-Serial-In.ide
MVI56-ADM-Serial-In.mbt
MVI56-ADM-Serial-In.mrt
MVI56-ADM-Serial-In.r$p
MVI56-ADM-Serial-In.~de
MVI56ADM-SerialIn.C

http://www.prosoft-technology.com/
http://www.prosoft-technology.com/

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 47 of 318
December 12, 2006

MVI56-Samples\MVI56-ADM\MVI56-ADM-Serial-In
MVI56ADM-SerialIn.H
MVI56adm-serialin.obj
MVI56ADMSerialIn.ACD
MVI56ADMSerialIn.IMA
MVIBPAPI.H
MVIBPAPI.LIB
MVISCAPI.H
MVISCAPI.LIB
MVISPAPI.H
MVISPAPI.LIB

MVI56-Samples\MVI56-ADM\MVI56-ADM-Serial-Out
56ADM-SO.exe
ADM.CSM
ADMAPI.H
ADMAPI.LIB
AUTOEXEC.BAT
CIPAPI.H
CIPAPI.LIB
mssccprj.scc
MVI56-ADM-Serial-Out.DSW
MVI56-ADM-Serial-Out.ide
MVI56-ADM-Serial-Out.mbt
MVI56-ADM-Serial-Out.mrt
MVI56-ADM-Serial-Out.r$p
MVI56-ADM-Serial-Out.~de
MVI56ADM-SerialOut.C
MVI56ADM-SerialOut.H
MVI56adm-serialout.obj
MVI56ADMSerialOut.ACD
MVI56ADMSerialOut.IMA
MVIBPAPI.H
MVIBPAPI.LIB
MVISCAPI.H
MVISCAPI.LIB
MVISPAPI.H
MVISPAPI.LIB

3.7 ADM API Files
The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 48 of 318 ProSoft Technology, Inc.
December 12, 2006

developed. These files need not be present on the module when executing the
application.

ADM API File Names
File Name Description
admapi.h Include file
admapi.lib Library (16-bit OMF format)

3.7.1 ADM Interface Structure
The ADM interface structure functions as a data exchange between the ADM API
and user developed code. Pointers to structures are used so the API can access
structures created and named by the developer. This allows the developer
flexibility in function naming. The ADM API requires the interface structure and
the structures referenced by it. The interface structure also contains pointers to
functions. These functions allow the developer to insert code into some of the
ADM functions. The functions are required, but they can be empty. Refer to the
example code section for examples of the functions. It is the developer's
responsibility to declare and initialize these structures.

The interface structure is as follows:

typedef struct
{
 ADM_BT_DATA *adm_bt_data_ptr; /* pointer to struct holding
ADM_BT_DATA */
 ADM_BLK_ERRORS *adm_bt_err_ptr; /* pointer to struct holding
ADM_BT_DATA */
 ADM_PORT *adm_port_ptr[4]; /* pointer to struct holding ADM_PORT
*/
 ADM_MODULE *adm_module_ptr; /* pointer to struct holding
ADM_MODULE */
 ADM_PORT_ERRORS *adm_port_errors_ptr[4]; /* pointer to struct holding
ADM_PORT_ERRORS */
 ADM_PRODUCT *adm_product_ptr; /* pointer to struct holding
ADM_PRODUCT */
 int (*startup_ptr)(void); /* pointer to function for startup
code */
 int (*shutdown_ptr)(void); /* pointer to function for shutdown
code */
 int (*user_menu_ptr)(void); /* pointer to function for additional
menu code */
 void (*version_ptr)(void); /* pointer to function for version
information */
 void (*process_cfg_ptr)(void); /* pointer to function for
checking configuration */
 int (*ctrl_data_block_ptr)(unsigned short); /* pointer to
function for checking configuration */
 unsigned short pass_cnt;
 short debug_mode;
 char buff[2000]; /* data area used to hold message */
 int buff_len; /* number of characters to print */
 int buff_ch; /* index of character to print */
 MVIHANDLE handle; /* backplane handle */

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 49 of 318
December 12, 2006

 HANDLE sc_handle; /* side-connect handle */
 int ModCfgErr;
 int Apperr;
 unsigned short cfg_file; /* side-connect usage */
}ADM_INTERFACE;

The following structures are referenced by the interface structure:

The structure ADM_PRODUCT contains the product name abbreviation and
version information.

typedef struct
{
 char ProdName[5]; /* Product Name */
 char Rev[5]; /* Revision */
 char Op[5]; /* Month/Year */
 char Run[5]; /* Day/Run */
}ADM_PRODUCT;

The structure ADM_BT_DATA contains the backplane transfer configuration
settings and status counters.

typedef struct
{
 short rd_start;
 short rd_count;
 short rd_blk_max;
 short wr_start;
 short wr_count;
 short wr_blk_max;
 WORD bt_fail_cnt; /* number of successive failures before comm
SD */
 WORD bt_fail_cntr; /* current number of failures */
 WORD bt_failed; /* comm SD status */
 short rd_blk;
 short rd_blk_last;
 short wr_blk;
 short wr_blk_last;
 unsigned short buff[130]; //only require a single buffer because only 1
op at a time
 WORD wrbuff[258];
 WORD rdbuff[248];
 WORD cbuff[3000];
 short bt_size;
}ADM_BT_DATA;

The structure ADM_BLK_ERRORS contains the backplane transfer status
counters.

typedef struct
{
 WORD rd; /* blocks read */
 WORD wr; /* blocks written */
 WORD parse; /* blocks parsed */
 WORD event; /* reserved */
 WORD cmd; /* reserved */
 WORD err; /* block transfer errors */
}ADM_BLK_ERRORS;

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 50 of 318 ProSoft Technology, Inc.
December 12, 2006

The structure ADM_PORT contains the application port configuration and status
variables.

typedef struct
{
 char enabled; /* Y=Yes, N=No */
 unsigned short baud; /* port baud rate */
 short parity; /* port parity */
 short databits; /* number of data bits per character */
 short stopbits; /* number of stop bits */
 unsigned short MinDelay; /* minimum response delay */
 unsigned short RTS_On; /* RTS delay before assertion */
 unsigned short RTS_Off; /* RTS delay before de-assertion */
 char CTS; /* Y=Yes, N=No */
 short state; /* state of comm. Message state machine */
 int len; /* length of data in buffer */
 int expLen; /* expected length of message */
 unsigned long timeout; /* timeout for message */
 int ComState; /* State of serial communication */
 int RTULen; /* reserved */
 unsigned short tm; /* timing variable; used for current time */
 unsigned short tmlast; /* time of previous time check */
 long tmout; /* timeout time variable */
 long tmdiff; /* holds tm - tmlast */
 unsigned short CurErr; /* current comm. error */
 unsigned short LastErr; /* previous comm. error */
 unsigned short CfgErr; /* port configuration error */
 unsigned short buff_ptr; /* pointer to current location in buff */
 char buff[600]; /* buffer for holding comm. packets */
 unsigned char SendBuff[1000]; /* reserved */
 unsigned char RecBuff[1000]; /* reserved */
}ADM_PORT;

The structure ADM_MODULE contains the module database configuration
variables.

typedef struct
{
 char name[81]; /* module name */
 short max_regs; /* number of database registers */
 short err_offset; /* address of status table in database */
 unsigned short err_freq; /* status table update time in ms */
 short rd_start; /* read block start address*/
 short rd_count; /* read block register count */
 short rd_blk_max; /* maximum number of read blocks */
 short wr_start; /* write block starting address */
 short wr_count; /* write block register count */
 short wr_blk_max; /* maximum number of write blocks */
 short bt_fail_cnt; /* number of backplane transfer failures */
 /* before ending communications (not used)*/
}ADM_MODULE;

The structure ADM_PORT_ERRORS contains the application port
communication status variables.

typedef struct
{
 WORD CmdList; /* Total number of command list requests */

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 51 of 318
December 12, 2006

 WORD CmdListResponses; /* Total number of command list responses
*/
 WORD CmdListErrors; /* Total number of command list errors */
 WORD Requests; /* Total number of requests of slave */
 WORD Responses; /* Total number of responses */
 WORD ErrSent; /* Total number of errors sent */
 WORD ErrRec; /* Total number of errors received */
}ADM_PORT_ERRORS;

The following are the prototypes for the referenced functions:

extern int (*startup_ptr)(void); /* pointer to function for startup code */
extern int (*shutdown_ptr)(void); /* pointer to function for shutdown code */
extern int (*user_menu_ptr)(void); /* pointer to function for additional menu
code */
extern void (*version_ptr)(void); /* pointer to function for version
information */
extern void (*process_cfg_ptr)(void); /* pointer to function for checking
configuration */
extern int (*ctrl_data_block_ptr)(unsigned short); /* pointer to function for
checking configuration */

The following is an example excerpted from the sample code of how the pointers
to functions can be initialized:

 interface.startup_ptr = startup;
 interface.shutdown_ptr = shutdown;
 interface.version_ptr = ShowVersion;
 interface.user_menu_ptr = DebugMenu;
 interface.process_cfg_ptr = ProcessCfg;
 interface.ctrl_data_block_ptr = CtrlDataBlock;

3.8 Backplane API Files
The backplane API provides a simple backplane interface that is portable among
members of the MVI family. This is useful when developing an application that
implements a serial protocol for a particular device, such as a scale or barcode
reader. After an application has been developed, it can be used on any of the
MVI family modules.

The following table lists the supplied backplane API file names. These files
should be copied to a convenient directory on the computer on which the
application is being developed. These files need not be present on the module
when executing the application.

File Name Description
MVIbpapi.h Include file
MVIbpapi.lib Library (16-bit OMF formatted)

3.8.1 Backplane API Architecture
The MVI API is composed of two parts: a memory resident driver (called the MVI
driver) and a statically-linked library (called the MVI library). Applications using
the MVI API must be linked with the MVI library. In addition, the MVI driver must
be loaded before an MVI API application can be executed.

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 52 of 318 ProSoft Technology, Inc.
December 12, 2006

This architecture makes it possible to design MVI applications that can be run on
any of the MVI family of modules without modification or even recompilation.

Data Transfer

The primary purpose of the API is to allow data to be transferred between the
module and the Controller. The API supports two types of data transfer functions:
Direct I/O and Messaging. Each of these methods has advantages and
disadvantages. The appropriate function for use will mainly depend upon the
amount of data to be transferred.

Direct I/O Access

For small amounts of data (that is, data that will fit into the specific module's input
or output image), the direct I/O functions provide simple, fast access to the
module's input and output images. This is the simplest and fastest way to transfer
data to and from the control processor, because the control processor code
accesses the module's I/O image as it would for any other I/O module.

The disadvantage of this method is that the amount of data that can be
transferred is limited by the size of the module's I/O image.

The direct I/O functions are MVIbp_WriteInputImage (page 194) and
MVIbp_ReadOutputImage (page 193).

It is important to note that if messaging is used, a portion of each I/O image must
be reserved for messaging, and therefore will not be available for direct I/O
access. One word of input and one word of output are required for messaging
control for each direction of desired data flow.

For example, if bi-directional messaging is used, at least two words of output and
two words of input image must be reserved for messaging.

Direct I/O access begins at the first word of the input and output images (word 0).
If only one direction of messaging data flow is enabled, that messaging control
word is always the last word of the total image size (refer to the
MVIbp_SetIOConfig (page 187) function). If both directions of messaging data
flow are enabled, the SendMessage (from the MVI to the Controller) control word
is the last word of the total image size, and the ReceiveMessage (from the
Controller to the MVI) control word is the word before the last word of the total
image size.

Messaging

For large amounts of data (that is, data that is too large to fit into the module's
input or output image), the Messaging functions provide a data transfer
mechanism that is very simple for the module application to use. Large amounts
of data may be transferred to and from the control processor with a single
function call, with the transfer protocol handled by the API.

The main disadvantage of this method is that the control processor code is more
complex.

Example ladder logic code is provided to illustrate how the messaging protocol
may be implemented on the control processor.

Understanding the MVI-ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 53 of 318
December 12, 2006

Note: At this time, messaging is not supported on the MVI69.

Messaging Protocol

The API messaging protocol has been designed to be as simple as possible,
while providing the necessary controls for reliable data transfer between the
module and the control processor. The protocol is completely handled by the
API, and is therefore transparent to the module application. However, the
protocol must be implemented in the control processor's code. For this reason,
details of the protocol are presented here.

The protocol utilizes two control words for each direction of data flow: the Input
Control Word, which is written by the module and read by the processor, and the
Output Control Word, which is written by the processor and read by the module.
The location of these control words depends upon how the module is configured
by the user. If only one direction of messaging data flow is enabled, that
messaging control word is always the last word of the total image size (refer to
the MVIbp_SetIOConfig (page 187) function).

If both directions of messaging data flow are enabled, the SendMessage (from
the MVI to the Controller) control word is the last word of the total image size and
the ReceiveMessage (from the Controller to the MVI) control word is the word
before the last word of the total image size.

3.9 Serial API Files
The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

File Name Description
MVIspapi.h Include file
MVIspapi.lib Library (16-bit OMF format)

3.9.1 Serial API Architecture
The serial API communicates with foreign serial devices via industry standard
UART hardware.

The API acts as a high level interface that hides the hardware details from the
application programmer. The primary purpose of the API is to allow data to be
transferred between the module and a foreign device. Because each foreign
device is different, the communications protocol used to transfer data must be
device specific. The application must be programmed to implement the specific
protocol of the device, and the data can then be processed by the application
and transferred to the control processor.

Note: Care must be taken if using PRT1 (COM1) when the console is enabled
or the Setup jumper is installed. If the console is enabled, the serial API will not

MVI-ADM ♦ 'C' Programmable Understanding the MVI-ADM API
Application Development Module

Page 54 of 318 ProSoft Technology, Inc.
December 12, 2006

be able to change the baud rate on PRT1. In addition, console functions such
as keyboard input may not behave properly while the serial API has control of
PRT1. In general, this situation should be avoided by disabling the console
when using PRT1 with the serial API.

3.10 Side-Connect API Files
The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

File Name Description
MVIscapi.h Include file
MVIscapi.lib Library (16-bit OMF format)

3.10.1 Side-Connect API Architecture
The side-connect API is an alternative communication path to the backplane
interface. This architecture is only used in the MVI71 module. Applications using
the MVI API must be linked with the MVI library, and the MVI must be directly
connected to the PLC-5 via the side-connect interface.

3.10.2 Data Transfer
The side-connect interface provides the fastest available communications path to
the PLC-5. With the API, applications may read and write to the PLC-5 data
tables, synchronize with the PLC-5 ladder scan, handle message instructions
from the PLC-5, set the PLC-5 mode, clear faults, perform block transfers
through the PLC-5, and perform other functions.

When the side-connect interface is used, no ladder logic is required for normal
data transfer. The module directly reads and writes information between the
module and the processor using the user data files defined. The SC_DATA.TXT
file contains the file number to be used for the configuration file. This file number
and the module configuration determine the set of user data files required in the
PLC. In order to perform special control of the module (for example, warm-boot
operation), ladder logic is required.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 55 of 318
December 12, 2006

4 Setting Up Your Development Environment

In This Chapter

 Setting Up Your Compiler .. 55

 Setting Up WINIMAGE... 72

 Installing and Configuring the Module 72

4.1 Setting Up Your Compiler
There are some important compiler settings that must be set in order to
successfully compile an application for the MVI platforms. The following topics
describe the setup procedures for each of the supported compilers.

4.1.1 Configuring Digital Mars C++ 8.49
The following procedure allows you to successfully build the sample ADM code
supplied by Prosoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital
Mars C++ 8.49 on your workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_MVI.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the ProSoft-
Technology.com web site. When you unzip the file, you will find the sample code
files in \ADM_TOOL_MVI\SAMPLES\.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 56 of 318 ProSoft Technology, Inc.
December 12, 2006

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project → Open from the Main
Menu.

2 From the Folders field, navigate to the folder that contains the project
(C:\ADM_TOOL_MVI\SAMPLES\…).

3 In the File Name field, click on the project name (56adm-si.prj).
4 Click OK. The Project window appears:

5 Click Project → Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Porting Notes: The Digital Mars compiler classifies duplicate library names as
Level 1 Errors rather than warnings. These errors will manifest themselves as
"Previous Definition Different : function name". Level 1 errors are non-fatal and
the executable will build and run. The architecture of the ADM libraries will
cause two or more of these errors to appear when the executable is built. This
is a normal occurrence. If you are building existing code written for a different
compiler you may have to replace calls to run-time functions with the Digital

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 57 of 318
December 12, 2006

Mars equivalent. Refer to the Digital Mars documentation on the Run-time
Library for the functions available.

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be
accessed by clicking Project → Settings from the Main Menu.

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project → New from the Main
Menu.

2 Select the path and type in the Project Name.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 58 of 318 ProSoft Technology, Inc.
December 12, 2006

3 Click Next.

4 In the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information

included in your build.
6 Click Next.

7 Select the first source file necessary for the project.
8 Click Add.
9 Repeat this step for all source files needed for the project.
10 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 59 of 318
December 12, 2006

11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

12 Click Next.

13 Add any defines or include directories desired.
14 Click Finish.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 60 of 318 ProSoft Technology, Inc.
December 12, 2006

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

16 Click Project → Settings from the Main Menu.

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the MVI platform.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 61 of 318
December 12, 2006

18 Click the Directories tab and fill in directory information as required by your
project's directory structure.

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 62 of 318 ProSoft Technology, Inc.
December 12, 2006

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

22 Click Memory Models from the Topics field and ensure that the options
match those shown in the following screen:

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 63 of 318
December 12, 2006

23 Click Linker from the Topics field and ensure that the options match those
shown in the following screen:

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 64 of 318 ProSoft Technology, Inc.
December 12, 2006

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

26 Click OK.
27 Click Parse → Update All from the Project Window Menu. The new settings

may not take effect unless the project is updated and reparsed.
28 Click Project → Build All from the Main Menu.
29 When complete, the build results will appear in the Output window:

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, C:\ADM_TOOL_MVI\SAMPLES\…).
The Project Settings window can be accessed by clicking Project → Settings
from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as
Level 1 Errors rather than warnings. These errors will manifest themselves as
"Previous Definition Different : function name". Level 1 errors are non-fatal and
the executable will build and run. The architecture of the ADM libraries will
cause two or more of these errors to appear when the executable is built. This
is a normal occurrence. If you are building existing code written for a different
compiler you may have to replace calls to run-time functions with the Digital
Mars equivalent. Refer to the Digital Mars documentation on the Run-time
Library for the functions available.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 65 of 318
December 12, 2006

4.1.2 Configuring Borland C++5.02
The following procedure allows you to successfully build the sample ADM code
supplied by Prosoft Technology. using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland
C++ 5.02 on your workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_MVI.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the ProSoft-
Technology.com web site. When you unzip the file, you will find the sample code
files in \ADM_TOOL_MVI\SAMPLES\.

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click Project → Open Project from the
Main Menu.

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

3 In the File Name field, click on the project name (adm.ide).

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 66 of 318 ProSoft Technology, Inc.
December 12, 2006

4 Click OK. The Project window appears:

5 Click Project → Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

6 When Success appears in the Status field, click OK.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 67 of 318
December 12, 2006

7 The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options → Project Menu from the Main Menu.

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click File → Project from the Main Menu.

2 Type in the Project Path and Name. The Target Name is created
automatically.

3 In the Target Type field, choose Application (.exe).
4 In the Platform field, choose DOS (Standard).
5 In the Target Model field, choose Large.
6 Ensure that Emulation is checked in the Math Support field.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 68 of 318 ProSoft Technology, Inc.
December 12, 2006

7 Click OK. A Project window appears:

8 Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

9 Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 69 of 318
December 12, 2006

12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 70 of 318 ProSoft Technology, Inc.
December 12, 2006

14 Click Options → Project from the Main Menu.

15 Click Directories from the Topics field and fill in directory information as
required by your project's directory structure.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 71 of 318
December 12, 2006

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.
19 Click Project → Build All from the Main Menu.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 72 of 318 ProSoft Technology, Inc.
December 12, 2006

20 When complete, the Success window appears:

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options
window can be accessed by clicking Options → Project from the Main Menu.

4.2 Setting Up WINIMAGE
WINIMAGE is a Win9x/NT utility used to create disk images for downloading to
the MVI module. It does not require the used of a floppy diskette. In addition, it is
not necessary to estimate the disk image size, because WINIMAGE does this
automatically and can truncate the unused portion of the disk. WINIMAGE will
de-fragment a disk image so that files may be deleted and added to the image
without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file from the CD-ROM in a sub-
directory on your PC running Win9x or NT 4.0. To start WINIMAGE, run
WINIMAGE.EXE.

4.3 Installing and Configuring the Module
This chapter describes how to install and configure the module to work with your
application. The configuration process consists of the following steps.

1 Use RSLogix to identify the module to the processor and add the module to a
project.

NOTE: The RSLogix software must be in "offline" mode to add the module to a
project.

2 Modify the module's configuration files to meet the needs of your application,
and copy the updated configuration to the module. Example configuration
files are provided on the CD-ROM.

3 Modify the example ladder logic to meet the needs of your application, and
copy the ladder logic to the processor. Example ladder logic files are provided
on the CD-ROM.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 73 of 318
December 12, 2006

Note: If you are installing this module in an existing application, you can copy
the necessary elements from the example ladder logic into your application.

The rest of this chapter describes these steps in more detail.

Note for MVI94: Configuration information for the MVI94-ADM module is
stored in the module's Flash ROM. This provides permanent storage of the
information. The user configures the module using a text file and then using
the terminal emulation software provided with the module to download it to the
module's Flash ROM. The file contains the configuration for the Flex
backplane data transfer, master port and the command list. This file is
downloaded to the module for each application.

Note for MVI69: Configuration information for the MVI69-ADM module is
stored in the module's EEPROM. This provides permanent storage of the
information. The user configures the module using a text file and then using
the terminal emulation software provided with the module to download it to the
module's EEPROM. The file contains the configuration for the virtual database,
backplane data transfer, and serial port. This file is downloaded to the module
for each application.

Note for MVI71: The first step in installing and configuring the module is to
define whether the block transfer or side-connect interface will be used. If the
block transfer interface is used, remove the Compact Flash Disk from the
module if present and insert the module into the rack with the power turned off.

4.3.1 Using Side-Connect (Requires Side-Connect
Adapter) (MVI71)

If the side-connect interface is used, the file SC_DATA.TXT on the Compact
Flash Disk must contain the correct configuration file number. To set the
configuration file number to be used with your application, run the setdnpsc.exe
program. Install the module in the rack and turn on the power. Connect the
terminal emulator to the module's debug/configuration port and exit the program
by pressing the Esc key followed by the "X" key. This causes the program to exit
and remain at the operating system prompt. Run the setdnpsc.exe program with
a command line argument of the file number to use for the configuration file. For
example, to select N10: as the configuration file, enter the following:

SETDNPSC 10

The program will build the SC_DATA.TXT on the Compact Flash Disk (C: drive in
the root directory).

The next step in module setup is to define the data files to be used with the
application. If the block transfer interface is used, define the data files to hold the
configuration, status, and user data. Enter the module's configuration in the user
data files. Enter the ladder logic to handle the blocks transferred between the
module and the PLC. Download the program to the PLC and test the program
with the module.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 74 of 318 ProSoft Technology, Inc.
December 12, 2006

If the side-connect interface is used, no ladder logic is required for data transfer.
The user data files to interface with the module must reside in contiguous order
in the processor. The first file to be used by the interface is the configuration file.
This is the file number set in the SC_DATA.TXT file using the SETDNPSC.EXE
program. The following table lists the files used by the side-connect interface:

File Number Example Size Description
Cfg File N10 300 Configuration/Control/Status File
Cfg File+1 N11 to 1000 Port 1 commands 0 to 99
Cfg File+2 N12 to 1000 Port 2 commands 0 to 99
Cfg File+5 N15 to 1000 Data transferred from the module to the processor.
 Other files for read data.
Cfg File+5+n N16 to 1000 Data transferred from the processor to the module.
Cfg File +5+n+m Other files for write data.
n is the number of read data files minus one. Each file contains up to 1000
words.

m is the number of write data files minus one. Each file contains up to 1000
words.

Even if both files are not required for a port's commands, they are still reserved
and should only be used for that purpose. The read and write data contained in
the last set of files possess the data transferred between the module and the
processor. The number of files required for each is dependent on the number of
registers configured for each operation. Two examples follow:

Example of 240 words of read and write data (cfg file=10)
Data Files Description
N15:0 to 239 Read Data
N16:0 to 239 Write Data

Example of 2300 read and 3500 write data registers (cfg file=10)
Data Files Description
N15:0 to 999 Read data words 0 to 999
N16:0 to 999 Read data words 1000 to 1999
N17:0 to 299 Read data words 2000 to 2299
N18:0 to 999 Write data words 0 to 999
N19:0 to 999 Write data words 1000 to 1999
N20:0 to 999 Write data words 2000 to 2999
N21:0 to 499 Write data words 3000 to 3499
Special care must be taken when defining the files for the side-connect interface.
Because the module directly interacts with the PLC processor and its memory,
any errors in the configuration may cause the processor to fault and it may even
lose its configuration program. After defining the files and populating them with
the correct data, download the program to the processor, and place the
processor in Run mode. If everything is configured properly, the module should
start its normal operation.

Setting Up Your Development Environment MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 75 of 318
December 12, 2006

If all the configuration parameters are set correctly, the module's application LED
(OK LED) should remain off and the backplane activity LED (BP ACT) should
blink rapidly. Refer to the Diagnostics and Troubleshooting of this manual if you
encounter errors. Attach a terminal to Port 1 on the module and look at the status
of the module using the Configuration/Debug Menu in the module.

MVI-ADM ♦ 'C' Programmable Setting Up Your Development Environment
Application Development Module

Page 76 of 318 ProSoft Technology, Inc.
December 12, 2006

Programming the Module MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 77 of 318
December 12, 2006

5 Programming the Module

In This Chapter

 ROM Disk Configuration .. 77

 Creating a ROM Disk Image .. 81

 Downloading a ROM Disk Image ... 83

 MVI System BIOS Setup.. 85

 Debugging Strategies... 86

This section describes how to get your application running on the MVI module.
After an application has been developed using the backplane and serial API's, it
must be downloaded to the MVI module in order to run. The application may then
be run manually from the console command line, or automatically on boot from
the AUTOEXEC.BAT or CONFIG.SYS files.

5.1 ROM Disk Configuration
User programs are stored in the MVI module's ROM disk. This disk is actually a
portion of Flash ROM that appears as Drive A:.

The ROM disk size is:

Module Type Disk Size
MVI46 896K bytes
MVI56 896K bytes
MVI69 896K bytes
MVI71 896K bytes
MVI94 384K bytes
This section describes the contents of the ROM disk.

Along with the user application, the ROM disk image must also contain, at a
minimum, a CONFIG.SYS file and the backplane device driver file:

Module Type File Name
MVI46 MVI46BP.EXE
MVI56 MVI56BP.EXE
MVI69 MVI69BP.EXE
MVI71 MVI71BP.EXE
MVI94 MVI94BP.EXE
If a command interpreter is needed, it should also be included.

MVI-ADM ♦ 'C' Programmable Programming the Module
Application Development Module

Page 78 of 318 ProSoft Technology, Inc.
December 12, 2006

5.1.1 CONFIG.SYS File
The following lines should always be present in your CONFIG.SYS file:

MVI46

IRQPRIORITY=1
INSTALL=A:\MVI46bp.exe -iomix=0 -class=4 -m0size=3000 -m1size=10000

Note: The MVI46 driver file is called MVI46BP.EXE, and may be loaded from
the CONFIG.SYS or AUTOEXEC.BAT files. The driver must be loaded before
executing an application which uses the MVI API.

The SLC platform supports several classes of modules. The MVI46 can be
configured as a Class 1 or Class 4 module. Also, the I/O image sizes are
configurable. If the MVI46 is configured as Class 4, M0 and M1 files are
supported and their sizes are configurable.

Note: Messaging is only supported when the MVI46 is Class 4.

To configure the class of the MVI46, use the command line options shown below
when loading the MVI driver MVI46BP.EXE. If no options are given, the MVI46
MVI driver defaults to Class 4, 32 words of I/O, and M0 and M1 sizes of 1024
words (module ID = 13635).

[C:\]MVI46bp -?
MVI46 MVI Driver V1.00
Copyright (c) 2000 Online Development, Inc.
Usage:
C:\MVI46bp.EXE [-iomix=n] [-class=n] [-m0size=n] [-m1size=n]
where:
- iomix=n sets the I/O image sizes. Valid values for n are:
0 => 2 words of IO 5 => 12 words of IO
1 => 4 words of IO 6 => 16 words of IO
2 => 6 words of IO 7 => 24 words of IO
3 => 8 words of IO 8 => 32 words of IO (default)
4 => 10 words of IO
- class=n sets the module class. Valid values for n are:
1 => Class 1 (Messaging disabled)
4 => Class 4 (Messaging enabled, default)
- m0size=n sets the number of words for the Messaging
receive buffer, default m0size=1024
- m1size=n sets the number of words for the Messaging send buffer, default
m1size=1024 NOTE: m0size + m1size must be less than 16320 words.

When configuring the Host Controller for the MVI46, the programming software
requires the Module ID for each module in the system. The Module ID for the
MVI46 depends upon the configuration set by the driver. When the driver is
loaded, it prints to the console the Module ID value that can be entered into the
programming software for the Host Controller. For example, the default
configuration prints the following information:

[C:\]MVI46bp
MVI46 MVI Driver V1.00
Copyright (c) 2000 Online Development, Inc.

Programming the Module MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 79 of 318
December 12, 2006

1746 MVI Configuration
Class 4
IO mix 8 = 32 words of IO
M0 File size = 1024 words
M1 File size = 1024 words
SLC Module ID = 13635

The first line, IRQPRIORITY=1, assigns the highest interrupt priority to the I/O
backplane interrupt. The next line loads the backplane device driver. In this
example, the backplane device driver file (MVI46BP.EXE) must be located in the
root directory of the ROM disk. In the case of the MVI46, the module I/O is set
when the backplane driver is loaded. The module is set to class 4 with a 3000
word M0 file and a 10000 word M1 file. The Module ID for installing and
configuring the module in the ladder program will be printed to the console when
the backplane driver is loaded.

If a command interpreter is needed, a line like the following should be included in
CONFIG.SYS:

SHELL=A:\TINYCMD.COM /s /p

If a command interpreter is not needed, the user application may be executed
directly from the CONFIG.SYS file as shown (where USERAPP.EXE is the user
application executable file name):

SHELL=A:\USERAPP.EXE

The user application may also be executed automatically from an
AUTOEXEC.BAT file, or manually from the console command line. In either
case, a command interpreter (page 80) must be loaded.

MVI56

IRQPRIORITY=1
INSTALL=A:\MVI56bp.exe

MVI69

IRQPRIORITY=1
SYSTEMPOOL=16384
STACKS=5
SHELL=A:\TINYCMD.COM /s /p
INSTALL=A:\MVI69bp.exe

Note: At this time, messaging is not supported on the MVI69.

MVI71

IRQPRIORITY=1
INSTALL=A:\MVI71bp.exe

MVI94

IRQPRIORITY=1
INSTALL=A:\MVI94bp.exe

MVI-ADM ♦ 'C' Programmable Programming the Module
Application Development Module

Page 80 of 318 ProSoft Technology, Inc.
December 12, 2006

5.1.2 Command Interpreter
A command interpreter is needed if you want the module to boot to a command
prompt, or if you want to execute an AUTOEXEC.BAT file. Two command
interpreters are included, a full-featured COMMAND.COM, and the smaller, more
limited TINYCMD.COM. Refer to the General Software Embedded DOS 6-XL
Developer's Guide located on the MVI CD-ROM for more information.

5.1.3 Sample ROM Disk Image
The sample ROM disk image that is included with the MVI module contains the
following files:

MVI46
File Name Description
AUTOEXEC.BAT Runs the executable at startup
CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter
MVI46BP.EXE Backplane device driver

ADM.EXE Sample application

MVI56
File Name Description
AUTOEXEC.BAT Runs the executable at startup
CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter
MVI56BP.EXE Backplane device driver
ADM.EXE Sample application

MVI69
File Name Description
AUTOEXEC.BAT Runs the executable at startup
CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter
MVI69BP.EXE Backplane device driver
ADM.EXE Sample application

MVI71
File Name Description
AUTOEXEC.BAT Runs the executable at startup
CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter
MVI71BP.EXE Backplane device driver

Programming the Module MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 81 of 318
December 12, 2006

File Name Description
ADM.EXE Sample application
SETDNPSC.EXE Configures the module to use either backplane or side-connect interface.

MVI94
File Name Description
AUTOEXEC.BAT Runs the executable at startup
CONFIG.SYS Loads the backplane device driver and the command interpreter
TINYCMD.COM Command interpreter
MVI94BP.EXE Backplane device driver
ADM.EXE Sample application

5.2 Creating a ROM Disk Image
To change the contents of the ROM disk, a new disk image must be created
using the WINIMAGE utility.

The WINIMAGE utility for creating disk images is described in the following
topics.

5.2.1 WINIMAGE: Windows Disk Image Builder
WINIMAGE is a Win9x/NT utility that may be used to create disk images for
downloading to the MVI module. It does not require the use of a floppy diskette.
Also, it is not necessary to estimate the disk image size, since WINIMAGE does
this automatically and can truncate the unused portion of the disk. In addition,
WINIMAGE will de-fragment a disk image so that files may be deleted and added
to the image without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file in a subdirectory on your PC
running Win9x or NT 4.0. To start WINIMAGE, run WINIMAGE.EXE.

Follow these steps to build a disk image:

1 Start WINIMAGE.

MVI-ADM ♦ 'C' Programmable Programming the Module
Application Development Module

Page 82 of 318 ProSoft Technology, Inc.
December 12, 2006

2 Select File, New and choose a disk format as shown in the following
diagram. Any format will do, as long as it is large enough to contain your files.
The default is 1.44Mb, which is fine for our purposes. Click on OK.

3 Drag and drop the files you want in your image to the WINIMAGE window.
4 Click on Options, Settings and make sure the Truncate unused image part

option is selected, as shown in the following figure. Click on OK.

Programming the Module MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 83 of 318
December 12, 2006

5 Click on File, Save As, and choose a directory and filename for the disk
image file. The image must be saved as an uncompressed disk image, so be
sure to select Save as type: Image file (*.IMA) as shown in the following
figure.

6 Check the disk image file size to be sure it does not exceed the maximum
size of the MVI module's ROM disk (896K bytes, 384K bytes for MVI94). If it
is too large, use WINIMAGE to remove some files from the image, then de-
fragment the image and try again. (Note: To de-fragment an image, click on
Image, Defrag current image.

7 The disk image is now ready to be downloaded to the MVI module.
For more information on using WINIMAGE, refer to the documentation included
with it.

Note: WINIMAGE is a shareware utility. If you find this program useful, please
register it with the author.

5.3 Downloading a ROM Disk Image
MVI Flash Update is a Windows-compatible program for Win9x and NT used to
download a ROM Disk image.

5.3.1 MVI Flash Update

Installation

System Requirements:

 Windows 95/98 or Windows NT 4.0
 Available serial port COM1 to COM4
 2Mb free disk space

MVI-ADM ♦ 'C' Programmable Programming the Module
Application Development Module

Page 84 of 318 ProSoft Technology, Inc.
December 12, 2006

Before you install a new version, it is recommended that you uninstall any
previous versions. Click on the Add/Remove Programs icon in the Control Panel
window.

To install the MVI Flash Update tool, use the SETUP.EXE installation program.
When the program is installed, click on the "MVI Flash Update" icon, to run the
program.

Using the MVI Flash Update Utility

The MVI Flash Update tool allows a disk image to be downloaded to the MVI
module. The disk image must be an uncompressed FAT-format diskette image
created with WINIMAGE or a compatible utility.

To download a disk image to the module, follow these steps:

1 Install the Setup Jumper on the MVI module.
2 Connect PRT1 of the MVI module to the selected port on the computer with a

null-modem serial cable.
3 Click on the MVI Flash Update icon to start the program. Select the COM port

which is connected to PRT1 of the MVI module.

4 Turn on the power to the MVI module.
5 When a connection to the module has been established, the download dialog

is displayed. Choose the diskette image file to download, the click on the
Download button. The progress bar indicates the download progress.

Programming the Module MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 85 of 318
December 12, 2006

6 After the download has completed, the module will reboot.

Note: Only one program at a time may access a serial port. If you are using
HyperTerm or a similar terminal program for the MVI module console, exit or
disconnect from the serial port before running the MVI Flash Update tool.

5.4 MVI System BIOS Setup
The BIOS Setup for the MVI products contains module configuration settings and
allows for placing the MVI module in a flash update mode. To access the BIOS
Setup, attach a null modem cable from the PC COM port to the Status/Debug
port on the MVI module. Start HyperTerm with the appropriate communication
settings for the Debug port. Press CTRL-C during the memory test portion in the
booting of the module.

It may be necessary to install the setup jumper in order to access the BIOS
Setup. The setup jumper will be necessary if the Console is disabled. When the
BIOS Setup is entered the following screen will appear:

To place the MVI module in a mode where it is waiting to receive a new flash
image, select Begin Flash ROM Update Mode.

Select MVI Module Configuration to set the Console, Console Baud Rate and
Compact Flash mode. The Console allows keyboard entry and text output to the
debug port. The baud rate of the console port is selected by the Console Baud

MVI-ADM ♦ 'C' Programmable Programming the Module
Application Development Module

Page 86 of 318 ProSoft Technology, Inc.
December 12, 2006

Rate option. In order to use a Compact Flash disk in the MVI module the
Compact Flash option must be set to CHS mode.

5.5 Debugging Strategies
For simple debugging, printf's may be inserted into the module application to
display debugging information on the console connected to PRT1.

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 87 of 318
December 12, 2006

6 Creating Ladder Logic

In This Chapter

 MVI46 Ladder Logic ... 87

 MVI56 Ladder Logic ... 87

 MVI69 Ladder Logic ... 88

 MVI71 Ladder Logic ... 90

 MVI94 Ladder Logic ... 96

6.1 MVI46 Ladder Logic

6.1.1 Main Routine

6.2 MVI56 Ladder Logic

6.2.1 Main Routine

6.2.2 Read Routine

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
Application Development Module

Page 88 of 318 ProSoft Technology, Inc.
December 12, 2006

6.3 MVI69 Ladder Logic

6.3.1 Main Routine

6.3.2 Read Routine

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 89 of 318
December 12, 2006

6.3.3 Write Routine

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
Application Development Module

Page 90 of 318 ProSoft Technology, Inc.
December 12, 2006

6.4 MVI71 Ladder Logic
The ladder files included are:

File Name Description
MVI71ADM_BT.RSP RSLogix5 Sample Program (For Backplane Interface)
MVI71ADM_SC.RSP RSLogix5 Sample Program (For Side-connect Interface)

Note: The ladder files for the various hardware platforms are provided with the
ADM module. They are also available on on the ProSoft Technology web site
at http://www.prosoft-technology.com.

6.4.1 Sample Ladder Logic
Ladder logic is required for application of the MVI71-ADM module when using the
block transfer interface. Ladder logic is only required when using the side-
connect interface to perform special functions. Tasks that must be handled by the
ladder logic are module configuration, data transfer, and special block handling.
This section discusses each aspect of the ladder logic as required by the module.
The sections that follow describe the simple ladder logic example provided for
each interface.

Block Transfer Interface

When the block transfer interface is used, ladder logic is required to transfer all
data between the module and the processor.

http://www.prosoft-technology.com/

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 91 of 318
December 12, 2006

Main Routine

The Main program file is used to jump to the routine that processes the BTR and
BTW functions for the interface. Ladder logic to accomplish this task is shown
below:

Block Transfer Routine

The Block Transfer Routine handles the BTR and BTW operations to transfer
data between the processor and the module. Each block to be interfaced
between the processor and the module must be addressed in this logic. The
example ladder logic displays the minimum application of the module and does
not use any of the special features offered by the module. The first rung of the
routine handles the BTR operation (data read from the module). The rung is
shown in the following example:

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
Application Development Module

Page 92 of 318 ProSoft Technology, Inc.
December 12, 2006

This rung will only execute when a BTR or BTW message is not enabled. This
logic is required to alternate between the BTR and BTW messages. When it is
time to perform a BTR operation, the 64-word data block will be transferred to
N7:410. The remaining branches of the rung then process this data.

The first branch examines the block identification code to see if the data
contained in the block is status data. If the block code is set to –1, the status data

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 93 of 318
December 12, 2006

is copied N10:200, the status data area. With the block code –2, the module
returns an error code for module configuration and port configuration to the PLC.

The next four branches check to see if the block identification code corresponds
to a read data block (1 to 4). If the block contains a valid code, the 60-word data
set is copied to the user data file.

The next branch is very important, as it copies the BTW block identification code
received from the module into the BTW block. This code requests data from the
processor for the module.

The last two branches in the rung override the BTW block identification code
requested. These branches request the module to perform the cold-boot or
warm-boot operation. If you want to perform any other special functions, add
branches to the rung at this location.

The next rung in the ladder logic handles the BTW message blocks. An example
rung is displayed below. As with the BTR rung, execution of this rung alternates
between the BTR and BTW operation with the contacts in the rung guaranteeing
this mode. The topmost branch of the rung checks if the module is requesting the
configuration information (block 9000). The module requests this block each time
a module restart operation occurs. The branch will execute when the block is
requested and will copy the module configuration information into the BTW block.

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
Application Development Module

Page 94 of 318 ProSoft Technology, Inc.
December 12, 2006

The next two branches clear the cold-boot and warm-boot request bits in the
processor. The block numbers for these special functions are set in the BTR rung
above.

The next four branches transfer the write data from the processor to the module.
The branches determine the block to write (1 to 4) and copy the associated data
into the BTW block.

The last branch of the rung performs the BTW message operation. This
operation will be recognized by the module, and the data contained in the
received BTW block will be processed by the module. If the data contained in the

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 95 of 318
December 12, 2006

block is normal write data, the data will be placed in the module's internal
database. If the block is a special control block (for example, warm-boot block),
the module will perform the selected operation.

Side-Connect Interface

When the side-connect interface is used, no ladder logic is required for normal
data transfer. The module directly reads and writes information between the
module and the processor using the user data files defined. The SC_DATA.TXT
file contains the file number to be used for the configuration file. This file number
and the module configuration determine the set of user data files required in the
PLC.

In order to perform special control of the module (for example, warm-boot
operation), ladder logic is required. A reserved area in the configuration file is
constantly monitored by the module (elements 80 to 139). If the module
recognizes a valid control command code in element 80, it will use the data in the
block to perform the requested operation. For example, to perform a warm-boot
operation on the module, copy a value of 9998 into element 80 of the
configuration file. The module should perform the warm-boot operation and reset
the register value back to zero.

Boot

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
Application Development Module

Page 96 of 318 ProSoft Technology, Inc.
December 12, 2006

6.5 MVI94 Ladder Logic

6.5.1 Main Routine

6.5.2 ADM

Creating Ladder Logic MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 97 of 318
December 12, 2006

MVI-ADM ♦ 'C' Programmable Creating Ladder Logic
Application Development Module

Page 98 of 318 ProSoft Technology, Inc.
December 12, 2006

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 99 of 318
December 12, 2006

7 Application Development Function Library:
ADM API

In This Chapter

 ADM API Functions.. 99

 ADM API Initialization Functions .. 102

 ADM API Debug Port Functions... 104

 ADM API Database Functions.. 111

 ADM API Clock Functions.. 146

 ADM API Backplane Functions .. 148

 ADM LED Functions... 155

 ADM API Flash Functions .. 156

 ADM API Miscellaneous Functions 164

 ADM Side-Connect Functions .. 167

 ADM API RAM Functions... 172

7.1 ADM API Functions
This section provides detailed programming information for each of the ADM API
library functions. The calling convention for each API function is shown in C
format.

The same set of API functions is supported for all of the modules in the MVI
family. Differences between modules are noted where appropriate.

The API library routines are categorized according to functionality as shown in
the following table.

Function Category Function Name Description
ADM_Open Initialize access to the API Initialization
ADM_Close Terminate access to the API
ADM_ProcessDebug Debug port user interface
ADM_DAWriteSendCtl Writes a data analyzer Tx control symbol
ADM_DAWriteRecvCtl Writes a data analyzer Rx control symbol

Debug Port

ADM_DAWriteSendData Writes a data analyzer Tx data byte

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 100 of 318 ProSoft Technology, Inc.
December 12, 2006

Function Category Function Name Description
ADM_DAWriteRecvData Writes a data analyzer Rx data byte
ADM_ConPrint Outputs characters to Debug port
ADM_CheckDBPort Checks for character input on Debug port
ADM_DBOpen Initializes database
ADM_DBClose Closes database
ADM_DBZero Zeros database
ADM_DBGetBit Read a bit from the database
ADM_DBSetBit Write a 1 to a bit to the database
ADM_DBClearBit Write a 0 to a bit to the database
ADM_DBGetByte Read a byte from the database
ADM_DBSetByte Write a byte to the database
ADM_DBGetWord Read a word from the database
ADM_DBSetWord Write a word to the database
ADM_DBGetLong Read a double word from the database
ADM_DBSetLong Write a double word to the database
ADM_DBGetFloat Read a floating-point number from the

database
ADM_DBSetFloat Write a floating-point number to the database
ADM_DBGetDFloat Read a double floating-point number from the

database

Database

ADM_DBSetDFloat Write a double floating-point number to the
database

ADM_DBGetBuff Reads a character buffer from the database
ADM_DBSetBuff Writes a character buffer to the database
ADM_DBGetRegs Read multiple word registers from the

database
ADM_DBSetRegs Write multiple word registers to the database
ADM_DBGetString Read a string from the database
ADM_DBSetString Write a string to the database
ADM_DBSwapWord Swaps bytes within a word in the database
ADM_DBSwapDWord Swaps bytes within a double word in the

database
ADM_GetDBCptr Get a pointer to a character in the database
ADM_GetDBIptr Get a pointer to a word in the database
ADM_GetDBInt Returns an integer from the database
ADM_DBChanged Tests a database register for a change
ADM_DBBitChanged Tests a database bit for a change
ADM_DBOR_Byte Inclusive OR a byte with a database byte
ADM_DBNOR_Byte Inclusive NOR a byte with a database byte
ADM_DBAND_Byte AND a byte with a database byte
ADM_DBNAND_Byte NAND a byte with a database byte

ADM_DBXOR_Byte Exclusive OR a byte with a database byte

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 101 of 318
December 12, 2006

Function Category Function Name Description
ADM_DBXNOR_Byte Exclusive NOR a byte with a database byte
ADM_StartTimer Initialize a timer Timer
ADM_CheckTimer Check current timer value
ADM_BtOpen Opens and initializes backplane interface
ADM_BtClose Closes backplane interface
ADM_BtNext Sets next write block number
ADM_ReadBtCfg Reads configuration from the processor
ADM_BtFunc Handles backplane transfers
ADM_SetStatus Writes status to Error/Status table

Backplane

ADM_SetBtStatus Writes status to processor
LED ADM_SetLed Turn user LED indicators on or off

ADM_FileGetString Searches for a string in a config file
ADM_FileGetInt Searches for an integer in a config file
ADM_FileGetChar Searches for a char in a config file
ADM_GetVal Gets an integer from a buffer
ADM_GetStr Gets a string from a buffer
ADM_Getc Gets a char from a buffer

Flash

ADM_SkipToNext Skips white space
ADM_GetVersionInfo Get the ADM API version information
ADM_SetConsolePort Enable the console on a port

Miscellaneous

ADM_SetConsoleSpeed Set the console port baud rate
ADM_ScOpen Open and initializes the side-connect

interface
ADM_ScClose Close the side-connect interface
ADM_ReadScFile Read SC_DATA.TXT file from the C drive

on a Compact Flash in the module to select
between using backplane or side-connect
interface

ADM_ReadScCfg Read configuration from the processor

Side Connect

ADM_ScScan Handles side-connect transfer
ADM_EEPROM_Read
Configuration

Read configuration file

ADM_RAM_Find_Section Find section in the configuration file
ADM_RAM_GetString Get string under topic name
ADM_RAM_GetInt Get integer under topic name
ADM_RAM_GetLong Get Long under topic name
ADM_RAM_GetFloat Get Float under topic name
ADM_RAM_GetDouble Get Double under topic name

RAM

ADM_RAM_GetChar Get Char under topic name

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 102 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM API Initialization Functions

ADM_Open

Syntax
int ADM_Open(ADMHANDLE *adm_handle);

Parameters
adm_handle Pointer to variable of type ADMHANDLE

Description
ADM_Open acquires access to the ADM API and sets adm_handle to a unique
ID that the application uses in subsequent functions. This function must be called
before any of the other API functions can be used.

IMPORTANT: After the API has been opened, ADM_Close should always be
called before exiting the application.

Return Value
ADM_SUCCESS API was opened successfully
ADM_ERR_REOPEN API is already open
ADM_ERR_NOACCESS API cannot run on this hardware

Note: ADM_ERR_NOACCESS will be returned if the hardware is not from
ProSoft Technology.

Example
ADMHANDLE adm_handle;
 if(ADM_Open(&adm_handle) != ADM_SUCCESS)
 {
 printf("\nFailed to open ADM API... exiting program\n");
 exit(1);
 }

See Also
ADM_Close (page 103)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 103 of 318
December 12, 2006

ADM_Close

Syntax
int ADM_Close(ADMHANDLE adm_handle);

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description
This function is used by an application to release control of the API. adm_handle
must be a valid handle returned from ADM_Open.

IMPORTANT: After the API has been opened, this function should always be
called before exiting the application.

Return Value
ADM_SUCCESS API was closed successfully
ADM_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
 ADM_Close(adm_handle);

See Also
ADM_Open (page 102)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 104 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM API Debug Port Functions

ADM_ProcessDebug

Syntax
int ADM_ProcessDebug(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures

Description
This function provides a module user interface using the debug port. adm_handle
must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access or user pressed ESC to exit

program

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;
 interface_ptr = &interface;
ADM_ProcessDebug(adm_handle, interface_ptr);

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 105 of 318
December 12, 2006

ADM_DAWriteSendCtl

Syntax
int ADM_DAWriteSendCtl(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,
int app_port, int marker);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure

pointers needed by the function
app_port Application serial port referenced
marker Flow control symbol to output to the data analyzer screen

Description
This function may be used to send a transmit flow control symbol to the data
analyzer screen. The control symbol will appear between two angle brackets:
<R+>, <R->, <CS>.

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF <R->
RTSON <R+>
CTSRCV <CS>

MVI94 Note
Only application port 0 is valid for the MVI94.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access
MVI_ERR_BADPARAM Value of marker is not valid

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;
 interface_ptr = &interface;
ADM_DAWriteSendCtl(adm_handle, interface_ptr, app_port, RTSON);

See Also
ADM_DAWriteRecvCtl (page 106)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 106 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DAWriteRecvCtl

Syntax
int ADM_DAWriteRecvCtl(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,
int app_port, int marker);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure

pointers needed by the function
app_port Application serial port referenced
marker Flow control symbol to output to the data analyzer screen

Description
This function may be used to send a receive flow control symbol to the data
analyzer screen. The control symbol will appear between two square brackets:
[R+], [R-], [CS].

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF [R-]
RTSON [R+]
CTSRCV [CS]

MVI94 Note
Only application port 0 is valid for the MVI94.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access
MVI_ERR_BADPARAM Value of marker is not valid

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;
 interface_ptr = &interface;
ADM_DAWriteRecvCtl(adm_handle, interface_ptr, app_port, RTSON);

See Also
ADM_DAWriteSendCtl (page 105)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 107 of 318
December 12, 2006

ADM_DAWriteSendData

Syntax
int ADM_DAWriteSendData(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,
int app_port, int length, char *data_buff);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure

pointers needed by the function
app_port Application serial port referenced
length The number of data characters to send to the data analyzer
data_buff The buffer holding the transmit data

Description
This function may be used to send transmit data to the data analyzer screen. The
data will appear between two angle brackets: <data>.

adm_handle must be a valid handle returned from ADM_Open.

MVI94 Note
Only application port 0 is valid for the MVI94.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_PORT ports[MAX_APP_PORTS];
Int app_port;
ADM_INTERFACE interface;
 interface_ptr = &interface;
ADM_DAWriteSendData(adm_handle, interface_ptr, app_port, ports[app_port].len,
ports[app_port].buff);

See Also
ADM_DAWriteRecvData (page 108)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 108 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DAWriteRecvData

Syntax
int ADM_DAWriteRecvData(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr,
int app_port, int length, char *data_buff);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure

pointers needed by the function
app_port Application serial port referenced
length The number of data characters to send to the data analyzer
data_buff The buffer holding the receive data

Description
This function sends receive data to the data analyzer screen. The data will
appear between two square brackets: [data].

adm_handle must be a valid handle returned from ADM_Open.

MVI94 Note
Only application port 0 is valid for the MVI94.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_PORT ports[MAX_APP_PORTS];
Int app_port;
ADM_INTERFACE interface;
 interface_ptr = &interface;
ADM_DAWriteRecvData(adm_handle, interface_ptr, app_port, ports[app_port].len,
ports[app_port].buff);

See Also
ADM_DAWriteSendData (page 107)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 109 of 318
December 12, 2006

ADM_ConPrint

Syntax
int ADM_ConPrint(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures

Description
This function outputs characters to the debug port. This function will buffer the
output and allow other functions to run. The buffer is serviced with each call to
ADM_ProcessDebug and can be serviced by the user's program. When sending
data to the debug port, if printf statements are used, other processes will be held
up until the printf function completes execution. Two variables in the interface
structure must be set when data is loaded. The first, buff_ch is the offset of the
next character to print. This should be set to 0. The second is buff_len. This
should be set to the length of the string placed in the buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_ERR_NOACCESS adm_handle does not have access
 Number of characters left in the buffer

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;
 interface_ptr = &interface;
sprintf(interface.buff,"MVI ADM\n");
 interface.buff_ch = 0;
 interface.buff_len = strlen(interface.buff);
/* write buffer to console */
 while(interface.buff_len)
 {
 interface.buff_len = ADM_ConPrint(adm_handle, interface_ptr);
 }

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 110 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_CheckDBPort

Syntax
int ADM_CheckDBPort(ADMHANDLE adm_handle);

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description
This function checks for input characters on the debug port. adm_handle must be
a valid handle returned from ADM_Open.

Return Value
ADM_ERR_NOACCESS adm_handle does not have access
Returns the character input to the debug port

Example
 int key;
 key = ADM_CheckDBPort(adm_handle);
 printf("key = %i\n", key);

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 111 of 318
December 12, 2006

ADM API Database Functions

ADM_DBOpen

Syntax
int ADM_DBOpen(ADMHANDLE adm_handle, unsigned short max_size)

Parameters
adm_handle Handle returned by previous call to ADM_Open
max_size Maximum number of words in the database

Description
This function creates a database in the RAM area of the MVI module.

adm_handle must be a valid handle returned from ADM_Open.

MVI94 Note: The maximum number of database registers in the MVI94 is
limited to 3996.

MVI56 Note: The maximum number of database registers in the MVI56 is
limited to 7000.

MVI46 Note: The maximum number of database registers in the MVI46 is
limited to 10000.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_DB_MAX_SIZE max_size has exceeded the maximum allowed
ADM_ERR_REG_RANGE max_size requested was zero
ADM_ERR_OPEN Database already created
ADM_ERR_MEMORY Insufficient memory for database

Example
ADMHANDLE adm_handle;
if(ADM_DBOpen(adm_handle, ADM_MAX_DB_REGS) != ADM_SUCCESS)
 printf("Error setting up Database!\n");

See Also
ADM_DBClose (page 112)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 112 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBClose

Syntax
int ADM_DBClose(ADMHANDLE adm_handle)

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description
This function closes a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
ADM_DBClose(adm_handle);

See Also
ADM_DBOpen (page 111)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 113 of 318
December 12, 2006

ADM_DBZero

Syntax
int ADM_DBZero(ADMHANDLE adm_handle)

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description
This function writes zeros to a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated

Example
ADMHANDLE adm_handle;
ADM_DBZero(adm_handle);

See Also
ADM_DBOpen (page 111)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 114 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBGetBit

Syntax
int ADM_DBGetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description
This function reads a bit from the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested bit

ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
if(ADM_DBGetBit(adm_handle, offset))
 printf("bit is set");
else
 printf("bit is clear");

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 115 of 318
December 12, 2006

ADM_DBSetBit

Syntax
int ADM_DBSetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description
This function sets a bit to a 1 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
ADM_DBSetBit(adm_handle, offset);

See Also
ADM_DBClearBit (page 116)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 116 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBClearBit

Syntax
int ADM_DBClearBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description
This function clears a bit to a 0 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
ADM_DBClearBit(adm_handle, offset);

See Also
ADM_DBSetBit (page 115)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 117 of 318
December 12, 2006

ADM_DBGetByte

Syntax
char ADM_DBGetByte(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database

Description
This function reads a byte from the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested byte

Example
ADMHANDLE adm_handle;
unsigned short offset;
int i;
i = ADM_DBGetByte(adm_handle, offset);

See Also
ADM_DBSetByte (page 118)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 118 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSetByte

Syntax
int ADM_DBSetByte(ADMHANDLE adm_handle, unsigned short offset, const char val)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database
val Value to be written to the database

Description
This function writes a byte to the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
const char val;
ADM_DBSetByte(adm_handle, offset, val);

See Also
ADM_DBGetByte (page 117)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 119 of 318
December 12, 2006

ADM_DBGetWord

Syntax
int ADM_DBGetWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description
This function reads a word from the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested word

Example
ADMHANDLE adm_handle;
unsigned short offset;
int i;
i = ADM_DBGetWord(adm_handle, offset);

See Also
ADM_DBSetWord (page 120)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 120 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSetWord

Syntax
int ADM_DBSetWord(ADMHANDLE adm_handle, unsigned short offset, const short val)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database
val Value to be written to the database

Description
This function writes a word to the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
const short val;
ADM_DBSetWord(adm_handle, offset, val);

See Also
ADM_DBGetWord (page 119)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 121 of 318
December 12, 2006

ADM_DBGetLong

Syntax
long ADM_DBGetLong(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Long int offset into database

Description
This function reads a long int from the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested long int

Example
ADMHANDLE adm_handle;
unsigned short offset;
long l;
l = ADM_DBGetLong(adm_handle, offset);

See Also
ADM_DBSetLong (page 122)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 122 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSetLong

Syntax
int ADM_DBSetLong(ADMHANDLE adm_handle, unsigned short offset, const long val)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Long int offset into database
val Value to be written to the database

Description
This function writes a long int to the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
const long val;
ADM_DBSetLong(adm_handle, offset, val);

See Also
ADM_DBGetLong (page 121)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 123 of 318
December 12, 2006

ADM_DBGetFloat

Syntax
float ADM_DBGetFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset float offset into database

Description
This function reads a floating-point number from the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested floating-point number.

Example
ADMHANDLE adm_handle;
unsigned short offset;
float f;
f = ADM_DBGetFloat(adm_handle, offset);

See Also
ADM_DBSetFloat (page 124)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 124 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSetFloat

Syntax
int ADM_DBSetFloat(ADMHANDLE adm_handle, unsigned short offset, const float val)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset float offset into database
val Value to be written to the database

Description
This function writes a floating-point number to the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
const float val;
ADM_DBSetFloat(adm_handle, offset, val);

See Also
ADM_DBGetFloat (page 123)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 125 of 318
December 12, 2006

ADM_DBGetDFloat

Syntax
double ADM_DBGetDFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset double float offset into database

Description
This function reads a double floating-point number from the database at a
specified double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Requested double floating-point number

Example
ADMHANDLE adm_handle;
unsigned short offset;
double d;
d = ADM_DBGetDFloat(adm_handle, offset);

See Also
ADM_DBSetDFloat (page 126)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 126 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSetDFloat

Syntax
int ADM_DBSetDFloat(ADMHANDLE adm_handle, unsigned short offset, const double
val)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset double float offset into database
val Value to be written to the database

Description
This function writes a double floating-point number to the database at a specified
double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
const double val;
ADM_DBSetDFloat(adm_handle, offset, val);

See Also
ADM_DBGetDFloat (page 125)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 127 of 318
December 12, 2006

ADM_DBGetBuff

Syntax
char * ADM_DBGetBuff(ADMHANDLE adm_handle, unsigned short offset, const unsigned
short count, char * str)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
count Number of characters to retrieve
str String buffer to receive characters

Description
This function copies a buffer of characters in the database to a character buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
const unsigned short char_count;
char *string_buff;
ADM_DBGetBuff(adm_handle, offset, char_count, string_buff);

See Also
ADM_DBSetBuff (page 128)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 128 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSetBuff

Syntax
int ADM_DBSetBuff(ADMHANDLE adm_handle, unsigned short offset, const unsigned
short count, char * str)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
count Number of characters to write
str String buffer to copy characters from

Description
This function copies a buffer of characters to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
NULL adm_handle has no access, the database is not allocated, or

count + offset is beyond the max size of the database
 Characters from buffer

Example
ADMHANDLE adm_handle;
unsigned short offset;
const unsigned short char_count;
char *string_buff = "MVI ADM";
char_count = strlen(string_buff);
ADM_DBSetBuff(adm_handle, offset, char_count, string_buff);

See Also
ADM_DBGetBuff (page 127)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 129 of 318
December 12, 2006

ADM_DBGetRegs

Syntax
unsigned short * ADM_DBGetRegs(ADMHANDLE adm_handle, unsigned short offset,
const unsigned short count, unsigned short * buff)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
count Number of integers to retrieve
buff Register buffer to receive integers

Description
This function copies a buffer of registers in the database to a register buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.

Returns buff if successful.

Example
ADMHANDLE adm_handle;
unsigned short offset;
const unsigned short reg_count;
unsigned short *reg_buff;
ADM_DBGetRegs(adm_handle, offset, reg_count, reg_buff);

See Also
ADM_DBSetRegs (page 130)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 130 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSetRegs

Syntax
int ADM_DBSetRegs(ADMHANDLE adm_handle, unsigned short offset, const unsigned
short count, unsigned short * buff)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
count Number of integers to write
buff Register buffer from which integers are copied

Description
This function copies a buffer of registers to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
const unsigned short reg_count;
unsigned short *reg_buff;
ADM_DBSetRegs(adm_handle, offset, reg_count, reg_buff);

See Also
ADM_DBGetRegs (page 129)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 131 of 318
December 12, 2006

ADM_DBGetString

Syntax
char * ADM_DBGetString(ADMHANDLE adm_handle, unsigned short offset, const
unsigned short maxcount, char * str)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
maxcount Maximum number of characters to retrieve
str String buffer to receive characters

Description
This function copies a string from the database to a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.

Returns str if string is copy is successful.

Example
ADMHANDLE adm_handle;
unsigned short offset;
const unsigned short maxcount;
char *string_buff;
ADM_DBGetString(adm_handle, offset, maxcount, str);

See Also
ADM_DBSetString (page 132)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 132 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSetString

Syntax
int ADM_DBSetString(ADMHANDLE adm_handle, unsigned short offset, const unsigned
short maxcount, char * str)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Character offset into database where the buffer starts
maxcount Maximum number of characters to write
str String buffer to copy string from

Description
This function copies a string to the database from a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
const unsigned short maxcount;
char *string_buff;
ADM_DBSetString(adm_handle, offset, maxcount, str);

See Also
ADM_DBGetString (page 131)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 133 of 318
December 12, 2006

ADM_DBSwapWord

Syntax
int ADM_DBSwapWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database where swapping is to be performed

Description
This function swaps bytes within a database word.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
ADM_DBSwapWord(adm_handle, offset);

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 134 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBSwapDWord

Syntax
int ADM_DBSwapDWord(ADMHANDLE adm_handle, unsigned short offset, int type)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset long offset into database where swapping is to be performed
type If type = 3 then bytes will be swapped in pairs within the long.

Description
This function swaps bytes within a database long word.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
unsigned short offset;
ADM_DBSwapDWord(adm_handle, offset, 3);

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 135 of 318
December 12, 2006

ADM_GetDBCptr

Syntax
char * ADM_GetDBCptr(ADMHANDLE adm_handle, int offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description
This function obtains a pointer to char corresponding to the database + offset
location. Because offset is a word offset, the pointer will always reference a
character on a word boundary.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.

Returns pointer to char if successful.

Example
ADMHANDLE adm_handle;
int offset;
char c;
c = *(ADM_GetDBCptr(adm_handle, offset));

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 136 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_GetDBIptr

Syntax
int * ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description
This function obtains a pointer to int corresponding to the database + offset
location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns NULL if not successful.

Returns pointer to int if successful.

Example
ADMHANDLE adm_handle;
int offset;
int i;
i = *(ADM_GetDBIptr(adm_handle, offset));

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 137 of 318
December 12, 2006

ADM_GetDBInt

Syntax
int ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description
This function obtains an int corresponding to the database + offset location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Returns 0 if not successful.

Returns int requested if successful.

Example
ADMHANDLE adm_handle;
int offset;
int i;
i = ADM_GetDBInt(adm_handle, offset);

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 138 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBChanged

Syntax
int ADM_DBChanged(ADMHANDLE adm_handle, int offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Word offset into database

Description
This function checks to see if a register has changed since the last call to
ADM_DBChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
0 No change
1 Register has changed

Example
ADMHANDLE adm_handle;
int offset;
if(ADM_DBChanged(adm_handle, offset))
 printf("Data has changed");
else
 printf("Data is unchanged");

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 139 of 318
December 12, 2006

ADM_DBBitChanged

Syntax
int ADM_DBBitChanged(ADMHANDLE adm_handle, int offset)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Bit offset into database

Description
This function checks to see if a bit has changed since the last call to
ADM_DBBitChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
0 No change
1 Bit has changed

Example
ADMHANDLE adm_handle;
int offset;
if(ADM_DBBitChanged(adm_handle, offset))
 printf("Bit has changed");
else
 printf("Bit is unchanged");

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 140 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBOR_Byte

Syntax
int ADM_DBOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database
bval Bit mask to be ORed with the byte at offset

Description
This function ORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
int offset;
unsigned char bval = 0x55;
ADM_DBOR_Byte(adm_handle, offset, bval);

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 141 of 318
December 12, 2006

ADM_DBNOR_Byte

Syntax
int ADM_DBNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database
bval Bit mask to be NORed with the byte at offset

Description
This function NORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
int offset;
unsigned char bval = 0x55;
ADM_DBNOR_Byte(adm_handle, offset, bval);

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 142 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBAND_Byte

Syntax
int ADM_DBAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database
bval Bit mask to be ANDed with the byte at offset

Description
This function ANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
int offset;
unsigned char bval = 0x55;
ADM_DBAND_Byte(adm_handle, offset, bval);

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 143 of 318
December 12, 2006

ADM_DBNAND_Byte

Syntax
int ADM_DBNAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database
bval Bit mask to be NANDed with the byte at offset

Description
This function NANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
int offset;
unsigned char bval = 0x55;
ADM_DBNAND_Byte(adm_handle, offset, bval);

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 144 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_DBXOR_Byte

Syntax
int ADM_DBXOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database
bval Bit mask to be XORed with the byte at offset

Description
This function XORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
int offset;
unsigned char bval = 0x55;
ADM_DBXOR_Byte(adm_handle, offset, bval);

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 145 of 318
December 12, 2006

ADM_DBXNOR_Byte

Syntax
int ADM_DBXNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters
adm_handle Handle returned by previous call to ADM_Open
offset Byte offset into database
bval Bit mask to be XNORed with the byte at offset

Description
This function XNORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_MEMORY database is not allocated
ADM_ERR_REG_RANGE offset is out of range

Example
ADMHANDLE adm_handle;
int offset;
unsigned char bval = 0x55;
ADM_DBXNOR_Byte(adm_handle, offset, bval);

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 146 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM API Clock Functions

ADM_StartTimer

Syntax
unsigned short ADM_StartTimer(ADMHANDLE adm_handle)

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description
ADM_StartTimer can be used to initialize a variable with a starting time with the
current time from a microsecond clock. A timer can be created by making a call
to ADM_StartTimer and by using ADM_CheckTimer to check to see if timeout
has occurred. For multiple timers call ADM_StartTimer using a different variable
for each timer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Current time value from millisecond clock

Example
Initialize 2 timers.

ADMHANDLE adm_handle;
unsigned short timer1;
unsigned short timer2;
timer1 = ADM_StartTimer(adm_handle);
timer2 = ADM_StartTimer(adm_handle);

See Also
ADM_CheckTimer (page 147)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 147 of 318
December 12, 2006

ADM_CheckTimer

Syntax
int ADM_CheckTimer(ADMHANDLE adm_handle, unsigned short *adm_tmlast, long
*adm_tmout)

Parameters
adm_handle Handle returned by previous call to ADM_Open.
adm_tmlast Starting time of timer returned from call to ADM_StartTimer.
adm_tmout Timeout value in microseconds.

Description
ADM_CheckTimer checks a timer for a timeout condition. Each time the function
is called, ADM_CheckTimer updates the current timer value in adm_tmlast and
the time remaining until timeout in adm_tmout. If adm_tmout is less than 0, then
a 1 is returned to indicate a timeout condition. If the timer has not expired, a 0 will
be returned.

adm_handle must be a valid handle returned from ADM_Open.

Return Value
Timer not expired.

Timer expired.

Example
Check 2 timers.

ADMHANDLE adm_handle;
unsigned short timer1;
unsigned short timer2;
long timeout1;
long timeout2;
timeout1 = 10000000L; /* set timeout for 10 seconds */
timer1 = ADM_StartTimer(adm_handle);
/* wait until timer 1 times out */
while(!ADM_CheckTimer(adm_handle, &timer1, &timeout1))
timeout2 = 5000000L; /* set timeout for 5 seconds */
timer2 = ADM_StartTimer(adm_handle);
/* wait until timer 2 times out */
while(!ADM_CheckTimer(adm_handle, &timer2, &timeout2))

See Also
ADM_StartTimer (page 146)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 148 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM API Backplane Functions

ADM_BtOpen

Syntax
int ADM_BtOpen(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
verbose)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures
verbose Switch to enable status messages to the debug port. A 1 will

enable messages and a 0 will disable the messages.

Description
This function opens and initializes the backplane interface.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
Backplane error number If there is an error writing to the backplane during initialization,

the error code is returned.

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int verbose = 1;
ADM_INTERFACE interface;
 interface_ptr = &interface;
ADM_BtOpen(adm_handle, interface_ptr, verbose);

See Also
ADM_BtClose (page 149)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 149 of 318
December 12, 2006

ADM_BtClose

Syntax
int ADM_BtClose(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures

Description
This function closes the backplane interface.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;
 interface_ptr = &interface;
 ADM_BtClose(adm_handle, interface_ptr);

See Also
ADM_BtOpen (page 148)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 150 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_BtNext

Syntax
int ADM_BtNext(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures

Description
This function sets the next write block number.

MVI56 Note
If the write block is equal to the maximum write block, the next write block will be
set to 1. If the maximum is 1, the next write block will be 0. If the maximum is 0,
then the next write block will be –1.

MVI94 Note
If the write block is equal to the maximum write block, the next write block will be
set to 1.

MVI69 Note
If the write block is equal to the maximum write block, the next write block will be
set to 0. If the maximum is 0, the next write block will be –1.

MVI46 Note
This is a null function for the MVI46.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED Function is not supported on this platform

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;
 interface_ptr = &interface;
 ADM_BtNext(adm_handle, interface_ptr);

See Also
ADM_BtOpen (page 148)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 151 of 318
December 12, 2006

ADM_ReadBtCfg

Syntax
int ADM_ReadBtCfg(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
verbose)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures
verbose Switch to enable status messages to the debug port. A 1 will

enable messages and a 0 will disable the messages.

Description
This function reads the module configuration from the processor. The function
will make a call to the function pointed to by interface.process_cfg_ptr.
The user function can be used to perform boundary checking on the
configuration parameters.

MVI69 Note
This is a null function for the MVI69.

MVI94 Note
This function is a null function for the MVI94.

Return Value:
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access, or configuration was

interrupted by operator.
ADM_ERR_NOTSUPPORTED This function is not supported on this platform

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int verbose = 1;
ADM_INTERFACE interface;
 interface_ptr = &interface;
ADM_ReadBtCfg(adm_handle, interface_ptr, verbose);

See Also
ADM_BtOpen (page 148)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 152 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_BtFunc

Syntax
int ADM_BtFunc(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
verbose)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures
verbose Switch to enable status messages to the debug port. A 1 will

enable messages and a 0 will disable the messages.

Description
This function handles the transfer of data across the backplane.

Return Value
0 Block transfer was successful
1 Invalid block number received

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int verbose = 1;
ADM_INTERFACE interface;
 interface_ptr = &interface;
 /* call backplane transfer logic */
 ADM_BtFunc(adm_handle, interface_ptr, verbose);

See Also
ADM_BtOpen (page 148)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 153 of 318
December 12, 2006

ADM_SetStatus

Syntax
int ADM_SetStatus(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
pass_cnt)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to structures
pass_cnt Counter from user code to indicate module health. This counter could be

updated in the main loop of the program.

Description
This function writes status data to the database at the location set by Error/Status
Pointer in the module configuration. The data is written in the following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)

ADM_BLK_ERRORS (structure)

Return Value
ADM_SUCCESS The function has completed successfully.
ADM_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int pass_cnt;
ADM_INTERFACE interface;
 interface_ptr = &interface;
 ADM_SetStatus(adm_handle, interface_ptr, interface.pass_cnt);

See Also
ADM_SetBtStatus (page 154)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 154 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_SetBtStatus

Syntax
int ADM_SetBtStatus(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
pass_cnt)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to structures
pass_cnt Counter from user code to indicate module health. This counter could be

updated in the main loop of the program.

Description
In the MVI56, this function writes status data to the processor at word 202 in the
input image and to the database at location 6670. The data is written in the
following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)

ADM_BLK_ERRORS (structure)

CurErr (port 1, from ADM_PORT structure)

LastErr (port 1, from ADM_PORT structure)

CurErr (port 2, from ADM_PORT structure)

LastErr (port 2, from ADM_PORT structure)

MVI94 Note: This function is a null function for the MVI94.

MVI46 Note: This function is a null function for the MVI46.

Return Value:
ADM_SUCCESS The function has completed successfully.
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED This function is not supported on this platform

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int pass_cnt;
ADM_INTERFACE interface;
 interface_ptr = &interface;
 ADM_SetBtStatus(adm_handle, interface_ptr, interface.pass_cnt);

See Also
ADM_SetStatus (page 153)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 155 of 318
December 12, 2006

ADM LED Functions

ADM_SetLed

Syntax
int ADM_SetLed(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr, int led,
int state);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to the interface structure
led Specifies which of the user LED indicators is being addressed
state Specifies whether the LED will be turned on or off

Description
ADM_SetLed allows an application to turn the user LED indicators on and off.

adm_handle must be a valid handle returned from ADM_Open.

led must be set to ADM_LED_USER1, ADM_LED_USER2 or
ADM_LED_STATUS for User LED 1, User LED 2 or Status LED, respectively.

state must be set to ADM_LED_OK, ADM_LED_FAULT to turn the Status LED
green or red, respectively. For User LED 1 and User LED 2 state must be set to
ADM_LED_OFF or ADM_LED_ON to turn the indicator On or Off, respectively.

Return Value
ADM_SUCCESS The LED has successfully been set.
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_BADPARAM led or state is invalid.

Example
ADMHANDLE adm_handle;
/* Set Status LED OK, turn User LED 1 off and User LED 2 on */
ADM_SetLed(adm_handle, interface_ptr, ADM_LED_STATUS, ADM_LED_OK);
 ADM_SetLed(adm_handle, interface_ptr, ADM_LED_USER1, ADM_LED_OFF);
 ADM_SetLed(adm_handle, interface_ptr, ADM_LED_USER2, ADM_LED_ON);

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 156 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM API Flash Functions

ADM_FileGetString

Syntax
char* ADM_FileGetString(ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
SubSec Subsection denoted by [].
Topic The individual line item under the subsection.

Description
ADM_FileGetString allows an application to fetch a string topic under a
subsection of a configuration file located in flash. This function is valid for MVI94
only.

adm_handle must be a valid handle returned from ADM_Open.

SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:
Pointer to string where the data value starts. If the subsection is [Module] and the
topic is Module Name, then the pointer will point to the first non-space character
after the colon.

Example
Get the data from [Module]
Module Name: MVI56-ADM

The return value will point to the "M" at the start of MVI56-ADM.

ADMHANDLE adm_handle;
char *cptr;
cptr = ADM_FileGetString(adm_handle, "[Module]", "Module Name");

See Also
ADM_FileGetInt (page 157)

ADM_FileGetChar (page 158)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 157 of 318
December 12, 2006

ADM_FileGetInt

Syntax
unsigned int ADM_FileGetInt(ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
SubSec Subsection denoted by [].
Topic The individual line item under the subsection.

Description
ADM_FileGetInt allows an application to fetch an integer topic under a
subsection of a configuration file located in flash. This function is valid for MVI94
only.

adm_handle must be a valid handle returned from ADM_Open.

SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:
Integer data.

[Module]
Maximum Register : 3996 #Maximum number of database registers

If the subsection is [Module] and the topic is Maximum Register, then the value
after the colon will be returned. In this example 3996 will be returned from the
function call.

Example
Get the data from [Module]
Maximum Register: 3996

The return value will be 3996.

ADMHANDLE adm_handle;
module.max_regs = ADM_FileGetInt(adm_handle, "[Module]", "Maximum Register");

See Also
ADM_FileGetString (page 156)

ADM_FileGetChar (page 158)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 158 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_FileGetChar

Syntax
char ADM_FileGetChar(ADMHANDLE adm_handle, char *SubSec, char *Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
SubSec Subsection denoted by [].
Topic The individual line item under the subsection.

Description
ADM_FileGetChar allows an application to fetch a topic under a subsection of a
configuration file located in flash. This function is valid for MVI94 only.

adm_handle must be a valid handle returned from ADM_Open.

SubSec must be a pointer to the subsection.

Topic must be a pointer to the topic.

Return Value:
Character data.

'N' if no character found.

[Port]
Use CTS Line : N #Monitor CTS modem line (Y/N)

If the subsection is [Port] and the topic is Use CTS Line, then the value after the
colon will be returned. In this example N will be returned from the function call.

Example:
Get the data from [Port]
Use CTS Line: N
The return value will be N.

ADMHANDLE adm_handle;
ports[0].CTS = ADM_FileGetChar(adm_handle, "[Port]", "Use CTS Line");

See Also
ADM_FileGetString (page 156)

ADM_FileGetInt (page 157)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 159 of 318
December 12, 2006

ADM_GetVal

Syntax
int ADM_GetVal(ADMHANDLE adm_handle, char *buff);

Parameters
adm_handle Handle returned by previous call to ADM_Open
buff pointer to character buffer

Description
ADM_GetVal converts the first character in buff from ASCII to an integer.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a character buffer.

Return Value
Integer data.

Example:
ADMHANDLE adm_handle;
char *buffer;
int data_val;
data_val = ADM_GetVal(adm_handle, buffer);

See Also
ADM_GetChar (page 160)

ADM_GetStr (page 161)

ADM_Getc (page 163)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 160 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_GetChar

Syntax
char ADM_GetChar(ADMHANDLE adm_handle, char *buff);

Parameters
adm_handle Handle returned by previous call to ADM_Open
buff pointer to character buffer

Description
ADM_GetChar will skip white space and return the first non-white space
character in uppercase.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a character buffer.

Return Value
Character data.

Example
ADMHANDLE adm_handle;
char *buffer;
char data_val;
data_val = ADM_GetChar(adm_handle, buffer);

See Also
ADM_GetVal (page 159)

ADM_GetStr (page 161)

ADM_Getc (page 163)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 161 of 318
December 12, 2006

ADM_GetStr

Syntax
int ADM_GetStr(ADMHANDLE adm_handle, char *buff, char *fbuff);

Parameters
adm_handle Handle returned by previous call to ADM_Open
buff pointer to source string buffer
fbuff pointer to destination string buffer

Description
ADM_GetStr copies characters from the source buffer to the destination buffer.
White space at the start of the string is discarded. The function will copy up to 9
characters until a space is encountered.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a string buffer.

Fbuff must be a pointer to a string buffer.

Return Value
ADM_SUCCESS The string has been successfully copied.
ADM_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
char *src_buffer;
char *dest_buffer;
ADM_GetStr(adm_handle, src_buffer, dest_buffer);

See Also
ADM_GetVal (page 159)

ADM_GetChar (page 160)

ADM_Getc (page 163)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 162 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_SkipToNext

Syntax
char* ADM_SkipToNextl(ADMHANDLE adm_handle, char *buff);

Parameters
adm_handle Handle returned by previous call to ADM_Open
buff pointer to string buffer

Description
ADM_SkipToNext skips characters encountered until white space is reached.
The white space is skipped. A pointer to the next non-white space character is
returned. If no character is found, null is returned.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a string buffer.

Return Value:
Pointer to char at start of next data.

NULL if no character found.

Example
ADMHANDLE adm_handle;
char *buffer;
buffer = ADM_SkipToNext(adm_handle, buffer);

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 163 of 318
December 12, 2006

ADM_Getc

Syntax
char ADM_Getc(ADMHANDLE adm_handle, char *buff);

Parameters
adm_handle Handle returned by previous call to ADM_Open
buff pointer to character buffer

Description
ADM_Getc skips white space and returns the next character.

adm_handle must be a valid handle returned from ADM_Open.

buff must be a pointer to a string buffer.

Return Value
Character data.

Example
ADMHANDLE adm_handle;
char *buffer;
char data_val;
data_val = ADM_Getc(adm_handle, buffer);

See Also
ADM_GetStr (page 161)

ADM_GetVal (page 159)

ADM_GetChar (page 160)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 164 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM API Miscellaneous Functions

ADM_GetVersionInfo

Syntax
int ADM_GetVersionInfo(ADMHANDLE adm_handle, ADMVERSIONINFO *adm_verinfo);

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_verinfo Pointer to structure of type ADMVERSIONINFO

Description
ADM_GetVersionInfo retrieves the current version of the ADM API library. The
information is returned in the structure adm_verinfo. adm_handle must be a valid
handle returned from ADM_Open.

The ADMVERSIONINFO structure is defined as follows:

typedef struct
{
 char APISeries[4];
 short APIRevisionMajor;
 short APIRevisionMinor;
 long APIRun;
}ADMVERSIONINFO;

Return Value
ADM_SUCCESS The version information was read successfully.
ADI_ERR_NOACCESS adm_handle does not have access

Example
ADMHANDLE adm_handle;
ADMVERSIONINFO verinfo;
/* print version of API library */
 ADM_GetVersionInfo(adm_handle, &adm_version);
printf("Revision %d.%d\n", verinfo.APIRevisionMajor, verinfo.APIRevisionMinor);

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 165 of 318
December 12, 2006

ADM_SetConsolePort

Syntax
void ADM_SetConsolePort(int Port);

Parameters
Port Com port to use as the console (COM1=0, COM2=1, COM3=2)

Description
ADM_SetConsolePort sets the specified communication port as the console. This
allows the console to be disabled in the BIOS setup and the application can still
configure the console for use.

MVI46 Note: The MVI46 should have the console disabled in the BIOS setup
in order for the module to avoid faulting the processor on power-on boot. The
console can still be used if the application uses ADM_SetConsolePort to
enable console services and ADM_SetConsoleSpeed to set the baud rate.

Return Value
None

Example
 /* enable console on COM1 */
 ADM_SetConsolePort(COM1);

See Also
ADM_SetConsoleSpeed (page 166)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 166 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_SetConsoleSpeed

Syntax
void ADM_SetConsoleSpeed(int Port, long Speed);

Parameters
Port Com port to use as the console (COM1=0, COM2=1, COM3=2)

Speed Baud rate for console port.
Available settings are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400,
4800, 9600, 19200, 38400, 57600 and 115200.

Description
ADM_SetConsoleSpeed sets the specified communication port to the baud rate
specified.

MVI46 Note: The MVI46 should have the console disabled in the BIOS setup
in order for the module to avoid faulting the processor on power-on boot. The
console can still be used if the application uses ADM_SetConsolePort to
enable console services and ADM_SetConsoleSpeed to set the baud rate.

Return Value
None

Example
 /* set console to 115200 baud */
 ADM_SetConsoleSpeed (COM1, 115200L);

See Also
ADM_SetConsolePort (page 165)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 167 of 318
December 12, 2006

ADM Side-Connect Functions

ADM_ScOpen

Syntax
int ADM_ScOpen(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
verbose)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures
verbose Switch to enable status messages to the debug port. A 1 will

enable messages and a 0 will disable the messages.

Description
This function opens and initializes the side-connect interface.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED Function is not supported on this platform

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int verbose = 1;
ADM_INTERFACE interface;
interface_ptr = &interface;
ADM_ScOpen(adm_handle, interface_ptr, verbose);

See Also
ADM_ScClose (page 168)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 168 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_ScClose

Syntax
int ADM_ScClose(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures.

Description
This function closes the side-connect interface.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access
ADM_ERR_NOTSUPPORTED Function is not supported on this platform

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
ADM_INTERFACE interface;
interface_ptr = &interface;
ADM_ScClose(adm_handle, interface_ptr);

See Also
ADM_ScOpen

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 169 of 318
December 12, 2006

ADM_ReadScFile

Syntax
int ADM_ReadScFile(ADMHANDLE adm_handle, int verbose)

Parameters
adm_handle Handle returned by previous call to ADM_Open
verbose Switch to enable status messages to the debug port. A 1 will

enable messages and a 0 will disable the messages.

Description
This function reads SC_DATA.TXT file from C drive on a compact flash in the
module to select between using the backplane or the side-connect interface.

Return Value
> 4 and < 200 value for the side-connect used (valid value is 5–199).
0 value for the backplane used, value that is not between 5–199,

or if SC_DATA.TXT is not existed. Note: set verbose to 1 to see
message according to this return value.

ADM_ERR_NOACCESS adm_handle does not have access.

Example
ADMHANDLE adm_handle;
int verbose = 1;
ADM_INTERFACE interface;
interface.cfg_file = ADM_ReadSCFile(adm_handle, verbose);

See Also
ADM_ScOpen (page 167)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 170 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_ReadScCfg

Syntax
int ADM_ReadScCfg(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
verbose)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures
verbose Switch to enable status messages to the debug port. A 1 will

enable messages and a 0 will disable the messages.

Description
This function reads the module configuration from the processor. The function
will directly read from the module file name according to what has been set in the
file SC_DATA.txt. The user function can be used to perform boundary checking
on the configuration parameters.

MVI71 Note
This function is used only for the MVI71.

Return Value
ADM_SUCCESS No errors were encountered
ADM_ERR_NOACCESS adm_handle does not have access, or configuration was

interrupted by operator.
ADM_ERR_BADPARAM A parameter is invalid.

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int verbose = 1;
ADM_INTERFACE interface;
interface_ptr = &interface;
if(ADM_ReadScCfg(adm_handle, interface_ptr, 1))
{
printf("ADM_ReadScCfg() failed.");
 return 1;
}

See Also
ADM_ScOpen (page 167)

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 171 of 318
December 12, 2006

ADM_ScScan

Syntax
int ADM_ScScan(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int
verbose)

Parameters
adm_handle Handle returned by previous call to ADM_Open
adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to

structures
verbose Switch to enable status messages to the debug port. A 1 will

enable messages and a 0 will disable the messages.

Description
This function handles the transfer of data across the side-connect.

Return Value
0 Block transfer was successful
1 Invalid block number received

Example
ADMHANDLE adm_handle;
ADM_INTERFACE *interface_ptr;
int verbose = 1;
ADM_INTERFACE interface;
interface_ptr = &interface;
/* call backplane transfer logic */
ADM_ScScan(adm_handle, interface_ptr, verbose);

See Also
ADM_ScOpen (page 167)

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 172 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM API RAM Functions

ADM_EEPROM_ReadConfiguration

Syntax
long ADM_EEPROM_ReadConfiguration(ADMHANDLE adm_handle);

Parameters
adm_handle Handle returned by previous call to ADM_Open

Description
ADM_EEPROM_ReadConfiguration read configuration information from a
configuration file located on the EEPROM.

Return Value
Length of the data read from the configuration file.

Example
 if (!ADM_EEPROM_ReadConfiguration(adm_handle)) //if no configuration data,
return
 {
 printf("ERROR: No configuration return\n");
 return (1);
 }

See Also

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 173 of 318
December 12, 2006

ADM_RAM_Find_Section

Syntax
char huge * ADM_RAM_Find_Section(ADMHANDLE adm_handle, char * SubSec);

Parameters
adm_handle Handle returned by previous call to ADM_Open
SubSec String of Sub-section that you'd like to find in the configuration file.

Description
ADM_RAM_Find_Section tries to find the section passed to the function.

Return Value
Pointer to the location found in the file or NULL if the sub-section is not found.

Example
 if((tptr = ADM_RAM_Find_Section(adm_handle, "[Module]")) != NULL)
 {
 cptr = (char*)ADM_RAM_GetString(tptr, "Module Name");
 if(cptr == NULL)
 strcpy(module.name, "No Module Name");
 else
 {
 strcpy(module.name, cptr);
 }
 }

See Also

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 174 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_RAM_GetString

Syntax
char huge ADM_RAM_GetString (ADMHANDLE adm_handle, char huge * mydata, char *
Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
mydata Pointer return from ADM_RAM_Find_Section.
Topic Pointer to name of a variable.

Description
ADM_RAM_GetString tries to find the Topic name passed to the function in the
file.

Return Value
Pointer to the string found in the file or NULL if the sub-section is not found.

Example
 cptr = (char*)ADM_RAM_GetString(adm_handle, tptr, "Module Name");
 if(cptr == NULL)
 strcpy(module.name, "No Module Name");
 else
 {
 if(strlen(cptr) > 80)
 *(cptr+80) = 0;
 strcpy(module.name, cptr);
 if(module.name[strlen(module.name)-1] < 32)
 module.name[strlen(module.name)-1] = 0;
 }

See Also

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 175 of 318
December 12, 2006

ADM_RAM_GetInt

Syntax
unsigned short ADM_RAM_GetInt(ADMHANDLE adm_handle, char huge * mydata, char *
Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
mydata Pointer return from ADM_RAM_Find_Section.
Topic Pointer to name of a variable.

Description
ADM_RAM_GetInt tries to find the Topic name passed to the function in the file.

Return Value
Value of type Integer found under the Topic name or 0 if the sub-section is not
found.

Example
 module.err_offset = ADM_RAM_GetInt(adm_handle, tptr, "Baud Rate");
 if(module.err_offset < 0 || module.err_offset > module.max_regs-61)
 {
 module.err_offset = -1;
 module.err_freq = 0;
 }
 else
 {
 module.err_freq = 500;
 }

See Also

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 176 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_RAM_GetLong

Syntax
unsigned long ADM_RAM_GetLong (ADMHANDLE adm_handle, char huge * mydata, char *
Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
mydata Pointer return from ADM_RAM_Find_Section.
Topic Pointer to name of a variable.

Description
ADM_RAM_GetLong tries to find the Topic name passed to the function in the
file.

Return Value
Value of a type Long found under the Topic name or 0 if the sub-section is not
found.

Example
 module.err_offset = ADM_RAM_GetLong(adm_handle, tptr, "Baud Rate");
 if(module.err_offset < 0 || module.err_offset > module.max_regs-61)
 {
 module.err_offset = -1;
 module.err_freq = 0;
 }
 else
 {
 module.err_freq = 500;
 }

See Also

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 177 of 318
December 12, 2006

ADM_RAM_GetFloat

Syntax
float ADM_RAM_GetFloat (ADMHANDLE adm_handle, char huge * mydata, char * Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
mydata Pointer return from ADM_RAM_Find_Section.
Topic Pointer to name of a variable.

Description
ADM_RAM_GetFloat tries to find the Topic name passed to the function in the
file.

Return Value
Value of a type Float found under the Topic name or 0 if the sub-section is not
found.

Example
 module.time = ADM_RAM_GetFloat(adm_handle, tptr, "Time");
 if(module.time < 0 || module.time > module.max_regs-61)
 {
 module.time = -1;
 module.err_freq = 0;
 }
 else
 {
 module.err_freq = 500;
 }

See Also

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 178 of 318 ProSoft Technology, Inc.
December 12, 2006

ADM_RAM_GetDouble

Syntax
double ADM_RAM_GetDouble(ADMHANDLE adm_handle, char huge * mydata, char * Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
mydata Pointer return from ADM_RAM_Find_Section.
Topic Pointer to name of a variable.

Description
ADM_RAM_GetDouble tries to find the Topic name passed to the function in the
file.

Return Value
Value of a type Double found under the Topic name or 0 if the sub-section is not
found.

Example
 module.time = ADM_RAM_GetDouble(adm_handle, tptr, "Time");
 if(module.time < 0 || module.time > module.max_regs-61)
 {
 module.time = -1;
 module.err_freq = 0;
 }
 else
 {
 module.err_freq = 500;
 }

See Also

Application Development Function Library: ADM API MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 179 of 318
December 12, 2006

ADM_RAM_GetChar

Syntax
unsigned char ADM_RAM_GetChar (ADMHANDLE adm_handle, char huge * mydata, char *
Topic);

Parameters
adm_handle Handle returned by previous call to ADM_Open
mydata Pointer return from ADM_RAM_Find_Section.
Topic Pointer to name of a variable.

Description
ADM_RAM_GetChar tries to find the Topic name passed to the function in the
file.

Return Value
Character found under the Topic name or ' ' if the sub-section is not found.

Example
 module.enable = ADM_RAM_GetChar(adm_handle, tptr, "Enable");
 if(module.enable == ' ')
 {
 module.time = -1;
 module.err_freq = 0;
 }
 else
 {
 module.err_freq = 500;
 }

See Also

MVI-ADM ♦ 'C' Programmable Application Development Function Library: ADM API
Application Development Module

Page 180 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 181 of 318
December 12, 2006

8 Backplane API Functions

In This Chapter

 Backplane API Initialization Functions 183

 Backplane API Configuration Functions............................... 185

 Backplane API Synchronization Functions........................... 189

 Backplane API Direct I/O Access ... 193

 Backplane API Messaging Functions................................... 195

 Backplane API Miscellaneous Functions 199

 Platform Specific Functions.. 209

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in C
format.

The API library routines are categorized according to functionality as follows:

Initialization
MVIbp_Open

MVIbp_Close

Configuration
MVIbp_GetIOConfig

MVIbp_SetIOConfig

Synchronization
MVIbp_WaitForInputScan

MVIbp_WaitForOutputScan

Direct I/O Access
MVIbp_ReadOutputImage

MVIbp_WriteInputImage

Messaging
MVIbp_ReceiveMessage

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 182 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_SendMessage

Miscellaneous
MVIbp_GetVersionInfo

MVIbp_ErrorString

MVIbp_SetUserLED

MVIbp_SetModuleStatus

MVIbp_GetSetupMode

MVIbp_GetConsoleMode

MVIbp_SetConsoleMode

MVIbp_GetModuleInfo

MVIbp_GetProcessorStatus

MVIbp_Sleep

Platform Specific
MVIbp_WriteModuleFile

MVIbp_ReadModuleFile

MVIbp_SetModuleInterrupt

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 183 of 318
December 12, 2006

Backplane API Initialization Functions

MVIbp_Open

Syntax
int MVIbp_Open(MVI_HANDLE *handle);

Parameters
handle Pointer to variable of type MVI_HANDLE

Description
MVIbp_Open acquires access to the API and sets handle to a unique ID that the
application uses in subsequent functions. This function must be called before any
of the other API functions can be used.

IMPORTANT: After the API has been opened, MVIbp_Close should always be
called before exiting the application.

Return Value
MVI_SUCCESS API was opened successfully
MVI_ERR_REOPEN API is already open
MVI_ERR_NODEVICE Backplane driver could not be accessed

Note: MVI_ERR_NODEVICE will be returned if the backplane device driver is
not loaded.

Example
MVI_HANDLE Handle;
if (MVIbp_Open(&Handle) != MVI_SUCCESS) {
 printf("Open failed!\n");
} else {
 printf("Open succeeded\n");
}

See Also
MVIbp_Close (page 184)

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 184 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_Close

Syntax
int MVIbp_Close(MVI_HANDLE handle);

Parameters
handle Handle returned by previous call to MVIbp_Open

Description
This function is used by an application to release control of the API.

handle must be a valid handle returned from MVIbp_Open.

IMPORTANT: After the API has been opened, this function should always be
called before exiting the application.

Return Value
MVI_SUCCESS API was closed successfully
MVI_ERR_NOACCESS handle does not have access

Example
MVI_HANDLE Handle;
MVIbp_Close(Handle);

See Also
MVIbp_Open (page 183)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 185 of 318
December 12, 2006

Backplane API Configuration Functions

MVIbp_GetIOConfig

Syntax
int MVIbp_GetIOConfig(MVI_HANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters
handle Handle returned by previous call to MVIbp_Open
ioconfig Pointer to MVIBPIOCONFIG structure to receive configuration

information

Description
This function obtains the I/O configuration of the MVI module.

handle must be a valid handle returned from MVIbp_Open.

The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG
{
 WORD TotalInputSize; // Size of entire input image in words
 WORD TotalOutputSize; // Size of entire output image in words
 WORD DirectInputSize; // Input words available for direct access
 WORD DirectOutputSize; // Output words available for direct access
 WORD MsgRcvBufSize; // Max size in words for received messages
 WORD MsgSndBufSize; // Max size in words for sent messages
} MVIBPIOCONFIG;

The sizes in words of the module's input and output images are returned in the
MVIBPIOCONFIG structure pointed to by ioconfig. The TotalInputSize and
TotalOutputSize members are set equal to the size of the entire input or output
image, respectively. The DirectInputSize and DirectOutputSize members are set
equal to the number of words of the respective image that is available for direct
access via the MVIbp_WriteInputImage or MVIbpReadOutputImage functions. By
default, the direct and total sizes are equal. Refer to the MVIbp_SetIOConfig
function for more information.

The MsgRcvBufSize and MsgSndBufSize members indicate the maximum size in
words for received or sent messages, respectively. By default, these values are
both zero, indicating that messaging is disabled. Refer to the MVIbp_SetIOConfig
function for more information.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 186 of 318 ProSoft Technology, Inc.
December 12, 2006

Example
MVI_HANDLE handle;
MVIBPIOCONFIG ioconfig;
MVIbp_GetIOConfig(handle, &ioconfig);
printf("%d words of input image available\n", ioconfig.DirectInputSize);
printf("%d words of output image available\n", ioconfig.DirectOutputSize);

See Also
MVIbp_SetIOConfig (page 187)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 187 of 318
December 12, 2006

MVIbp_SetIOConfig

Syntax
int MVIbp_SetIOConfig(MVI_HANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters
handle Handle returned by previous call to MVIbp_Open
ioconfig Pointer to MVIBPIOCONFIG structure which contains

configuration information

Description
This function defines the portion of the module's I/O images that will be used for
direct I/O access, and to enable messaging.

handle must be a valid handle returned from MVIbp_Open.

By default, all of the module's I/O image is available for direct I/O access, and
messaging is disabled. The MVIbp_SetIOConfig may be used to limit the amount
of I/O image available for direct access to only that which the application expects
to use. Attempts to access I/O outside of the range defined by this function will
result in an error.

If the application is to use the messaging functions (MVIbp_SendMessage and
MVIbp_ReceiveMessage), MVIbp_SetIOConfig must be called to enable
messaging and setup the maximum message size that will be allowed. The
message size is expressed in words.

The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG
{
 WORD TotalInputSize; // Size of entire input image in words
 WORD TotalOutputSize; // Size of entire output image in words
 WORD DirectInputSize; // Input words available for direct access
 WORD DirectOutputSize; // Output words available for direct access
 WORD MsgRcvBufSize; // Max size in words for received messages
 WORD MsgSndBufSize; // Max size in words for sent messages
} MVIBPIOCONFIG;

The TotalInputSize and TotalOutputSize members are ignored by the API, since
the total I/O image sizes cannot be changed by the application. The
DirectInputSize and DirectOutputSize members should be set equal to the
number of words of the respective image that will be used for direct access via
the MVIbp_WriteInputImage or MVIbpReadOutputImage functions.

To enable the module to receive messages from the control processor via the
MVIbp_ReceiveMessage function, the MsgRcvBufSize member should be set to
the maximum message size expected. Likewise, to enable the module to send
messages to the control processor via the MVIbp_SendMessage function, the
MsgSndBufSize member should be set to the maximum message size expected.
The message sizes are expressed in words. The combined maximum message
size is 2048 words. If the sum of MsgRcvBufSize and MsgSndBufSize exceeds
2048, the error MVI_ERR_BADCONFIG will be returned.

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 188 of 318 ProSoft Technology, Inc.
December 12, 2006

Notes: If messaging is enabled, a portion of the input and output images must
be reserved for use by the messaging protocol. One word of input and one
word of output are required for messaging control. At least one additional word
of input and/or output is required for messaging data, depending upon the
messaging direction(s) enabled. To receive messages from the control
processor, at least one word of output image is required for messaging data.
To send messages to the control processor, at least one word of input image is
required for messaging data. Therefore, for bi-directional messaging, at least
two words of input and two words of output image must be left unallocated
when the direct I/O sizes are specified. If messaging is enabled and insufficient
I/O image is available for messaging, the error MVI_ERR_BADCONFIG will be
returned.

For best messaging performance, set the direct I/O sizes as small as possible.

MVI56 Note MVIbp_SetIOConfig is a null function in the MVI56 module. The
I/O image and message maximum sizes are configured by the controller and
cannot be changed by the MVI application. This function will always return
MVI_ERR_NOTSUPPORTED on the MVI56 module.

MVI94, MVI46 Notes: This function defines the portion of the module's I/O
images that will be used for direct I/O access, and to enable messaging.

MVI46 Notes: Messaging requires 1 input image word and 1 output image
word for each direction of messaging. If both sending and receiving messages
are enabled, then 2 words total are required in the input and output images.
These words are used for handshaking between the module and the
Controller. To enable messaging, the DirectInputSize and/or DirectOutputSize
values must be 1 or 2 words less than the TotalInputSize and/or
TotalOutputSize.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADCONFIG Configuration is not valid
MVI46_ERR_INVALIDCLASS Invalid Class (only for MVI46)
MVI_ERR_NOTSUPPORTED MVI56 always returns this error (only for MVI56)

Example
MVI_HANDLE handle;
MVIBPIOCONFIG ioconfig;
ioconfig.DirectInputSize = 2; // 2 words used for input
ioconfig.DirectOutputSize = 1; // 1 word used for output
MsgSndBufSize = 256; // Enable 256 word (max) messages to processor
MsgRcvBufSize = 0; // Received messages not enabled
if (MVI_SUCCESS != MVIbp_SetIOConfig(handle, &ioconfig))
 printf("Error: I/O configuration failed\n");

See Also
MVIbp_GetIOConfig (page 185)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 189 of 318
December 12, 2006

Backplane API Synchronization Functions

MVIbp_WaitForInputScan

Syntax
int MVIbp_WaitForInputScan(MVI_HANDLE handle, WORD timeout);

Parameters
handle Handle returned by previous call to MVIbp_Open
timeout Maximum number of milliseconds to wait for scan

Description
MVIbp_WaitForInputScan allows an application to synchronize with the scan of
the module's input image. This function will return immediately after the input
image has been read. This function may also be used by a module application to
determine if the Flex I/O bus is active.

handle must be a valid handle returned from MVIbp_Open.

timeout specifies the number of milliseconds that the function will wait for the
input scan to occur.

Notes: There is no distinction in the MVI94 module between input and output
scans. Therefore, the MVIbp_WaitForInputScan and
MVIbp_WaitForOutputScan functions will perform exactly the same function
and are interchangeable.

The scan time of the Flex I/O bus varies according to the number of modules
installed. If the MVI module is the only module present, then it will be scanned
approximately every 200 microseconds. The maximum scan time for a full rack
of 8 modules is approximately 1.6 milliseconds. Note that the scan time
referred to here is not the PLC scan time, but the Flex I/O bus scan time. The
PLC scan time will depend upon which Flex adapter is used and how it is
configured.

MVI56 Note: This function is not supported for the MVI56 and will return
MVI_ERR_NOTSUPPORTED.

MVI94 Note: There is no distinction in the MVI94 module between input and
output scans. Therefore, the MVIbp_WaitForInputScan and
MVIbp_WaitForOutputScan functions will perform exactly the same function
and are interchangeable.

Return Value
MVI_SUCCESS The input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_TIMEOUT The timeout expired before an input scan occurred.

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 190 of 318 ProSoft Technology, Inc.
December 12, 2006

Example
MVI_HANDLE Handle;
/* Wait here until input scan, 50ms timeout */
rc = MVIbp_WaitForInputScan(Handle, 50);
if (rc == MVI_ERR_TIMEOUT)
 printf("Input scan did not occur within 50 milliseconds\n");
else
 printf("Input scan has occurred\n");

See Also
MVIbp_WaitForOutputScan (page 191)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 191 of 318
December 12, 2006

MVIbp_WaitForOutputScan

Syntax
int MVIbp_WaitForOutputScan(MVI_HANDLE handle, WORD timeout);

Parameters
handle Handle returned by previous call to MVIbp_Open
timeout Maximum number of milliseconds to wait for scan

Description
MVIbp_WaitForInputScan allows an application to synchronize with the scan of
the module's output image. This function will return immediately after the
module's output image has been written. . This function may also be used by a
module application to determine if the Flex I/O bus is active.

handle must be a valid handle returned from MVIbp_Open. timeout specifies the
number of milliseconds that the function will wait for the output scan to occur.

Notes: There is no distinction in the MVI94 module between input and output
scans. Therefore, the MVIbp_WaitForInputScan and
MVIbp_WaitForOutputScan functions will perform exactly the same function
and are interchangeable.

The scan time of the Flex I/O bus varies according to the number of modules
installed. If the MVI module is the only module present, then it will be scanned
approximately every 200 microseconds. The maximum scan time for a full rack
of 8 modules is approximately 1.6 milliseconds. Note that the scan time
referred to here is not the PLC scan time, but the Flex I/O bus scan time. The
PLC scan time will depend upon which Flex adapter is used and how it is
configured.

MVI56 Note: This function is not supported for the MVI56 and will return
MVI_ERR_NOTSUPPORTED.

MVI94 Note: There is no distinction in the MVI94 module between input and
output scans. Therefore, the MVIbp_WaitForInputScan and
MVIbp_WaitForOutputScan functions will perform exactly the same function
and are interchangeable.

Return Value
MVI_SUCCESS The output scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_TIMEOUT The timeout expired before an output scan occurred.
MVI_ERR_BADCONFIG the data connection is not open. (MVI56 only)

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 192 of 318 ProSoft Technology, Inc.
December 12, 2006

Example
MVI_HANDLE Handle;
int rc;
/* Wait here until output scan, 50ms timeout */
rc = MVIbp_WaitForOutputScan(Handle, 50);
if (rc == MVI_ERR_TIMEOUT)
 printf("Output scan did not occur within 50ms\n");
else
 printf("Output scan has occurred\n");

See Also
MVIbp_WaitForInputScan (page 189)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 193 of 318
December 12, 2006

Backplane API Direct I/O Access

MVIbp_ReadOutputImage

Syntax
int MVIbp_ReadOutputImage(MVI_HANDLE handle, WORD *buffer, WORD offset, WORD
length);

Parameters
handle Handle returned by previous call to MVIbp_Open
buffer Pointer to buffer to receive data from output image
offset Word offset into output image at which to begin reading
length Number of words to read

Description
MVIbp_ReadOutputImage reads from the module's output image.

handle must be a valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the output image to begin reading, and length
specifies the number of words to read. The error MVI_ERR_BADPARAM will be
returned if an attempt is made to access the output image beyond the range
configured for direct I/O. Refer to the MVIbp_SetIOConfig function for more
information.

The output image is written by the control processor and read by the module.

Return Value
MVI_SUCCESS The data was read from the output image successfully.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM Parameter contains invalid value
MVI_ERR_BADCONFIG the data connection is not open. (MVI46 and MVI56 only)

Example
MVI_HANDLE Handle;
WORD buffer[8];
int rc;
/* Read 8 words of data from the output image, starting with word 2 */
rc = MVIbp_ReadOutputImage(Handle, buffer, 2, 8);
if (rc != MVI_SUCCESS)
 printf("ERROR: MVIbp_ReadOutputImage failed");

See Also
MVIbp_SetIOConfig (page 187)

MVIbp_WriteInputImage (page 194)

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 194 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_WriteInputImage

Syntax
int MVIbp_WriteInputImage(MVI_HANDLE handle, WORD *buffer, WORD offset, WORD
length);

Parameters
handle Handle returned by previous call to MVIbp_Open
buffer Pointer to buffer of data to be written to input image
offset Word offset into input image at which to begin writing
length Number of words to write

Description
MVIbp_WriteInputImage writes to the module's input image.

handle must be a valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the input image to begin writing, and length specifies
the number of words to write. The error MVI_ERR_BADPARAM will be returned
if an attempt is made to access the input image beyond the range configured for
direct I/O. If this error is returned, no data will be written to the input image. Refer
to the MVIbp_SetIOConfig function for more information.

The input image is written by the module and read by the control processor.

Return Value
MVI_SUCCESS The data was written to the input image successfully.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM Parameter contains invalid value
MVI_ERR_BADCONFIG the data connection is not open. (MVI46 and MVI56 only)

Example
MVI_HANDLE Handle;
WORD buffer[2];
int rc;
/* Write 2 words of data to the input image, starting with word 0 */
rc = MVIbp_WriteInputImage(Handle, buffer, 0, 2);
if (rc != MVI_SUCCESS)
 printf("ERROR: MVIbp_WriteInputImage failed");

See Also
MVIbp_SetIOConfig (page 187)

MVIbp_ReadOutputImage (page 193)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 195 of 318
December 12, 2006

Backplane API Messaging Functions

MVIbp_ReceiveMessage

Syntax
int MVIbp_ReceiveMessage(MVI_HANDLE handle, WORD *buffer, WORD *length, WORD
reserved, WORD timeout);

Parameters
handle Handle returned by previous call to MVIbp_Open
buffer Pointer to buffer to receive message data from processor
length Pointer to a variable containing the maximum message length in words.

When this function is called, this should be set to the size of the
indicated buffer. Upon successful return, this variable will contain the
actual received message length.

reserved Must be set to 0
timeout Maximum number of milliseconds to wait for message

Description
This function retrieves a message sent from the control processor.

handle must be a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the maximum message size in
words to be received.

buffer must point to a buffer of at least length words in size. Upon successful
return, length will contain the actual length of the message received.

If length exceeds the maximum message size specified by the value
MsgRcvBufSize (refer to the MVIbp_SetIOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used for the MVI94 module and must be set to zero.
MVI_ERR_BADPARAM will be returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait for a
message. To poll for a message without waiting, set timeout to zero. If no
message has been received, MVI_ERR_TIMEOUT will be returned.

Before this function can be used, messaging must be enabled with the
MVIbp_SetIOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

If the message received from the control processor is larger than length, the
message will be truncated to length words and MVI_ERR_MSGTOOBIG will be
returned.

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 196 of 318 ProSoft Technology, Inc.
December 12, 2006

MVI46 Notes: The Controller passes Message data to the MVI46 via the
module's M0 module file. This requires the MVI46 to be configured as a Class
4 module.

The MVIbp_ReceiveMessage function retrieves data written to the MVI module
by the processor via a MSG instruction. The MSG instruction must be
configured as shown in table A. The MSG instruction implements a 'put
attribute' command to the MVI module's assembly object. The MSG instruction
will fail if a message has already been written to the MVI module but
application has not yet retrieved the message via MVIbp_ReceiveMessage.

MVI69 Note: At this time, messaging is not supported on the MVI69.

Receive MSG Instruction Configuration
Field Value Description
Message Type CIP Generic Specify CIP message type
Service Code 10 (Hex) Set_Attribute_Single service
Object Type 4 Assembly object class code
Object ID 8 Output message instance number
Object Attribute 3 Data attribute
Num Elements Application dependent Size of message to be written
Path Application dependent Path to MVI module

Return Value
MVI_SUCCESS A message has been received.
MVI_ERR_NOACCESS handle does not have access.
MVI_ERR_TIMEOUT The timeout occurred before a message was received.
MVI_ERR_BADPARAM A parameter is invalid.
MVI_ERR_BADCONFIG Receive messaging is not enabled.
MVI_ERR_MSGTOOBIG The received message is too big for the buffer.

Example
MVI_HANDLE Handle;
int rc;
WORD buffer[256];
WORD length;
length = 256; // maximum message size that can be received
// Wait up to 5 seconds for a message
rc = MVIbp_ReceiveMessage(Handle, buffer, &length, 0, 5000);
if (rc == MVI_SUCCESS)
 printf("Message received. Length is %d words\n", length);

See Also
MVIbp_SetIOConfig (page 187)

MVIbp_SendMessage (page 197)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 197 of 318
December 12, 2006

MVIbp_SendMessage

Syntax
int MVIbp_SendMessage(MVI_HANDLE handle, WORD *buffer, WORD length, WORD
reserved, WORD timeout);

Parameters
handle Handle returned by previous call to MVIbp_Open
buffer Pointer to buffer of data to send to processor
length The length in words of the message to send.
reserved Must be set to 0
timeout Maximum number of milliseconds to wait for processor to read message

Description
This function sends a message to the control processor.

handle must be a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the message size in words.
buffer must point to a buffer of at least length words in size.

If length exceeds the maximum message size specified by the value
MsgSndBufSize (refer to the MVIbp_SetIOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used for the MVI94 module and must be set to zero.
MVI_ERR_BADPARAM will be returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait for the
message to transfer to the control processor. If the timeout occurs before the
message has been transferred, MVI_ERR_TIMEOUT will be returned.

If timeout is 0, the function will return immediately. If the message was
successfully queued to be sent, MVI_SUCCESS will be returned. If the message
was not queued (for example, a previous message is being sent),
MVI_ERR_TIMEOUT will be returned and the message must be re-tried at a later
time. A timeout of 0 allows an application to perform other tasks while the
message is being transmitted.

Before this function can be used, messaging must be enabled with the
MVIbp_SetIOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

MVI46 Notes The MVI46 passed Message data to the Controller via the M1
module file. This requires the MVI46 to be configured as a Class 4 module.

The MVIbp_SendMessage function copies the message data into a buffer to
be retrieved by the processor via a MSG instruction. The MSG instruction must
be configured as shown in table B. The MSG instruction implements a "get
attribute" command to the MVI module's assembly object. The MSG instruction

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 198 of 318 ProSoft Technology, Inc.
December 12, 2006

will fail if a message has not already been written by the application via
MVIbp_SendMessage.

MVI69 Note: At this time, messaging is not supported on the MVI69.

Send MSG Instruction Configuration
Field Value Description
Message Type CIP Generic Specify CIP message type
Service Code OE (Hex) Get_Attribute_Single service
Object Type 4 Assembly object class code
Object ID 7 Output message instance number
Object Attribute 3 Data attribute
Num Elements Application dependent Size of message to be written
Path Application dependent Path to MVI module

Return Value
MVI_SUCCESS A message has been received.
MVI_ERR_NOACCESS handle does not have access.
MVI_ERR_TIMEOUT The timeout occurred before the message was transferred.
MVI_ERR_BADPARAM A parameter is invalid.
MVI_ERR_BADCONFIG Send messaging is not enabled.

Example
MVI_HANDLE Handle;
int rc;
WORD buffer[256];
// Wait 5 seconds for the message to be sent
rc = MVIbp_SendMessage(Handle, buffer, 256, 5000);
if (rc == MVI_SUCCESS)
 printf("Message sent\n");

See Also
MVIbp_SetIOConfig (page 187)

MVIbp_ReceiveMessage (page 195)

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 199 of 318
December 12, 2006

Backplane API Miscellaneous Functions

MVIbp_GetVersionInfo

Syntax
int MVIbp_GetVersionInfo(MVI_HANDLE handle, MVIBPVERSIONINFO *verinfo);

Parameters
handle Handle returned by previous call to MVIbp_Open
verinfo Pointer to structure of type MVIBPVERSIONINFO

Description
MVIbp_GetVersionInfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.

handle must be a valid handle returned from MVIbp_Open.

The MVIBPVERSIONINFO structure is defined as follows:

typedef struct tagMVIBPVERSIONINFO
{
 WORD APISeries; /* API series */
 WORD APIRevision; /* API revision */
 WORD BPDDSeries;/* Backplane device driver series */
 WORD BPDDRevision; /* Backplane device driver revision */
 BYTE Reserved[8]; /* Reserved */ (MVI94 Only)
} MVIBPVERSIONINFO;

Return Value
MVI_SUCCESS The version information was read successfully.
MVI_ERR_NOACCESS handle does not have access

Example
MVI_HANDLE Handle;
MVIBPVERSIONINFO verinfo;
/* print version of API library */
MVIbp_GetVersionInfo(Handle,&verinfo);
printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);
printf("Driver Series %d, Rev %d\n", verinfo.BPDDSeries, verinfo.BPDDRevision);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 200 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_GetModuleInfo

Syntax
int MVIbp_GetModuleInfo(MVI_HANDLE handle, MVIBPMODULEINFO *modinfo);

Parameters
handle Handle returned by previous call to MVIbp_Open
modinfo Pointer to structure of type MVIBPMODULEINFO

Description
MVIbp_GetModuleInfo retrieves identity information for the module. The
information is returned in the structure modinfo.

handle must be a valid handle returned from MVIbp_Open.

The MVIBPMODULEINFO structure is defined as follows:

typedef struct tagMVIBPMODULEINFO
{
 WORD VendorID; // Reserved
 WORD DeviceType; // Reserved
 WORD ProductCode; // Device model code
 BYTE MajorRevision; // Device major revision
 BYTE MinorRevision; // Device minor revision
 DWORD SerialNo; // Serial number
 BYTE Name[32]; // Device name (string)
 BYTE Month; // Date of manufacture - month
 BYTE Day; // Date of manufacture - day
 WORD Year; // Date of manufacture - year
} MVIBPMODULEINFO;

Return Value
MVI_SUCCESS The version information was read successfully.
MVI_ERR_NOACCESS handle does not have access

Example
MVI_HANDLE Handle;
MVIBPMODULEINFO modinfo;
/* print module name */
MVIbp_GetModuleInfo(Handle,&modinfo);
printf("Name is %s\n", modinfo.Name);

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 201 of 318
December 12, 2006

MVIbp_ErrorStr

Syntax
int MVIbp_ErrorStr(int errcode, char *buf);

Parameters
errcode Error code returned from an API function
buf Pointer to user buffer to receive message

Description
MVIbp_ErrorStr returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value
MVI_SUCCESS Message returned in buf
MVI_ERR_BADPARAM Unknown error code

Example
char buf[80];
int rc;
/* print error message */
MVIbp_ErrorStr(rc, buf);
printf("Error: %s", buf);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 202 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_SetUserLED

Syntax
int MVIbp_SetUserLED(MVI_HANDLE handle, int lednum, int ledstate);

Parameters
handle Handle returned by previous call to MVIbp_Open
lednum Specifies which of the user LED indicators is being addressed

Description
MVIbp_SetUserLED allows an application to turn the user LED indicators on and
off.

handle must be a valid handle returned from MVIbp_Open.

lednum must be set to MVI_LED_USER1 or MVI_LED_USER2 to select User
LED 1 or User LED 2, respectively.

ledstate must be set to MVI_LED_STATE_ON or MVI_LED_STATE_OFF to turn
the indicator On or Off, respectively.

Return Value
MVI_SUCCESS The input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example
MVI_HANDLE Handle;
/* Turn User LED 1 on and User LED 2 off */
MVIbp_SetUserLED(Handle, MVI_LED_USER1, MVI_LED_STATE_ON);
MVIbp_SetUserLED(Handle, MVI_LED_USER2, MVI_LED_STATE_OFF);

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 203 of 318
December 12, 2006

MVIbp_SetModuleStatus

Syntax
int MVIbp_SetModuleStatus(MVI_HANDLE handle, int status);

Parameters
handle Handle returned by previous call to MVIbp_Open
status Module status, OK or Faulted

Description
MVIbp_SetModuleStatus allows an application set the state of the module to OK
or Faulted.

handle must be a valid handle returned from MVIbp_Open.

state must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the state is Ok, the module status LED
indicator will be set to Green. If the state is Faulted, the status indicator will be
set to Red.

Note: The MVI hardware can set the OK LED to Red if any of the following
occurs:

 an unrecoverable fault
 hardware failure
 backplane driver failure

Neither the MVI hardware nor the Set ModuleStatus call has priority. Either can
overwrite the other.

Return Value
MVI_SUCCESS The input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example
MVI_HANDLE Handle;
/* Set the Status indicator to Red */
MVIbp_SetModuleStatus(Handle, MVI_MODULE_STATUS_FAULTED);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 204 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_GetConsoleMode

Syntax
int MVIbp_GetConsoleMode(MVI_HANDLE handle, int *mode, int *baud);

Parameters
handle Handle returned by previous call to MVIbp_Open
mode Pointer to an integer that is set to 1 if the console is installed, or

0 if the console is not enabled.
baud Pointer to an integer that is set to the console baud rate index if

the console is enabled.

Description
This function queries the state of the console.

handle must be a valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the console is enabled, or 0 if the console is disabled.

baud is a pointer to an integer. When this function returns, baud will be set to the
console's baud index value if the console is enabled. baud is not set if the
console is disabled.

It may be useful for an application to detect that the console is enabled and allow
user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access

Example
MVI_HANDLE handle;
int mode;
MVIbp_GetConsoleMode(handle, &mode);
if (mode)
 // Console is enabled - allow user interaction
else
 // Console is not available - normal operation

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 205 of 318
December 12, 2006

MVIbp_GetSetupMode

Syntax
int MVIbp_GetSetupMode(MVI_HANDLE handle, int *mode);

Parameters
handle Handle returned by previous call to MVIbp_Open
mode Pointer to an integer that is set to 1 if the Setup Jumper is

installed, or 0 if the Setup Jumper is not installed.

Description
This function queries the state of the Setup Jumper.

handle must be a valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode. It
may be useful for an application to detect Setup Mode and perform special
configuration or diagnostic functions.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access

Example
MVI_HANDLE handle;
int mode;
MVIbp_GetSetupMode(handle, &mode);
if (mode)
 // Setup Jumper is installed - perform configuration/diagnostic
else
 // Not in Setup Mode - normal operation

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 206 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_GetProcessorStatus

Syntax
int MVIbp_GetProcessorStatus(MVIHANDLE handle, WORD *pstatus);

Parameters
handle Handle returned by previous call to MVIbp_Open
pstatus Pointer to a word that will be updated with the current processor

status.

Description
This function queries the state of the processor.

handle must be a valid handle returned from MVIbp_Open.

pstatus is a pointer to an word. When this function returns, certain bits in this
word will be set to indicate the current processor status, as shown in the
following table.

Processor Status Bits
Bit Name Description
0 MVI_PROCESSOR_STATUS_RUN Set if processor is in Run Mode
1 MVI_DATA_CONNECTION_OPEN Set if data connection is open (MVI56 only)
2 MVI_STATUS_CONNECTION_OPEN Set if status connection is open (MVI56 only)

MVI56 Note: The data connection must be established in order to receive the
processor status. Therefore, if the data connection is not established, this
function will return MVI_ERR_BADCONFIG and pstatus will be zero.

MVI94 Note: This function is not supported on the MVI94 and will always
return MVI_ERR_NOTSUPPORTED.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADCONFIG The data connection is not open. (MVI56 only)

Example
MVIHANDLE handle;
WORD status;
MVIbp_GetProcessorStatus(handle, &status);
if (status & MVI_PROCESSOR_STATUS_RUN)
// Processor is in Run Mode
else
// Processor is not in Run Mode or there is no connection

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 207 of 318
December 12, 2006

MVIbp_Sleep

Syntax
int MVIbp_Sleep(MVIHANDLE handle, WORD msdelay);

Parameters
handle Handle returned by previous call to MVIbp_Open
msdelay Time in milliseconds to suspend task

Description
MVIbp_Sleep suspends the calling thread for at least msdelay milliseconds. The
actual delay may be several milliseconds longer than msdelay, due to system
overhead and the system timer granularity (5ms).

Return Value
MVI_SUCCESS Success
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
int timeout=200;
// Simple timeout loop
while(timeout--)
{
// Poll for data, etc.
// Break if condition is met (no timeout)
// Else sleep a bit and try again
MVIbp_Sleep(10);
}

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 208 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_SetConsoleMode

Syntax
int MVIbp_SetConsoleMode(MVIHANDLE handle, int mode, int baud);

Parameters
handle Handle returned by previous call to MVIbp_Open
mode An integer that is set to 1 if the console is to be enabled, or 0 if

the console is not enabled.
baud An integer that is set to the desired console baud rate index if

the console is enabled.

Description
This function sets the state of the console.

handle must be a valid handle returned from MVIbp_Open.

mode is an integer that contains the desired state of the console. mode should
be set to 1 if the console is to be enabled, or 0 if the console is to be disabled.

baud is an integer that contains the desired baud rate of the console. baud
should be set to the console's baud index value if the console is enabled. The
baud index values are shown in Table 3.

The state of the console is normally configured with the BIOS setup menu and is
saved in battery-backed memory. If the module is removed from power for a
period of time and the battery discharges, then the state information is lost. This
function allows an application to store a desired console state into the battery-
backed memory. Note that the new console state does not take effect until the
MVI46 is rebooted.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
int mode,baud;
mode = 1; // enable the console
baud = 8; // set baud rate to 19200 baud
MVIbp_SetConsoleMode(handle, mode, baud);

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 209 of 318
December 12, 2006

Platform Specific Functions

MVIbp_ReadModuleFile (MVI46)

Syntax
int MVIbp_ReadModuleFile(MVIHANDLE handle, BYTE filetype, WORD *filedata, WORD
offset, WORD len);

Parameters
handle Handle returned by previous call to MVIbp_Open
filetype Type of module file to read, M0 or M1
filedata Pointer to buffer to receive data
offset Word offset into the module file to begin reading
len Number of words to read

Description
MVIbp_ReadModuleFile reads data from the M0 or M1 file of the module. This
function can only be used when the module is configured as a Class 4 module.

handle must be a valid handle returned from MVIbp_Open.

The type of file to be read is determined by the value in filetype, which should be
set to FILTYP_M0 or FILTYP_M1.

This function reads len words starting at word offset of the module file and copies
the data to the buffer pointed to by filedata, which must be len words in size. The
error MVI_ERR_BADPARAM will be returned if an attempt is made to access the
module file beyond the range configured for module file. If this error is returned,
no data will be read from the module file.

Note: This function provides data integrity in blocks of 64 Words as the data is
copied.

Note: Because Messaging uses module files, MVIbp_ReadModuleFile should
not be used while Messaging is used.

Note: At this time, messaging is not supported on the MVI69.

Return Value
MVI_SUCCESS The module file data was read successfully.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM Invalid parameter
MVI46_ERR_INVALIDCLASS The module is not Class 4

Example
MVIHANDLE Handle;
WORD buffer[10];
/* Read the first 10 words of the M1 file */
MVIbp_ReadModuleFile(Handle,FILTYP_M1, &buffer[0], 0, 10);

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 210 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIbp_WriteModuleFile (MVI46)

Syntax
int MVIbp_WriteModuleFile(MVIHANDLE handle, BYTE filetype, WORD *filedata, WORD
offset, WORD len);

Parameters
handle Handle returned by previous call to MVIbp_Open
filetype Type of module file to write, M0 or M1
filedata Pointer to buffer of data to write to the module file
offset Word offset into the module file to begin writing
len Number of words to write

Description
MVIbp_WriteModuleFile writes data to the M0 or M1 file of the module. This
function can only be used when the module is configured as a Class 4 module.

handle must be a valid handle returned from MVIbp_Open.

The type of file to be written is determined by the value in filetype, which should
be set to FILTYP_M0 or FILTYP_M1.

This function writes len words from the buffer pointed to by filedata to the module
file starting at WORD offset. The buffer must be len words in size. The error
MVI_ERR_BADPARAM will be returned if an attempt is made to access the
module file beyond the range configured for module file. If this error is returned,
no data will be written to the module file.

Note: This function provides data integrity in blocks of 64 words as the data is
copied.

Note: Because Messaging uses module files, MVIbp_WriteModuleFile should
not be used while Messaging is used.

Note: At this time, messaging is not supported on the MVI69.

Return Value
MVI_SUCCESS The module file data was read successfully.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM Invalid parameter
MVI46_ERR_INVALIDCLASS The module is not Class 4

Example
MVIHANDLE Handle;
WORD buffer[2];
/* write 2 words to words 5 and 6 of the M0 file */
buffer[0] = 12;
buffer[1] = 34;
MVIbp_WriteModuleFile(Handle,FILTYP_M0, &buffer[0], 5, 2);

Backplane API Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 211 of 318
December 12, 2006

MVIbp_SetModuleInterrupt (MVI46)

Syntax
int MVIbp_SetModuleInterrupt(MVIHANDLE handle);

Parameters
handle Handle returned by previous call to MVIbp_Open

Description
MVIbp_SetModuleInterrupt generates a Module Interrupt to the host Controller.
This function can only be used when the module is configured as a Class 4
module.

handle must be a valid handle returned from MVIbp_Open.

This function waits for the host Controller to acknowledge the interrupt, which
may take up to 2.5 seconds. The host Controller must be in RUN mode and must
contain a Module Interrupt function routine to process and acknowledge the
interrupt. The acknowledge from the Controller may either be Success or Failure,
depending on the interrupt routine.

Return Value
MVI_SUCCESS The module file data was read successfully.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_TIMEOUT The function timed out waiting for an acknowledge
MVI46_ERR_PROGMODE Controller not in RUN mode
MVI46_ERR_INVALIDCLASS The module is not Class 4
MVI46_ERR_SLOTDIS The module's slot has been disabled by the Controller
MVI46_ERR_SERVFAIL The Controller acknowledged the interrupt with Failure

Example
MVIHANDLE Handle;
/* Generate a module interrupt and wait for ack */
if (MVI_SUCCESS == MVIbp_SetModuleInterrupt(Handle))
printf("Module Interrupt Successful\n");
else
printf("Module Interrupt Failed\n");

MVI-ADM ♦ 'C' Programmable Backplane API Functions
Application Development Module

Page 212 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 213 of 318
December 12, 2006

9 Serial Port Library Functions

In This Chapter

 Serial Port API Initialization Functions 215

 Serial Port API Configuration Functions............................... 220

 Serial Port API Status Functions .. 223

 Serial Port API Communications .. 231

 Serial Port API Miscellaneous Functions 246

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in C
format.

The API library routines are categorized according to functionality as follows:

Initialization
MVIsp_Open

MVIsp_Close

MVIsp_OpenAlt

Configuration
MVIsp_Config

MVIsp_SetHandshaking

Port Status

MVIsp_SetRTS, MVIsp_GetRTS

MVIsp_SetDTR, MVIsp_GetDTR

MVIsp_GetCTS

MVIsp_GetDSR

MVIsp_GetDCD

MVIsp_GetLineStatus

Communications
MVIsp_Putch

MVIsp_Puts

MVIsp_PutData

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 214 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_Getch

MVIsp_Gets

MVIsp_GetData

MVIsp_GetCountUnsent

MVIsp_GetCountUnread

MVIsp_PurgeDataUnsent

MVIsp_PurgeDataUnread

Miscellaneous
MVIsp_GetVersionInfo

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 215 of 318
December 12, 2006

Serial Port API Initialization Functions

MVIsp_Open

Syntax
int MVIsp_Open(int comport, BYTE baudrate, BYTE parity, BYTE wordlen,
BYTE stopbits);

Parameters
comport Communications Port to open
baudrate Baud rate for this port
parity Parity setting for this port
wordlen Number of bits for each character
stopbits Number of stop bits for each character

Description
MVIsp_Open acquires access to a communications port. This function must be
called before any of the other API functions can be used.

comport specifies which port is to be opened. The valid values for the module are
COM1 (corresponds to PRT1 (CFG on MVI69)), COM2 (corresponds to PRT2
(PRT1 on MVI69)), and COM3 (corresponds to PRT3(PRT2 on MVI69)).

Note: PRT3 is available on MVI46 and MVI56 only.

baudrate is the desired baud rate. The allowable values for baudrate are shown
in the following table.

Baud Rate Value
BAUD_110 0
BAUD_150 1
BAUD_300 2
BAUD_600 3
BAUD_1200 4
BAUD_2400 5
BAUD_4800 6
BAUD_9600 7
BAUD_19200 8
BAUD_28800 9
BAUD_38400 10
BAUD_57600 11
BAUD_115200 12
Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 216 of 318 ProSoft Technology, Inc.
December 12, 2006

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLEN5, WORDLEN6, WORDLEN7, and WORDLEN8.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

The handshake lines DTR and RTS of the port specified by comport are turned
on by MVIsp_Open.

Note: If the console is enabled or the Setup jumper is installed, the baud rate
for COM1 is set as configured in BIOS Setup and cannot be changed by
MVIsp_Open. MVIsp_Open will return MVI_SUCCESS, but the baud rate will
not be affected. It is recommended that the console be disabled in BIOS Setup
if COM1 is to be accessed with the serial API.

IMPORTANT: After the API has been opened, MVIsp_Close should always be
called before exiting the application.

Return Value
MVI_SUCCESS port was opened successfully
MVI_ERR_REOPEN port is already open
MVI_ERR_NODEVICE UART not found on port

Note: MVI_ERR_NODEVICE will be returned if the port is not supported by
the module.

Example
if (MVIsp_Open(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) != MVI_SUCCESS) {
 printf("Open failed!\n");
} else {
 printf("Open succeeded\n");
}

See Also
MVIsp_Close (page 219)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 217 of 318
December 12, 2006

MVIsp_OpenAlt

Syntax
int MVIsp_ OpenAlt(int comport, MVISPALTSETUP *altsetup);

Parameters
comport Communications port to open
altsetup pointer to structure of type MVISPALTSETUP

Description
MVIsp_OpenAlt provides an alternate method to acquire access to a
communications port.

With MVIsp_OpenAlt, the sizes of the serial port data queues can be set by the
application.

See MVIsp_Open for any considerations about opening a port.

Comport specifies which port is to be opened. See MVIsp_Open for valid values.

Altsetup points to a MVISPALTSETUP structure that contains the configuration
information for the port.

The MVISPALTSETUP structure is defined as follows:

typedef struct tagMVISPALTSETUP
{
BYTE baudrate;
BYTE parity;
BYTE wordlen;
BYTE stopbits;
int txquesize; /* Transmit queue size */
int rxquesize; /* Receive queue size */
BYTE fifosize; /* UART Internal FIFO size */
} MVISPALTSETUP;

See MVIsp_Open for valid values for the baudrate, parity, wordlen, and stopbits
members of the structure. The txquesize and rxquesize members determine the
size of the data buffers used to queue serial data. Valid values for the queue
sizes can be any value from MINQSIZE to MAXQSIZE. The MVIsp_Open
function uses a queue size of DEFQSIZE.

These values are defined as:

#define MINQSIZE 512 /* Minimum Queue Size */
#define DEFQSIZE 1024 /* Default Queue Size */
#define MAXQSIZE 16384 /* Maximum Queue Size */

By default, the API sets the UART's internal receive fifo size to 8 characters to
permit greater reliability at higher baud rates. In certain serial protocols, this
buffering of characters can cause character timeouts and can be changed or
disabled to meet these requirements. Most applications should set the fifosize to
the default RXFIFO_DEFAULT.

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 218 of 318 ProSoft Technology, Inc.
December 12, 2006

Either MVIsp_OpenAlt or MVIsp_Open must be called before any of the other
API functions can be used.

Return Value
MVI_SUCCESS port was opened successfully
MVI_ERR_REOPEN port is already open
MVI_ERR_NODEVICE UART not found for port

Example
MVISPALTSETUP altsetup;
altsetup.baudrate = BAUD_9600;
altsetup.parity = PARITY_NONE;
altsetup.wordlen = WORDLEN8;
altsetup.stopbits = STOPBITS1;
altsetup.txquesize = DEFQSIZE;
altsetup.rxquesize = DEFQSIZE * 2;
if (MVIsp_OpenAlt(COM1, &altsetup) != MVI_SUCCESS)
{
printf("Open failed!\n");
} else {
printf("Open succeeded!\n");
}

See Also
MVIsp_Open (page 215)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 219 of 318
December 12, 2006

MVIsp_Close

Syntax
int MVIsp_Close(int comport);

Parameters
comport Port to close

Description
This function is used by an application to release control of the a communications
port. comport must be previously opened with MVIsp_Open.

comport specifies which port is to be closed.

The handshake lines DTR and RTS of the port specified by comport are turned
off by MVIsp_Close.

IMPORTANT: After the API has been opened, this function should always be
called before exiting the application.

Return Value
MVI_SUCCESS port was closed successfully
MVI_ERR_NOACCESS comport has not been opened

Example
MVIsp_Close(COM1);

See Also
MVIsp_Open (page 215)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 220 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port API Configuration Functions

MVIsp_Config

Syntax
int MVIsp_Config(int comport, BYTE baudrate, BYTE parity, BYTE wordlen, BYTE
stopbits);

Parameters
comport Communications port to configure
baudrate Baud rate for this port
parity Parity setting for this port
wordlen Number of bits for each character
stopbits Number of stop bits for each character
baudrate Pointer to DWORD to receive baudrate

Description
MVIsp_Config allows the configuration of a serial port to be changed after it has
been opened.

comport specifies which port is to be configured.

baudrate is the desired baud rate.

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLEN5, WORDLEN6, WORDLEN7, and WORDLEN8.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

Note: If the console is enabled or the Setup jumper is installed, the baud rate
for COM1 is set as configured in BIOS Setup and cannot be changed by
MVIsp_Open. MVIsp_Config will return MVI_SUCCESS, but the baud rate will
not be affected.

Return Value
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 221 of 318
December 12, 2006

Example
if (MVIsp_Config(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) != MVI_SUCCESS) {
 printf("Config failed!\n");
} else {
 printf("Config succeeded\n");
}

See Also
MVIsp_Open (page 215)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 222 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_SetHandshaking

Syntax
int MVIsp_SetHandshaking(int comport, int shake);

Parameters
comport port for which handshaking is to be set
shake desired handshake mode

Description
This function enables handshaking for a port after it has been opened. comport
must be previously opened with MVIsp_Open.

shake is the desired handshake mode. Valid values for shake are
HSHAKE_NONE, HSHAKE_XONXOFF, HSHAKE_RTSCTS, and
HSHAKE_DTRDSR.

Use HSHAKE_XONXOFF to enable software handshaking for a port. Use
HSHAKE_RTSCTS or HSHAKE_DTRDSR to enable hardware handshaking for
a port. Hardware and software handshaking cannot be used together.

Handshaking is supported in both the transmit and receive directions.

Important: If hardware handshaking is enabled, using the MVIsp_SetRTS and
MVIsp_SetDTR functions will cause unpredictable results. If software
handshaking is enabled, ensure that the XON and XOFF ASCII characters are
not transmitted as data from a port or received into a port because this will be
treated as handshaking controls.

Return Values
MVI_SUCCESS No errors were encountered
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid handshaking mode

Example
if (MVI_SUCCESS != MVIsp_SetHandshaking(COM1, HSHAKE_RTSCTS))
 printf("Error: Set Handshaking failed\n");

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 223 of 318
December 12, 2006

Serial Port API Status Functions

MVIsp_SetRTS

Syntax
int MVIsp_SetRTS(int comport, int state);

Parameters
comport port for which RTS is to be changed
state desired RTS state

Description
This functions allows the state of the RTS signal to be controlled. comport must
be previously opened with MVIsp_Open.

state specifies desired state of the RTS signal. Valid values for state are ON and
OFF.

Note: If RTS/CTS hardware handshaking is enabled, using the
MVIsp_SetRTS function will cause unpredictable results.

Return Value
MVI_SUCCESS the RTS signal was set successfully.
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid state

Example
int rc;
rc = MVIsp_SetRTS(COM1, ON);
if (rc != MVI_SUCCESS)
 printf("SetRTS failed\n ");

See Also
MVIsp_GetRTS (page 224)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 224 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_GetRTS

Syntax
int MVIsp_GetRTS(int comport, int *state);

Parameters
comport port for which RTS is requested
state pointer to int for desired state

Description
This function allows the state of the RTS signal to be determined. comport must
be previously opened with MVIsp_Open.

The current state of the RTS signal is copied to the int pointed to by state.

Return Value
MVI_SUCCESS the RTS state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example
int state;
if (MVIsp_GetRTS(COM1, &state) == MVI_SUCCESS)
{
 if (state == ON)
 printf("RTS is ON\n");
 else
 printf("RTS is OFF\n");
}

See Also
MVIsp_SetRTS (page 223)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 225 of 318
December 12, 2006

MVIsp_SetDTR

Syntax
int MVIsp_SetDTR(int comport, int state);

Parameters
comport port for which DTR is to be changed
state desired state

Description
This function allows the state of the DTR signal to be controlled. comport must be
previously opened with MVIsp_Open.

state is the desired state of the DTR signal. Valid values for state are ON and
OFF.

Note: If DTR/DSR handshaking is enabled, changing the state of the DTR
signal with MVIsp_SetDTR will cause unpredictable results.

Return Value
MVI_SUCCESS the DTR signal was set successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid state

Example
if (MVIsp_SetDTR(COM1, ON) != MVI_SUCCESS)
printf("Set DTR failed\n");

See Also
MVIsp_GetDTR (page 226)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 226 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_GetDTR

Syntax
int MVIsp_GetDTR(int comport, int *state);

Parameters
comport port for which DTR is requested
state pointer to int for desired state

Description
This function allows the state of the DTR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DTR signal is
copied to the int pointed to by state.

Return Values
MVI_SUCCESS the DTR state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example
int state;
if (MVIsp_GetDTR(COM1, &state) == MVI_SUCCESS)
{
 if (state == ON)
 printf("DTR is ON\n");
 else
 printf("DTR is OFF\n");
}

See Also
MVIsp_SetDTR (page 225)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 227 of 318
December 12, 2006

MVIsp_GetCTS

Syntax
int MVIsp_GetCTS(int comport, int *state);

Parameters
comport port for which CTS is requested
state pointer to int for desired state

Description
This function allows the state of the CTS signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the CTS signal is
copied to the int pointed to by state.

Return Value
MVI_SUCCESS the CTS state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example
int state;
if (MVIsp_GetCTS(COM1, &state) == MVI_SUCCESS)
{
 if (state == ON)
 printf("CTS is ON\n");
 else
 printf("CTS is OFF\n");
}

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 228 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_GetDSR

Syntax
int MVIsp_GetDSR(int comport, int *state);

Parameters
comport port for which DSR is requested
state pointer to int for desired state

Description
This function allows the state of the DSR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DSR signal is
copied to the int pointed to by state.

Return Value
MVI_SUCCESS the DSR state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example
int state;
if (MVIsp_GetDSR(COM1, &state) == MVI_SUCCESS)
{
 if (state == ON)
 printf("DSR is ON\n");
 else
 printf("DSR is OFF\n");
}

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 229 of 318
December 12, 2006

MVIsp_GetDCD

Syntax
int MVIsp_GetDCD(int comport, int *state);

Parameters
comport port for which DCD is requested
state pointer to int for desired state

Description
This function allows the state of the DCD signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DCD signal is
copied to the int pointed to by state.

Return Value
MVI_SUCCESS the DCD state was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example
int state;
if (MVIsp_GetDCD(COM1, &state) == MVI_SUCCESS)
{
 if (state == ON)
 printf("DCD is ON\n");
 else
 printf("DCD is OFF\n");
}

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 230 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_GetLineStatus

Syntax
int MVIsp_GetLineStatus(int comport, BYTE *status);

Parameters
comport port for which line status is requested
status pointer to BYTE to receive line status

Description
MVIsp_GetLineStatus returns any line status errors received over the serial port.
The status returned indicates if any overrun, parity, or framing errors or break
signals have been detected.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

status points to a BYTE that will receive a set of flags that indicate errors
received over the serial port. If the returned status is 0, no errors have been
detected. If status is non-zero, it can be logically and'ed with the line status error
flags LSERR_OVERRUN, LSERR_PARITY, LSERR_FRAMING,
LSERR_BREAK, and/or QSERR_OVERRUN to determine the exact cause of the
error. The corresponding error flag will be set for each error type detected. (Note:
The QSERR_OVERRUN bit indicates that a receive queue overflow has
occurred.)

After returning the bit flags in status, line status errors are cleared. Therefore,
MVIsp_GetLineStatus actually returns line status errors detected since the
previous call to this function.

Return Value
MVI_SUCCESS the line status was read successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example
BYTE sts;
if (MVIsp_GetGetLineStatus(COM2,&sts) == MVI_SUCCESS)
{
 if (sts == 0)
 printf("No Line Status Errors Received\n");
 else if ((sts & LSERR_BREAK) != 0)
 printf("A Break Signal was Received\n");
 else
 printf("A Line Status Error was Received\n");
}

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 231 of 318
December 12, 2006

Serial Port API Communications

MVIsp_Putch

Syntax
int MVIsp_Putch(int comport, BYTE ch, DWORD timeout);

Parameters
comport port to which data is to be sent
ch character to be sent
timeout amount of time to wait to send character

Description
This function transmits a single character across a serial port. comport must be
previously opened with MVIsp_Open.

ch is the byte to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time after this function returns
and the actual time that the character is transmitted across the serial line. This
function attempts to insert the character into the transmission queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the character cannot be
queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until the character is queued successfully.

If the character can be queued immediately, MVIsp_Putch returns
MVI_SUCCESS. If the character cannot be queued immediately, MVIsp_Putch
tries to queue the character until the timeout elapses. If the timeout elapses
before the character can be queued, MVI_ERR_TIMEOUT is returned.

Note: If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

Return Value
MVI_SUCCESS the char was sent successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid parameter
MVI_ERR_TIMEOUT timeout elapsed before character sent

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 232 of 318 ProSoft Technology, Inc.
December 12, 2006

Example
if (MVIsp_Putch(COM1, ';', 1000L) != MVI_SUCCESS)
 printf("Semicolon could not be sent in 1 second\n");

See Also
MVIsp_GetCh (page 233)

MVIsp_Puts (page 234)

MVIsp_PutData (page 236)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 233 of 318
December 12, 2006

MVIsp_Getch

Syntax
int MVIsp_Getch(int comport, BYTE *ch, DWORD timeout);

Parameters
comport port from which data is to be received
ch pointer to BYTE to receive character
timeout amount of time to wait to receive character

Description
This function receives a single character from a serial port. comport must be
previously opened with MVIsp_Open.

ch points to a BYTE that will receive the character.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Getch.
This function attempts to retrieve a character from the reception queue, and
return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until a character is
retrieved from the reception queue successfully.

If the reception queue is not empty, the oldest character is retrieved from the
queue and MVIsp_Getch returns MVI_SUCCESS. If the queue is empty,
MVIsp_Getch tries to retrieve a character from the queue until the timeout
elapses. If the timeout elapses before a character can be retrieved,
MVI_ERR_TIMEOUT is returned.

Return Value
MVI_SUCCESS a char was retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer
MVI_ERR_TIMEOUT timeout elapsed before character retrieved

Example
BYTE ch;
if (MVIsp_Getch(COM1, &ch, 1000L) == MVI_SUCCESS)
 putch((char)ch);

See Also
MVIsp_PutCh (page 231)

MVIsp_Gets (page 238)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 234 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_Puts

Syntax
int MVIsp_Puts(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters
comport port to which data is to be sent
str string of characters to be sent
term termination character of string
len pointer to BYTE to receive number of characters sent
timeout amount of time to wait to send character

Description
This function transmits a string of characters across a serial port. comport must
be previously opened with MVIsp_Open.

str is a pointer to an array of characters (or is a string) to be sent.

MVIsp_Puts sends each char in the array str to the serial port until it encounters
the termination character term. Therefore, the character array must end with the
termination character. The termination character is not sent to the serial port.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the characters are transmitted across the serial line. This function
attempts to insert the characters into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the characters
cannot be queued immediately. If timeout is TIMEOUT_FOREVER, the function
will not return until all the characters are queued successfully.

If all the characters can be queued immediately, MVIsp_Puts returns
MVI_SUCCESS. If the characters cannot be queued immediately, MVIsp_Puts
tries to queue the characters until the timeout elapses. If the timeout elapses
before the characters can be queued, MVI_ERR_TIMEOUT is returned.

If len is not NULL, MVIsp_Puts writes to the int pointed to by len the number of
characters queued successfully. len is written for successfully sent characters as
well as timeouts.

Note: If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 235 of 318
December 12, 2006

Return Value
MVI_SUCCESS the characters were sent successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid parameter
MVI_ERR_TIMEOUT timeout elapsed before characters sent

Example
char str[] = "Hello, World!";
int nn;
if (MVIsp_Puts(COM1, str, '\0', &nn, 1000L) != MVI_SUCCESS)
 printf("%d characters were sent\n",nn);

See Also
MVIsp_Gets (page 238)

MVIsp_PutCh (page 231)

MVIsp_PutData (page 236)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 236 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_PutData

Syntax
int MVIsp_PutData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters
comport port to which data is to be sent
data pointer to array of bytes to be sent
len pointer to number of bytes to send / bytes sent
timeout amount of time to wait to send byte

Description
This function transmits an array of bytes across a serial port. comport must be
previously opened with MVIsp_Open.

data is a pointer to an array of bytes to be sent.

MVIsp_PutData sends each byte in the array data to the serial port. len should
point to the number of bytes in the array data to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the bytes are transmitted across the serial line. This function
attempts to insert the bytes into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the bytes cannot
be queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until all the bytes are queued successfully.

If all the bytes can be queued immediately, MVIsp_PutData returns
MVI_SUCCESS. If the characters cannot be queued immediately,
MVIsp_PutData tries to queue the bytes until the timeout elapses. If the timeout
elapses before the bytes can be queued, MVI_ERR_TIMEOUT is returned.

When MVIsp_PutData returns, it writes to the int pointed to by len the number of
bytes queued successfully. len is written for successfully sent bytes as well as
timeouts.

Note: If software handshaking is enabled on the external serial device,
sending data that contains XOFF characters may stop transmission from the
external serial device.

If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 237 of 318
December 12, 2006

Return Value
MVI_SUCCESS the bytes were sent successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid parameter
MVI_ERR_TIMEOUT timeout elapsed before bytes sent

Example
BYTE dd[5] = { 10, 20, 30, 40, 50 };
int nn;
nn = 5;
if (MVIsp_PutData(COM1, &dd[0], &nn, 1000L) != MVI_SUCCESS)
 printf("%d bytes were sent\n",nn);

See Also
MVIsp_PutCh (page 231)

MVIsp_Puts (page 234)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 238 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_Gets

Syntax
int MVIsp_Gets(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters
comport port from which data is to be received
str pointer to array of bytes to receive data
term termination character of data
len number of bytes to receive / bytes received
timeout amount of time to wait to receive character

Description
This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

str points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_Gets retrieves bytes from the reception queue until either a byte is equal
to the termination character or the number of bytes pointed to by len are
retrieved. If a byte is retrieved that equals the termination character, the byte is
copied into the array str and the function returns.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Gets. This
function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_Gets returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.
If the function returns because a termination character was retrieved, len
includes the termination character in the length.

Note: If handshaking is enabled and the reception queue is full, this API may
pause transmissions from the external device, and timeouts may then occur.

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 239 of 318
December 12, 2006

Return Value
MVI_SUCCESS bytes were retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer
MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved

Example
BYTE str[10];
int nn;
nn = 10;
if (MVIsp_Gets(COM1, &str[0], '\r', &nn, 1000L) == MVI_SUCCESS)
 printf("%d bytes were received\n",nn);

See Also
MVIsp_Getch (page 233)

MVIsp_Puts (page 234)

MVIsp_PutData (page 236)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 240 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_GetData

Syntax
int MVIsp_GetData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters
comport port from which data is to be received
data pointer to array of bytes to receive data
len number of bytes to receive / bytes received
timeout amount of time to wait to receive character

Description
This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

data points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_GetData retrieves bytes from the reception queue until either the number
of bytes pointed to by len are retrieved or the timeout elapses.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_GetData.
This function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_GetData returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.

Return Value
MVI_SUCCESS bytes were retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer
MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 241 of 318
December 12, 2006

Example
BYTE data[10];
int nn;
nn = 10;
if (MVIsp_GetData(COM1, data, &nn, 1000L) == MVI_SUCCESS)
 printf("%d bytes were received\n",nn);

See Also
MVIsp_Gets (page 238)

MVIsp_Getch (page 233)

MVIsp_PutData (page 236)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 242 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_GetCountUnsent

Syntax
int MVIsp_GetCountUnsent(int comport, int *count);

Parameters
comport Desired communications port
count Pointer to int to receive unsent character count

Description
MVIsp_GetCountUnsent returns the number of characters in the transmit queue
that are waiting to be sent. Since data sent to a port is queued before
transmission across a serial port, the application may need to determine if all
characters have been transmitted or how many characters remain to be
transmitted.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
sent to the serial port but not transmitted. If the returned count is 0, all data has
been transmitted. If it is non-zero, it contains the number of characters put into
the queue with MVIsp_Putch, MVIsp_Puts, or MVIsp_PutData but that have not
been transmitted.

Return Value
MVI_SUCCESS count retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example
int count;
if (MVIsp_GetCountUnsent(COM2,&count) == MVI_SUCCESS)
{
 if (count == 0)
 printf("All chars sent\n");
 else
 printf("%d characters remaining\n",count);
}

See Also
MVIsp_Putch (page 231)

MVIsp_Puts (page 234)

MVIsp_PutData (page 236)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 243 of 318
December 12, 2006

MVIsp_GetCountUnread

Syntax
int MVIsp_GetCountUnread(int comport, int *count);

Parameters
comport Desired communications port
count Pointer to int to receive unread character count

Description
MVIsp_GetCountUnread returns the number of characters in the receive queue
that are waiting to be read. Since data received from a port is queued after
reception from a serial port, the application may need to determine if all
characters have been read or how many characters remain to be read.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
received from the serial port but not read by the application. If the returned count
is 0, all received data has been read. If it is non-zero, it contains the number of
characters placed into the receive queue after reception from a serial port but
that have not been read from the queue with MVIsp_Getch, MVIsp_Gets, or
MVIsp_GetData.

Return Value
MVI_SUCCESS count retrieved successfully
MVI_ERR_NOACCESS comport has not been opened
MVI_ERR_BADPARAM invalid pointer

Example
int count;
if (MVIsp_GetCountUnread(COM2,&count) == MVI_SUCCESS)
{
 if (count == 0)
 printf("All chars read\n");
 else
 printf("%d characters remaining\n",count);
}

See Also
MVIsp_Getch (page 233)

MVIsp_Gets (page 238)

MVIsp_GetData (page 240)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 244 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsp_PurgeDataUnsent

Syntax
int MVIsp_PurgeDataUnsent(int comport);

Parameters
comport port whose transmit data is to be purged

Description
MVIsp_PurgeDataUnsent deletes all data waiting in the transmit queue. The data
is discarded and is not transmitted.

Comport specifies the port whose transmit queue is to be purged.

Note: MVI46 and MVI56 only.

Return Value
MVI_SUCCESS the data was purged successfully
MVI_ERR_BADPARAM invalid comport
MVI_ERR_NOACCESS the comport has not been opened

Example
if (MVIsp_PurgeDataUnsent(COM1) == MVI_SUCCESS)
printf("Transmit Data purged.\n");

See Also:
MVIsp_PurgeDataUnread (page 245)

Serial Port Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 245 of 318
December 12, 2006

MVIsp_PurgeDataUnread

Syntax
int MVIsp_PurgeDataUnread(int comport)

Parameters
comport port whose receive data is to be purged

Description
MVIsp_PurgeDataUnread deletes all data waiting in the receive queue. The data
is discarded and is no longer available for reading.

Note: If handshaking is enabled and the transmitting serial device has been
paused, this function will release the transmitting serial device to resume
transmission.

MVI46 and MVI56 only.

Return Value
MVI_SUCCESS the data was purged successfully
MVI_ERR_BADPARAM invalid comport
MVI_ERR_NOACCESS the comport has not been opened

Example
if (MVIsp_PurgeDataUnread(COM1) == MVI_SUCCESS)
printf("Transmit Data purged.\n");

See Also:
MVIsp_PurgeDataUnsent (page 244)

MVI-ADM ♦ 'C' Programmable Serial Port Library Functions
Application Development Module

Page 246 of 318 ProSoft Technology, Inc.
December 12, 2006

Serial Port API Miscellaneous Functions

MVIsp_GetVersionInfo

Syntax
int MVIsp_GetVersionInfo(MVISPVERSIONINFO *verinfo);

Parameters
verinfo Pointer to structure of type MVISPVERSIONINFO

Description
MVIsp_GetVersionInfo retrieves the current version of the API. The version
information is returned in the structure verinfo.

The MVISPVERSIONINFO structure is defined as follows:

typedef struct tagMVISPVERSIONINFO
{
 WORD APISeries; /* API series */
 WORD APIRevision; /* API revision */
} MVISPVERSIONINFO;

Return Value
MVI_SUCCESS The version information was read successfully.

Example
MVISPVERSIONINFO verinfo;
/* print version of API library */
MVIsp_GetVersionInfo(&verinfo);
printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 247 of 318
December 12, 2006

10 CIP Messaging Library Functions

In This Chapter

 CIP Messaging API Files ... 247

 CIP API Architecture .. 247

 CIP API Initialization Functions .. 249

 CIP Object Registration.. 251

 CIP Connected Data Transfer .. 254

 CIP Callback Functions.. 257

 CIP Special Callback Registration.. 268

 CIP Miscellaneous Functions... 271

The CIP Messaging API is one component of the MVI-ADM API Suite. CIP API
provides the lowest level of access to the ControlLogix backplane interface.
Complex applications, such as certain communications protocols, may interface
directly with the CIP API. It may be used with the MVI 56 only.

10.1 CIP Messaging API Files
The following table lists the supplied CIP messaging API filenames. These files
should be copied to a convenient directory on the computer on which the
application is to be developed. These files need not be present on the module
when executing the application.

Filename Description
Cipapi.h Include File
Cipapi.lib Library (16-bit OMF format)

10.2 CIP API Architecture
The CIP API communicates with the ControlBus through the backplane device
driver (MVI56BP.EXE). The backplane driver must be loaded before running an
application which uses the CIP API.

10.2.1 Backplane Device Driver
Details for each function are provided in the following topics.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 248 of 318 ProSoft Technology, Inc.
December 12, 2006

Initialization
MVIcip_Open

MVIcip_Close

Object Registration
MVIcip_RegisterAssemblyObj

MVIcip_UnregisterAssemblyObj

Connected Data Transfer
MVIcip_WriteConnected

MVIcip_ReadConnected

Callback Functions
cnnect_proc

service_proc

rxdata_proc

fatalfault_proc

flashupdate_proc

resetrequest_proc

Special Callback Registration
MVIcip_RegisterReset ReqRtn

MVIcip_RegisterFatalFaultRtn

MVIcip_RegisterFlashUpdateRtn

Miscellaneous
MVIcip_GetIdObject

MVIcip_GetVersionInfo

MVIcip_SetUserLED

MVIcip_SetModuleStatus

MVIcip_ErrorString

MVIcip_GetSetupMode

MVIcip_GetConsoleMode

MVIcip_Sleep

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 249 of 318
December 12, 2006

CIP API Initialization Functions

MVIcip_Open

Syntax
int MVIcip_Open(MVIHANDLE *handle);

Parameters
handle pointer to variable of type MVIHANDLE

Description
MVIcip_Open acquires access to the CIP Messaging API and sets handle to a
unique ID that the application uses in subsequent functions. This function must
be called before any of the other CIP API functions can be used.

Return Value
MVI_SUCCESS API was opened successfully
MVI_ERR_REOPEN API is already open
MVI_ERR_NODEVICE backplane driver could not be accessed
Note: MVI_ERR_NODEVICE will be returned if the backplane device driver is not
loaded.

Example
MVIHANDLE handle;
if (MVIcip_Open(&handle)!= MVI_SUCCESS)
{
printf ("Open failed!\n");
}
else
{
printf ("Open succeeded\n");
}

See Also
MVIcip_Close (page 250)

After the API has been opened, MVIcip_Close should always be called before
exiting the application.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 250 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIcip_Close

Syntax
int MVIcip_Close(MVIHANDLE handle);

Parameters
handle handle returned by previous call to MVIcip_Open

Description
This function is used by an application to release control of the CIP API.

handle must be a valid handle returned from MVIcip_Open.

Return Value
MVI_SUCCESS API was closed successfully
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
MVIcip_Close (handle);

See Also
MVIcip_Open (page 249)

After the CIP API has been opened, this function should always be called before
exiting the application.

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 251 of 318
December 12, 2006

CIP Object Registration

MVIcip_RegisterAssemblyObj

Syntax
int MVIcip_RegisterAssemblyObj(MVIHANDLE handle, MVIHANDLE *objHandle, DWORD
reg_param, MVICALLBACK (*connect_proc)(), MVICALLBACK (*service_proc)(),
MVICALLBACK (*rxdata_proc)());

Parameters
handle handle returned by previous call to MVIcip_Open
objHandle pointer to variable of type MVIHANDLE. On successful return,

this variable will contain a value which identifies this object.
reg_param value that will be passed back to the application as a parameter

in the connect_proc and service_proc callback functions.
connect_proc pointer to callback function to handle connection requests
service_proc pointer to callback function to handle service requests
rxdata_proc pointer to callback function to receive data from an open

connection

Description
This function is used by an application to register all instances of the Assembly
Object with the CIP API. The object must be registered before a connection can
be established with it.

handle must be a valid handle returned from MVIcip_Open.

reg_param is a value that will be passed back to the application as a parameter
in the connect_proc and service_proc callback functions. The application may
use this to store an index or pointer. It is not used by the CIP API.

connect_proc is a pointer to a callback function to handle connection requests to
the registered object. This function will be called by the backplane device driver
when a Class 1 scheduled connection request for the object is received. It will
also be called when an established connection is closed.

service_proc is a pointer to a callback function which handles service requests to
the registered object. This function will be called by the backplane device driver
when an unscheduled message is received for the object.

rxdata_proc is a pointer to a callback function which handles data received on an
open connection. If rxdata_proc is NULL, then the CIP API buffers the received
data and the application must retrieve the data using the
MVIcip_ReadConnected() function. If rxdata_proc is not NULL, then the
rxdata_proc callback routine must copy the received data to a local buffer.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 252 of 318 ProSoft Technology, Inc.
December 12, 2006

Return Value
MVI_SUCCESS object was registered successfully
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM connect_proc or service_proc is NULL
MVI_ERR_ALREADY_REGISTERED object has already been registered

Example
MVIHANDLE handle;
MVIHANDLE objHandle;
MY_STRUCT mystruct;
int rc;
MVICALLBACK MyConnectProc (MVIHANDLE, MVICIPCONNSTRUC *);
MVICALLBACK MyServiceProc(MVIHANDLE, MVICIPSERVSTRUC *);
// Register all instances of the assembly object
rc = MVIcip_RegisterAssemblyObj(handle, &objHandle,
(DWORD)&mystruct, MyConnectProc, MyServiceProc, NULL);
if (rc != MVI_SUCCESS) printf("Unable to register assembly object\n");

See Also
MVIcip_UnregisterAssemblyObj (page 253)

connect_proc (page 257)

service_proc (page 261)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 253 of 318
December 12, 2006

MVIcip_UnregisterAssemblyObj

Syntax
int MVIcip_UnregisterAssemblyObj(MVIHANDLE handle, MVIHANDLE objHandle);

Parameters
handle handle returned by previous call to MVIcip_Open
objHandle handle for object to be unregistered

Description
This function is used by an application to unregister all instances of the Assembly
Object with the CIP API. Any current connections for the object specified by
objHandle will be terminated.

handle must be a valid handle returned from MVIcip_Open.

objHandle must be a handle returned from

MVIcip_RegisterAssemblyObj.

Return Value
MVI_SUCCESS object was unregistered successfully
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM objHandle is invalid

Example
MVIHANDLE handle;
MVIHANDLE objHandle;
// Unregister all instances of the object
MVIcip_UnregisterAssemblyObj(handle, objHandle);

See Also
MVIcip_RegisterAssemblyObj (page 251)

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 254 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Connected Data Transfer

MVIcip_WriteConnected

Syntax
int MVIcip_WriteConnected(MVIHANDLE handle, MVIHANDLE connHandle, BYTE *dataBuf,
WORD offset,WORD dataSize);

Parameters
handle handle returned by previous call to MVIcip_Open
connHandle handle of open connection
dataBuf pointer to data to be written
offset offset of byte to begin writing
dataSize number of bytes of data to write

Description
This function is used by an application to update data being sent on the open
connection specified by connHandle.

Handle must be a valid handle returned from MVIcip_Open.
ConnHandle must be a handle passed by the connect_proc callback function.
Offset is the offset into the connected data buffer to begin writing.
DataBuf is a pointer to a buffer containing the data to be written.
DataSize is the number of bytes of data to be written.

Note: For Assembly Instance 1, the first 4 bytes of the 5550 input image table
are overwritten with "FF" (hex) when the connection is not open or broken.

Return Value
MVI_SUCCESS data was updated successfully
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM connHandle or dataSize is invalid

Example
MVIHANDLE handle;
MVIHANDLE connHandle;
BYTE buffer[128];
// Write 128 bytes to the connected data buffer
MVIcip_WriteConnected(handle, connHandle, buffer, 0, 128);

See Also
MVIcip_ReadConnected (page 255)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 255 of 318
December 12, 2006

MVIcip_ReadConnected

Syntax
int MVIcip_ReadConnected(MVIHANDLE handle, MVIHANDLE connHandle, BYTE *dataBuf,
WORD offset, WORD dataSize);

Parameters
handle handle returned by previous call to MVIcip_Open
connHandle handle of open connection
dataBuf pointer to buffer to receive data
offset offset of byte to begin reading
dataSize number of bytes to read

Description
This function is used by an application read data being received on the open
connection specified by connHandle.

handle must be a valid handle returned from MVIcip_Open. connHandle must be
a handle passed by the connect_proc callback function. offset is the offset into

the connected data buffer to begin reading. dataBuf is a pointer to a buffer to
receive the data. dataSize is the number of bytes of data to be read.

Notes: When a connection has been established with a ControlLogix 5550
controller, the first 4 bytes of received data are processor status and are
automatically set by the 5550. The first byte of data appears at offset 4 in the
receive data buffer.

A Run/Idle status word is appended when the communication format is one of
the "Data-xxx" types. This status word is not used for "Input Data-xxx" types or
status connections. Only the least significant bit of the word is used. All other
bits are reset to 0. When set to 1 (run), the bit signals the module to activate its
I/O. When reset to 0, it signals the module to deactivate I/O (idle state).

The Run/Idle bit can be set only when the processor is in Run mode.

The bit is reset when the 5550 processor:

goes into a major fault state

is in program mode

is in test mode

The MVIcip_ReadConnected function can only be used if the rxdata_proc
callback function pointer was set to NULL in the call to
MVIcp_RegisterAssemblyObject().

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 256 of 318 ProSoft Technology, Inc.
December 12, 2006

Return Value
MVI_SUCCESS data was read successfully
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM connHandle or dataSize is invalid
MVI_ERR_INVALID an rxdata_proc callback has been registered

Example
MVIHANDLE handle;
MVIHANDLE connHandle;
BYTE buffer[128];
// Read 128 bytes from the connected data buffer
MVIcip_ReadConnected(handle, connHandle, buffer, 0, 128);

See Also
MVIcip_WriteConnected (page 254)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 257 of 318
December 12, 2006

CIP Callback Functions

Note: The functions in this section are not part of the CIP API, but must be
implemented by the application. The CIP API calls the connect_proc or
service_proc functions when connection or service requests are received for
the registered object. The optional rxdata_proc function is called when data is
received on a connection. The optional fatalfault_proc function is called when
the backplane device driver detects a fatal fault condition. The optional
resetrequest_proc function is called when a reset request is received by the
backplane device driver.

Special care must be taken when coding the callback functions, because these
functions are called directly from the backplane device driver. in particular, no
assumptions can be made about the segment registers DS or SS. Therefore, the
compiler options or directives used must disable stack probes and reload DS. For
convenience, the macro MVICALLBACK has been defined to include the
__loadds compiler directive, which forces the data segment register to be
reloaded upon entry to the callback function.

Stack probes (or stack checking) must be disabled using compiler command line
arguments or pragmas. Stack checking is off by default for the Borland compiler.

In general, the callback routines should be as short as possible, especially
rxdata_proc. Do not call any library functions from the rxdata_proc callback
routine. Stack size is limited, so keep stack variables to a minimum.

connect_proc

Syntax
MVICALLBACK connect_proc(MVIHANDLE objHandle, MVICIPCONNSTRUC *sConn);

Parameters
objHandle handle of registered object instance
sConn pointer to structure of type MVICIPCONNSTRUCT

Description
connect_proc is a callback function which is passed to the CIP API in the
MVIcip_RegisterAssemblyObj call. The CIP API calls the connect_proc function
when a Class 1 scheduled connection request is made for the registered object
instance specified by objHandle.

sConn is a pointer to a structure of type MVICIPCONNSTRUCT. this structure is
shown below:

typedef struct tagMVICIPCONNSTRUC
{
MVIHANDLE connHandle; // unique value which identifies this connection
DWORD reg_param; // value passed via MVIcip_Register AssemblyObj

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 258 of 318 ProSoft Technology, Inc.
December 12, 2006

WORD reason; // specifies reason for callback
WORD instance; // instance specified in open
WORD producerCP; // producer connection point specified in open
WORD consumerCP; // consumer connection point specified in open
DWORD *lOTApi; // pointer to originator to target packet interval
DWORD *lTOApi; // pointer to target to originator packet interval
DWORD lODeviceSn; // Serial number of the originator
WORD iOVendorId; // Vendor Id of the originator
WORD rxDataSize; // size in bytes of receive data
WORD txDataSize; // size in bytes of transmit data
BYTE *configData; // pointer to configuration data sent in open
WORD configSize; // size of configuration data sent in open
WORD *extendederr; // an extended error code if an error occurs
} MVICIPCONNSTRUC;

connHandle identifies this connection. This value must be passed to the
MVIcip_SendConnected and MVIcip_ReadConnected functions.

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

reason specifies whether the connection is being opened or closed. A value of
MVI_CIP_CONN_OPEN indicates the connection is being opened,
MVI_CIP_CONN_OPEN_COMPLETE indicates the connection has been
successfully opened, and MVI_CIP_CONN_CLOSE indicates the connection is
being closed. If reason is MVI_CIP_CONN_CLOSE, the following parameters are
unused: producerCP, consumerCP, api, rxDataSize, and txDataSize.

instance is the instance number that is passed in the forward open.

(Note: This corresponds to the Configuration Instance on the RSLogix 5000
generic profile.)

producerCP is the producer connection point from the open request.

(Note: This corresponds to the Input Instance on the RSLogix 5000 generic
profile.)

consumerCP is the consumer connection point from the open request.

(Note: This corresponds to the Output Instance on the RSLogix 5000 generic
profile.)

lOTApi is a pointer to the originator-to-target actual packet interval for this
connection, expressed in microseconds. This is the rate at which connection data
packets will be received from the originator. This value is initialized according to
the requested packet interval from the open request. The application may choose
to reject the connection if the value is not within a predetermined range. If the
connection is rejected, return MVI_CIP_FAILURE and set extendederr to
MVI_CIP_EX_BAD_RPI. Note: The minimum RPI value supported by the MVI56
module is 600us.

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 259 of 318
December 12, 2006

lTOApi is a pointer to the target-to-originator actual packet interval for this
connection, expressed in microseconds. This is the rate at which connection data
packets will be transmitted by the module. This value is initialized according to
the requested packet interval from the open request. The application may choose
to increase this value if necessary.

lODeviceSn is the serial number of the originating device, and iOVendorId is the
vendor ID. The combination of vendor ID and serial number is guaranteed to be
unique, and may be used to identify the source of the connection request. This is
important when connection requests may be originated by multiple devices.

rxDataSize is the size in bytes of the data to be received on this connection.
txDataSize is the size in bytes of the data to be sent on this connection.

configData is a pointer to a buffer containing any configuration data that was sent
with the open request. configSize is the size in bytes of the configuration data.

extendederr is a pointer to a word which may be set by the callback function to
an extended error code if the connection open request is refused.

Return Value
The connect_proc routine must return one of the following values if reason is
MVI_CIP_CONN_OPEN:

Note: If reason is MVI_CIP_CONN_OPEN_COMPLETE or
MVI_CIP_CONN_CLOSE, the return value must be MVI_SUCCESS.

MVI_SUCCESS connection is accepted
MVI_CIP_BAD_INSTANCE instance is invalid
MVI_CIP_NO_RESOURCE unable to support connection due to resource limitations
MVI_CIP_FAILURE connection is rejected - extendederr may be set

Extended Error Codes
If the open request is rejected, extendederr can be set to one of the following
values:

MVI_CIP_EX_CONNECTION_USED The requested connection is already in use.
MVI_CIP_EX_BAD_RPI The requested packet interval cannot be supported.
MVI_CIP_EX_BAD_SIZE The requested connection sizes do not match the

allowed sizes.

Example
MVIHANDLE Handle;
MVICALLBACK connect_proc(MVIHANDLE objHandle, MVICIPCONNSTRUCT
*sConn)
{
// Check reason for callback
switch(sConn->reason)
{
case MVI_CIP_CONN_OPEN:

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 260 of 318 ProSoft Technology, Inc.
December 12, 2006

// A new connection request is being made. Validate the // parameters and
determine whether to allow the // connection.
// Return MVI_SUCCESS if the connection is to be
// established,
// or one of the extended error codes if not. Refer to the sample
// code for more details.
return(MVI_SUCCESS);
case MVI_CIP_CONN_OPEN_COMPLETE:
// The connection has been successfully opened. If
// necessary,
// call MVIcip_WriteConnected to initialize transmit data.
return(MVI_SUCCESS);
case MVI_CIP_CONN_CLOSE:
// This connection has been closed - inform the application
return(MVI_SUCCESS);
}
}

See Also
MVIcip_RegisterAssemblyObj (page 251)

MVIcip_SendConnected

MVIcip_ReadConnected (page 255)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 261 of 318
December 12, 2006

service_proc

Syntax
MVICALLBACK service_proc(MVIHANDLE objHandle, MVICIPSERVSTRUC *sServ);

Parameters
objHandle handle of registered object
sServ pointer to structure of type MVICIPSERVSTRUC

Description
service_proc is a callback function which is passed to the CIP API in the
MVIcip_RegisterAssemblyObj call. The CIP API calls the service_proc function
when an unscheduled message is received for the registered object specified by
objHandle.

Note that the object ID, Instance Number, is overwritten by the instance
parameter of the structure below.

sServ is a pointer to a structure of type MVICIPSERVSTRUC. This structure is
shown below:

typedef struct tagMVICIPSERVSTRUC
{
DWORD reg_param; // value passed via MVIcip_RegisterAssemblyObj
WORD instance; // instance number of object being accessed
BYTE serviceCode; // service being requested
WORD attribute; // attribute being accessed
BYTE **msgBuf; // pointer to pointer to message data
WORD offset; // member offset
WORD *msgSize; // pointer to size in bytes of message data
WORD *extendederr; // an extended error code if an error occurs
} MVICIPSERVSTRUC;

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

instance specifies the instance of the object being accessed.

serviceCode specifies the service being requested. attribute specifies the
attribute being accessed.

msgBuf is a pointer to a pointer to a buffer containing the data from the message.
This pointer should be updated by the callback routine to point to the buffer
containing the message response upon return.

offset is the offset of the member being accessed.

msgSize points to the size in bytes of the data pointed to by msgBuf.

The application should update this with the size of the response data before
returning.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 262 of 318 ProSoft Technology, Inc.
December 12, 2006

extendederr is a pointer to a word which can be set by the callback function to an
extended error code if the service request is refused.

Return Value
The service_proc routine must return one of the following values:

MVI_SUCCESS message processed successfully
MVI_CIP_BAD_INSTANCE invalid class instance
MVI_CIP_BAD_SERVICE invalid service code
MVI_CIP_BAD_ATTR invalid attribute
MVI_CIP_ATTR_NOT_SETTABLE attribute is not settable
MVI_CIP_PARTIAL_DATA data size invalid
MVI_CIP_BAD_ATTR_DATA attribute data is invalid
MVI_CIP_FAILURE generic failure code

Example
MVIHANDLE Handle;
MVICALLBACK service_proc (MVIHANDLE objHandle, MVICIPSERVSTRUC
*sServ)
{
// Select which instance is being accessed.
// The application defines how each instance is defined.
switch(sServ->instance)
{
case 1: // Instance 1
// Check serviceCode and attribute; perform
// requested service if appropriate
break;
case 2: // Instance 2
// Check serviceCode and attribute; perform
// requested service if appropriate
break;
default:
return(MVI_CIP_BAD_INSTANCE); // Invalid instance
}
}

See Also
MVIcip_RegisterAssemblyObj (page 251)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 263 of 318
December 12, 2006

rxdata_proc

Syntax
int rxdata_proc(MVIHANDLE objHandle, MVICIPRECVSTRUC *sRecv);

Parameters
objHandle handle of registered object
sRecv pointer to structure of type MVICIPRECVSTRUC

Description
rxdata_proc is an optional callback function which may be passed to the CIP API
in the MVIcip_RegisterAssemblyObj call. If the rxdata_proc callback has been
registered, the CIP API calls it when Class 1 scheduled data is received for the
registered object specified by objHandle.

sRecv is a pointer to a structure of type MVICIPRECVSTRUC. this structure is
shown below:

typedef struct tagMVICIPRECVSTRUC
{
DWORD reg_param; // value passed via MVIcip_Register AssemblyObj
MVIHANDLE connHandle; // unique value which identifies this connection
BYTE*' rxData; // pointer to buffer of received data
WORD dataSize; // size of received data in bytes
} MVICIPRECVSTRUC;

reg_param is the value that was passed to MVIcip_RegisterAssemblyObj. The
application may use this to store an index or pointer. It is not used by the CIP
API.

connHandle is the connection identifier passed to the connect_proc callback
when this connection was opened.

rxData is a pointer to a buffer containing the received data. dataSize is the size of
the received data in bytes.

Note: Use of the rxdata_proc callback is not recommended. Registering this
callback increases CPU overhead and reduces overall performance, especially
for relatively small RPI values. It is recommended that this callback only be
used when the RPI is set to 10ms or greater.

This routine is called directly from an interrupt service routine in the backplane
device driver. It should not perform any operating system calls and should
execute as quickly as possible (200us maximum). Its only function should be
to copy the data to a local buffer. The data must not be processed in the
callback routine, or backplane communications may be disrupted.

Return Value
The rxdata_proc routine must return MVI_SUCCESS.

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 264 of 318 ProSoft Technology, Inc.
December 12, 2006

Example
MVIHANDLE Handle;
int _loadds rxdata_proc(MVIHANDLE objHandle, MVICIPRECVSTRUC *sRecv)
{
// Copy the data to our local buffer.
memcpy(RxDataBuf, sRecv->rxData, sRecv->dataSize);
// Indicate that new data has been received
RxDataCnt++;
return(MVI_SUCCESS);
}

See Also
MVIcip_RegisterAssemblyObj (page 251)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 265 of 318
December 12, 2006

fatalfault_proc

Syntax
MVICALLBACK fatalfault_proc();

Parameters
None

Description
fatalfault_proc is an optional callback function which may be passed to the CIP
API in the MVIcip_RegisterFatalFaultRtn call. If the fatalfault_proc callback has
been registered, it will be called if the backplane device driver detects a fatal fault
condition. This allows the application an opportunity to take appropriate actions.

Return Value
The fatalfault_proc routine must return MVI_SUCCESS.

Example
MVIHANDLE Handle;
MVICALLBACK fatalfault_proc(void)
{
// Take whatever action is appropriate for the application:
// - Set local I/O to safe state
// - Log error
// - Attempt recovery (for example, restart module)
return(MVI_SUCCESS);
}

See Also
MVIcip_RegisterFatalFaultRtn; (page 268)

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 266 of 318 ProSoft Technology, Inc.
December 12, 2006

flashupdate_proc

Syntax
MVICALLBACK flashupdate_proc();

Parameters
None

Description
flashupdate_proc is an optional callback function which may be passed to the
CIP API in the MVIcip_RegisterFlashUpdateRtn call. If the flashupdate_proc
callback has been registered, it will be called if the backplane device driver
receives a flash update command. This allows the application an opportunity to
take appropriate actions before it is stopped.

Return Value
The flashupdate_proc routine must return MVI_SUCCESS.

Example
MVIHANDLE Handle;
MVICALLBACK flashupdate_proc(void)
{
// Take whatever action is appropriate for the application:
// - Set local I/O to safe state
// - Trigger an orderly shutdown
return(MVI_SUCCESS);
}

See Also
MVIcip_RegisterFlashUpdateRtn (page 270)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 267 of 318
December 12, 2006

resetrequest_proc

Syntax
MVICALLBACK resetrequest_proc();

Parameters
None

Description
resetrequest_proc is an optional callback function which may be passed to the
CIP API in the MVIcip_RegisterResetReqRtn call. If the resetrequest_proc
callback has been registered, it will be called if the backplane device driver
receives a module reset request (Identity Object reset service). This allows the
application an opportunity to take appropriate actions to prepare for the reset, or
to refuse the reset.

Return Value
MVI_SUCCESS the module will reset upon return from the callback
MVI_ERR_INVALID the module will not be reset and will continue normal operation

Example
MVIHANDLE Handle;
MVICALLBACK resetrequest_proc(void)
{
// Take whatever action is appropriate for the application:
// - Set local I/O to safe state
// - Perform orderly shutdown
// - Reset special hardware
// - Refuse the reset
return(MVI_SUCCESS); // allow the reset
}

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 268 of 318 ProSoft Technology, Inc.
December 12, 2006

CIP Special Callback Registration

MVIcip_RegisterFatalFaultRtn

Syntax
int MVIcip_RegisterFatalFaultRtn(MVIHANDLE handle, MVICALLBACK
(*fatalfault_proc)());

Parameters
handle handle returned by previous call to MVIcip_Open
fatalfault_proc pointer to fatal fault callback routine

Description
This function is used by an application to register a fatal fault callback routine.
Once registered, the backplane device driver will call fatalfault_proc if a fatal fault
condition is detected.

handle must be a valid handle returned from MVIcip_Open.

fatalfault_proc must be a pointer to a fatal fault callback function.

A fatal fault condition will result in the module being taken offline; that is, all
backplane communications will halt. The application may register a fatal fault
callback in order to perform recovery, safe-state, or diagnostic actions.

Return Value
MVI_SUCCESS routine was registered successfully
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
// Register a fatal fault handler
MVIcip_RegisterFatalFaultRtn(handle, fatalfault_proc);

See Also
fatalfault_proc (page 265)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 269 of 318
December 12, 2006

MVIcip_RegisterResetReqRtn

Syntax
int MVIcip_RegisterResetReqRtn(MVIHANDLE handle, MVICALLBACK
(*resetrequest_proc)());

Parameters
handle handle returned by previous call to MVIcip_Open
resetrequest_proc pointer to reset request callback routine

Description
This function is used by an application to register a reset request callback
routine. Once registered, the backplane device driver will call resetrequest_proc
if a module reset request is received.

handle must be a valid handle returned from MVIcip_Open.

resetrequest_proc must be a pointer to a reset request callback function.

If the application does not register a reset request handler, receipt of a module
reset request will result in a software reset (that is, reboot) of the module. The
application may register a reset request callback in order to perform an orderly
shutdown, reset special hardware, or to deny the reset request.

Return Value
MVI_SUCCESS routine was registered successfully
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
// Register a reset request handler
MVIcip_RegisterResetReqRtn(handle, resetrequest_proc);

See Also
resetrequest_proc (page 267)

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 270 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIcip_RegisterFlashUpdateRtn

Syntax
int MVIcip_RegisterFlashUpdateRtn(MVIHANDLE handle, MVICALLBACK
(*flashupdate_proc)());

Parameters
handle handle returned by previous call to MVIcip_Open
flashupdate_proc pointer to flash update callback routine

Description
This function is used by an application to register a flash update callback routine.
Once registered, the backplane device driver will call flashupdate_proc if a flash
update command is received. (A flash update command updates the module's
firmware. It is generated by a firmware update utility such as Control Flash.)

handle must be a valid handle returned from MVIcip_Open.

flashupdate_proc must be a pointer to a flash update callback function.

The application may register a flash update callback in order to perform an
orderly shutdown. Once a flash update command is received, the backplane
device driver will close all open connections, and will refuse any new connections
until the update has completed. After calling the flash update callback (if
registered), the backplane device driver will restart the module in flash update
mode (no application will be loaded).

After the flash update has completed, the module will be restarted in normal
mode.

Return Value
MVI_SUCCESS Routine was registered successfully
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
// Register a flash update handler
MVIcip_RegisterFlashUpdateRtn(handle, flashupdate_proc);

See Also
flashupdate_proc (page 266)

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 271 of 318
December 12, 2006

CIP Miscellaneous Functions

MVIcip_GetIdObject

Syntax
int MVIcip_GetIdObject(MVIHANDLE handle, MVICIPIDOBJ *idobject);

Parameters
handle handle returned from MVIcip_Open call

Description
MVIcip_GetIdObject retrieves the identity object for the module.

handle must be a valid handle returned from MVIcip_Open.

idobject is a pointer to a structure of type MVICIPIDOBJ. The members of this
structure will be updated with the module identity data.

The MVICIPIDOBJ structure is defined below:

typedef struct tagMVICIPIDOBJ
{
WORD VendorID; // Vendor ID number
WORD DeviceType; // General product type
WORD ProductCode; // Vendor-specific product identifier
BYTE MajorRevision; // Major revision level
BYTE MinorRevision; // Minor revision level
DWORD SerialNo; // Module serial number
BYTE Name[32]; // Text module name (null-terminated)
} MVICIPIDOBJ;
Return Value:
MVI_SUCCESS ID object was retrieved successfully
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
MVICIPIDOBJ idobject;
MVIcip_GetIdObject(handle, &idobject);
printf("Module Name: %s Serial Number: %lu\n", idobject.Name,
idobject.SerialNo);

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 272 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIcip_GetVersionInfo

Syntax
int MVIcip_GetVersionInfo(MVIHANDLE handle, VICIPVERSIONINFO *verinfo);

Parameters
handle handle returned by previous call to MVIcip_Open
verinfo pointer to structure of type MVICIPVERSIONINFO

Description
MVIcip_GetVersionInfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.

handle must be a valid handle returned from MVIcip_Open.

The MVICIPVERSIONINFO structure is defined as follows:

typedef struct tagMVICIPVERSIONINFO
{
WORD APISeries; /*API series */
WORD APIRevision; /* API revision */
WORD BPDDSeries; /* Backplane device driver series */
WORD BPDDRevision; /* Backplane device driver revision */
} MVICIPVERSIONINFO;

Return Value
MVI_SUCCESS version information was read successfully
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE Handle;
MVICIPVERSIONINFO verinfo;
/* print version of API library */
MVIcip_GetVersionInfo(Handle,&verinfo);
printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);
printf("Driver Series %d, Rev %d\n", verinfo.BPDDSeries,
verinfo.BPDDRevision);

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 273 of 318
December 12, 2006

MVIcip_SetUserLED

Syntax
int MVIcip_SetUserLED(MVIHANDLE handle, int lednum, int ledstate);

Parameters
handle handle returned by previous call to MVIcip_Open
lednum specifies which of the user LED indicators is being addressed
ledstate specifies state for LED indicator

Description
MVIcip_SetUserLED allows an application to turn the user LED indicators on and
off.

handle must be a valid handle returned from MVIcip_Open.

lednum must be set to MVI_LED_USER1 or MVI_LED_USER2 to select User
LED 1 or User LED 2, respectively.

ledstate must be set to MVI_LED_STATE_ON or MVI_LED_STATE_OFF to turn
the indicator On or Off, respectively.

Return Value
MVI_SUCCESS the input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example
MVIHANDLE Handle;
/* Turn User LED 1 on and User LED 2 off */
MVIcip_SetUserLED(Handle, MVI_LED_USER1, MVI_LED_STATE_ON);
MVIcip_SetUserLED(Handle, MVI_LED_USER2, MVI_LED_STATE_OFF);

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 274 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIcip_SetModuleStatus

Syntax
int MVIcip_SetModuleStatus(MVIHANDLE handle, int status);

Parameters
handle handle returned by previous call to MVIcip_Open
status module status, OK or Faulted

Description
MVIcip_SetModuleStatus allows an application set the status of the module to
OK or Faulted.

handle must be a valid handle returned from MVIcip_Open.

status must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the status is Ok, the module status LED
indicator will be set to Green. If the status is Faulted, the status indicator will be
set to Red.

Return Value
MVI_SUCCESS the input scan has occurred.
MVI_ERR_NOACCESS handle does not have access
MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example
MVIHANDLE Handle;
/* Set the Status indicator to Red */
MVIcip_SetModuleStatus(Handle, MVI_MODULE_STATUS_FAULTED);

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 275 of 318
December 12, 2006

MVIcip_ErrorString

Syntax
int MVIcip_ErrorString(int errcode, char *buf);

Parameters
errcode error code returned from an API function
buf pointer to user buffer to receive message

Description
MVIcip_ErrorString returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value
MVI_SUCCESS message returned in buf
MVI_ERR_BADPARAM unknown error code

Example
char buf[80];
int rc;
/* print error message */
MVIcip_ErrorString(rc, buf);
printf("Error: %s", buf);

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 276 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIcip_GetSetupMode

Syntax
int MVIcip_GetSetupMode(MVIHANDLE handle, int *mode);

Parameters
handle handle returned by previous call to MVIcip_Open
mode pointer to an integer that is set to 1 if the Setup Jumper is

installed, or 0 if the Setup Jumper is not installed.

Description
This function queries the state of the Setup Jumper.

handle must be a valid handle returned from MVIcip_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode.

It may be useful for an application to detect Setup Mode and perform special
configuration or diagnostic functions.

Return Value
MVI_SUCCESS no errors were encountered
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
int mode;
MVIcip_GetSetupMode(handle, &mode);
if (mode)
// Setup Jumper is installed - perform configuration/diagnostic
else
// Not in Setup Mode - normal operation

CIP Messaging Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 277 of 318
December 12, 2006

MVIcip_GetConsoleMode

Syntax
int MVIcip_GetConsoleMode(MVIHANDLE handle, int *mode, int *baud);

Parameters
Handle handle returned by previous call to MVIcip_Open
mode pointer to an integer that is set to 1 if the console is enabled, or

0 if the console is disabled.
baud pointer to an integer that is set to the console baud rate index if

the console is enabled.

Description
This function queries the state of the console.

handle must be a valid handle returned from MVIcip_Open. mode is a pointer to
an integer. When this function returns, mode will be set to 1 if the console is
enabled, or 0 if the console is disabled. baud is a pointer to an integer. When this
function returns, baud will be set to the console's baud index value if the console
is enabled. The baud index values are shown in table (4). baud is not set if the
console is disabled.

It may be useful for an application to detect that the console is enabled and allow
user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value
MVI_SUCCESS no errors were encountered
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
int mode;
MVIcip_GetConsoleMode(handle, &mode);
if (mode)
// Console is enabled - allow user interaction
else
// Console is not available - normal operation

MVI-ADM ♦ 'C' Programmable CIP Messaging Library Functions
Application Development Module

Page 278 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIcip_Sleep

Syntax
int MVIcip_Sleep(MVIHANDLE handle, WORD msdelay);

Parameters
handle handle returned by previous call to MVIcip_Open
msdelay time in milliseconds to suspend taskdelay);

Description
MVIcip_Sleep suspends the calling thread for at least msdelay milliseconds. The
actual delay may be several milliseconds longer than msdelay, due to system
overhead and the system timer granularity (5ms).

Return Value
MVI_SUCCESS success
MVI_ERR_NOACCESS handle does not have access

Example
MVIHANDLE handle;
int timeout=200;
// Simple timeout loop
while(timeout--)
{
// Poll for data, etc.
// Break if condition is met (no timeout)
// Else sleep a bit and try again
MVIcip_Sleep (handle, 10);}

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 279 of 318
December 12, 2006

11 Side-Connect API Library Functions

In This Chapter

 Initialization .. 279

 PLC Message Handling ... 280

 Side-connect API Initialization Functions 281

 Side-connect API PLC Data Table Access Functions 283

 Side-connect API Synchronization Functions 291

 Side-connect API PLC Message Handling Functions 292

 Side-connect API Block Transfer Functions......................... 296

 Side-connect API PLC Status and Control Functions 298

 Side-connect API Miscellaneous Functions 304

This section provides detailed programming information for each of the API
library functions. he calling convention for each API function is shown in C
format.

Important: Side-Connect API Functions apply to MVI71 only and are not
supported by other modules. T

The API library routines are categorized according to functionality as follows:

11.1 Initialization
MVIsc_Open

MVIsc_Close

11.1.1 PLC Data Table Access
MVIsc_GetPLCFileInfo

MVIsc_ReadPLC

MVIsc_WritePLC

MVIsc_RMWPLC

11.1.2 Synchronization
MVIsc_WaitForEos

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 280 of 318 ProSoft Technology, Inc.
December 12, 2006

11.2 PLC Message Handling
MVIsc_PLCMsgRead

MVIsc_PLCMsgWrite

MVIsc_PLCMsgWait

11.2.1 Block Transfer
MVIsc_PLCBTRead

MVIsc_PLCBTWrite

11.2.2 PLC Status and Control
MVIsc_GetPLCStatus

MVIsc_GetPLCClock

MVIsc_SyncPLCClock

MVIsc_ClearFault

MVIsc_SetPLCMode

11.2.3 Miscellaneous
MVIsc_GetVersionInfo

MVIsc_ErrorStr

MVIsc_GetLastPcccError

MVIsc_BCD2BIN

MVIsc_BIN2BCD

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 281 of 318
December 12, 2006

Side-connect API Initialization Functions

MVIsc_Open

Syntax
int MVIsc_Open(HANDLE *handle);

Parameters
handle Pointer to variable of type handle

Description
MVIsc_Open acquires access to the API and sets handle to a unique ID that the
application uses in subsequent functions. This function must be called before any
of the other API functions can be used.

IMPORTANT: After the API has been opened, MVIsc_Close should always be
called before exiting the application.

Return Value
MVISC_SUCCESS Side-connect API was opened successfully
MVISC_ERR_REOPEN Side-connect API is already open
MVISC_ERR_PLCTIMEOUT No response from PLC detected. Check side-connect.

Example
HANDLE Handle;
if (MVIsc_Open(&Handle) != MVISC_SUCCESS) {
printf("Open failed!\n");
}

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 282 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsc_Close

Syntax
int MVIsc_Close(HANDLE handle);

Parameters
Handle Handle returned by previous call to MVIsc_Open

Description
This function is used by an application to release control of the API.

handle must be a valid handle returned from MVIsc_Open.

IMPORTANT: After the API has been opened, this function should always be
called before exiting the application.

Return Value
MVISC_SUCCESS API was closed successfully
MVISC_ERR_NOACCESS handle does not have access

Example
HANDLE Handle;
MVIsc_Close(Handle);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 283 of 318
December 12, 2006

Side-connect API PLC Data Table Access Functions

MVIsc_GetPLCFileInfo

Syntax
int MVIsc_GetPLCFileInfo(HANDLE handle, WORD fileno, MVISCFILEINFO *fileinfo);

Parameters
handle Handle returned by previous call to MVIsc_Open
fileno Number of file for which information will be retrieved
fileinfo Pointer to MVISCFILEINFO structure to receive file information

Description
This function obtains information about a PLC-5 data file.

handle must be a valid handle returned from MVIsc_Open. fileno identifies the
PLC-5 file number for which the information is to be retrieved.

The file type, length in words, and number of elements in the file are returned in
the MVISCFILEINFO structure pointed to by fileinfo. The MVISCFILEINFO
structure is defined as shown:

typedef struct tagMVISCFILEINFO
{
WORD filetype; // File type
WORD num_elements; // File size expressed in elements
DWORD num_words; // File size expressed in words
} MVISCFILEINFO;

The file type is identified by filetype. The possible values for filetype are shown in
Table 2.

PLC-5 Data File Types

Data Type Definition Value Description
MVISC_PLCTYPE_O 0 Output
MVISC_PLCTYPE_I 1 Input
MVISC_PLCTYPE_S 2 Status
MVISC_PLCTYPE_B 3 Bit (binary)
MVISC_PLCTYPE_T 4 Timer
MVISC_PLCTYPE_C 5 Counter
MVISC_PLCTYPE_R 6 Control
MVISC_PLCTYPE_N 7 Integer
MVISC_PLCTYPE_F 8 Floating-point
MVISC_PLCTYPE_PD 9 PID
MVISC_PLCTYPE_BT 10 Block Transfer
MVISC_PLCTYPE_MG 11 Message

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 284 of 318 ProSoft Technology, Inc.
December 12, 2006

Data Type Definition Value Description
MVISC_PLCTYPE_SC 12 SFC Status
MVISC_PLCTYPE_ST 13 ASCII String
MVISC_PLCTYPE_A 14 ASCII Display
MVISC_PLCTYPE_D 15 BCD Display
MVISC_PLCTYPE_NOEXIST 9998 File does not exist
MVISC_PLCTYPE_UNKNOWN 9999 Unknown data type

Return Value
MVISC_SUCCESS No errors were encountered
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_PCCCFAIL PCCC error occurred

Example
HANDLE Handle;
MVISCFILEINFO fileinfo;
int rc;
/* Query the PLC to check file number 7. In this example, */
/* file 7 is expected to be an Integer file. If it is not, */
/* a configuration error message is displayed. */
rc = MVIsc_GetPLCFileInfo(Handle, 7, &fileinfo);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_GetPLCFileInfo failed");
if (fileinfo.filetype != MVISC_PLCTYPE_N)
printf("Configuration Error: File 7 is not Integer or does not exist");
else
printf("File Size is %d elements and %ld words",
fileinfo.num_elements, fileinfo.num_words);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 285 of 318
December 12, 2006

MVIsc_WritePLC

Syntax
int MVIsc_WritePLC(HANDLE handle, void *buf, WORD fileno, WORD elemno, WORD
subelemno, WORD size, WORD datatype, int fsync);

Parameters
handle Handle returned by previous call to MVIsc_Open
buf Pointer to user data buffer which contains data to be written to

the PLC-5
fileno PLC-5 data table file number
elemno PLC-5 data table element number
subelemno PLC-5 data table subelement number
size Number of data items of type datatype to be written
datatype Type of data item being written
fsync Synchronization flag. Must be set to MVISC_SYNC_ACCESS

or MVISC_ASYNC_ACCESS.

Description
MVIsc_WritePLC writes size data items of type datatype from buf to the PLC-5
data table file specified by fileno. elemno specifies the element number of the
data table file to begin writing. subelemno is used to address structured data. It
specifies the offset to a particular data item within a multi-word data structure,
such as a PID structure. For simple data files such as integer or float, subelemno
must be set to zero; otherwise, no data will be written an
MVISC_ERR_XFERFAIL will be returned. subelemno is specified as the word
offset within the data structure.

Note: For convenience, sub-element definitions for each of the data items
within the various PLC-5 data structures are provided in the API include file
MVISCAPI.H.

fsync specifies whether the access is synchronous or asynchronous with respect
to the PLC-5 ladder scan. When set to MVISC_SYNC_ACCESS, the transfer will
take place at the end of the next ladder scan. When set to
MVISC_ASYNC_ACCESS, the transfer will take place immediately. This flag
only has effect when the PLC-5 is in Run mode. Online handle must be a valid
handle returned from MVIsc_Open.

Notes: datatype specifies the type of data item being written, which may be
different from the data file type. For example, to access the SP value of a PID
structure within a PD file, the data type should be specified as
MVISC_DTYP_FLOAT. In this example, subelemno must be set to the word
offset of the desired member within the PID structure, which in this case is
defined as MVISC_SUBEL_PD_SP. Valid values for datatype are
MVISC_DTYP_WORD and MVISC_DTYP_FLOAT. An attempt to write past

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 286 of 318 ProSoft Technology, Inc.
December 12, 2006

the end of a data table file will result in a return code of
MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the PLC is in RUN
mode when this write is attempted, PLC-5 data will be corrupted and the PLC-
5 will be faulted. Care should be taken not to exceed the boundaries of the
PLC-5 data tables. See MVIsc_GetPLCFileInfo to determine valid data table
boundaries.

Return Value
MVISC_SUCCESS The data was written successfully
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred

Example
HANDLE Handle;
short N;
float SP;
int rc;
/* Write 1 integer to element 4 of integer file 7 (N7:4), asynchronously */
rc = MVIsc_WritePLC(Handle, &N, 7, 4, 0, 1, MVISC_DTYP_WORD,
MVISC_ASYNC_ACCESS);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_WritePLC failed");
/* Write to the set point value of PID element 3 of PD file 9 (PD9:3.SP),
synchronously */
rc = MVIscWritePLC(Handle, &SP, 9, 3, MVISC_SUBEL_PD_SP, 1, MVISC_DTYP_FLOAT,
MVISC_SYNC_ACCESS);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_WritePLC failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 287 of 318
December 12, 2006

MVIsc_ReadPLC

Syntax
int MVIsc_ReadPLC(HANDLE handle, void *buf, WORD fileno, WORD elemno, WORD
subelemno, WORD size, WORD datatype, int fsync);

Parameters
handle Handle returned by previous call to MVIsc_Open
buf Pointer to user data buffer to receive the data to be read from

the PLC-5
fileno PLC-5 data table file number
elemno PLC-5 data table element number
subelemno PLC-5 data table subelement number
size Number of data items of type datatype to be read
datatype Type of data item being written
fsync Synchronization flag. Must be set to MVISC_SYNC_ACCESS

or MVISC_ASYNC_ACCESS.

Description
MVIsc_ReadPLC reads size data items of type datatype from the PLC-5 data
table file specified by fileno to the user-supplied buffer buf. elemno specifies the
element number of the data table file to begin read. buf must be large enough to
contain the data to be read. subelemno is used to address structured data. It
specifies the offset to a particular data item within a multi-word data structure,
such as a PID structure. For simple data files such as integer or float, subelemno
must be set to zero; otherwise, no data will be read and MVISC_ERR_XFERFAIL
will be returned. subelemno is specified as the word offset within the data
structure.

Note: For convenience, sub-element definitions for each of the data items
within the various PLC-5 data structures are provided in the API include file
MVISCAPI.H.

fsync specifies whether the access is synchronous or asynchronous with respect
to the PLC-5 ladder scan. When set to MVISC_SYNC_ACCESS, the transfer will
take place at the end of the next ladder scan. When set to
MVISC_ASYNC_ACCESS, the transfer will take place immediately. This flag
only has effect when the PLC-5 is in Run mode.

handle must be a valid handle returned from MVIsc_Open.

Notes: datatype specifies the type of data item being read, which may be
different from the data file type. For example, to access the SP value of a PID
structure within a PD file, the data type should be specified as
MVISC_DTYP_FLOAT. In this example, subelemno must be set to the word
offset of the desired member within the PID structure, which in this case is

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 288 of 318 ProSoft Technology, Inc.
December 12, 2006

defined as MVISC_SUBEL_PD_SP. Valid values for datatype are
MVISC_DTYP_WORD and MVISC_DTYP_FLOAT.

An attempt to read past the end of a data table file will result in a return code of
MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the PLC is in RUN
mode when this read is attempted, the PLC-5 will be faulted. Care should be
taken not to exceed the boundaries of the PLC-5 data tables. See
MVIsc_GetPLCFileInfo to determine valid data table boundaries.

Return Value
MVISC_SUCCESS The data was read successfully
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred

Example
HANDLE Handle;
float f[3];
WORD scantime;
short acc;
int rc;
/* Read 3 floating-point values starting at element 5 of float file 8 (F8:5 -
F8:7), asynchronously */
rc = MVIsc_ReadPLC(Handle, f, 8, 5, 0, 3, MVISC_DTYP_FLOAT, MVISC_ASYNC_ACCESS);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_ReadPLC failed");
/* Read the last program scan time from the status file (S2:8), synchronously
*/
rc = MVIscReadPLC(Handle, &scantime, 2, 8, 0, 1, MVISC_DTYP_WORD,
MVISC_SYNC_ACCESS);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_ReadPLC failed");
/* Read the accumulated value from timer 2 of timer file 4 (T4:2.ACC),
synchronously */
rc = MVIscReadPLC(Handle, &acc, 4, 2, MVISC_SUBEL_T_ACC, 1,
MVISC_DTYP_WORD, MVISC_SYNC_ACCESS);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_ReadPLC failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 289 of 318
December 12, 2006

MVIsc_RMWPLC

Syntax
int MVIsc_RMWPLC(HANDLE handle, WORD and_mask, WORD or_mask, WORD fileno, WORD
elemno, WORD subelemno);

Parameters
handle Handle returned by previous call to MVIsc_Open
and_mask Bits to be preserved in the data item
or_mask Bits to be set in the data item
fileno
PLC-5 data table file number
elemno PLC-5 data table element number
subelemno PLC-5 data table subelement number

Description
MVIsc_RMWPLC reads a word from a PLC-5 data table, modifies some of the
bits, and then writes it back.

handle must be a valid handle returned from MVIsc_Open. and_mask specifies
the bits to be preserved in the data word. A '1' bit preserves the corresponding bit
in the data word; a '0' bit forces the corresponding bit to zero. or_mask specifies
the bits to be set in the data word. A '1' bit forces the corresponding bit in the
data word to 1; a '0' bit leaves the corresponding bit unchanged. The or_mask is
applied after the and_mask.

fileno and elemno specify the data table file number and element number of the
data word to be modified. subelemno is used to address structured data. It
specifies the offset to a particular data word within a multi-word data structure,
such as a PID structure. For simple data files such as integer, subelemno must
be set to zero; otherwise, no data will be written and MVISC_ERR_XFERFAIL
will be returned. subelemno is specified as the word offset within the data
structure.

Note: For convenience, sub-element definitions for each of the data items
within the various PLC-5 data structures are provided in the API include file
MVISCAPI.H.

Notes: An attempt to access past the end of a data table file will result in a
return code of MVISC_ERR_XFERFAIL or MVISC_ERR_PCCCFAIL. If the
PLC is in RUN mode when this access is attempted, PLC-5 data will be
corrupted and the PLC-5 will be faulted. Care should be taken not to exceed
the boundaries of the PLC-5 data tables. See MVIsc_GetPLCFileInfo to
determine valid data table boundaries.

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 290 of 318 ProSoft Technology, Inc.
December 12, 2006

Return Value
MVISC_SUCCESS The data was written successfully
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred

Example
HANDLE Handle;
short N;
float SP;
int rc;
/* Clear bit 4 and set bit 1 of N7:5 */
rc = MVIsc_RMWPLC(Handle, 0xFFEF, 0x0002, 7, 5, 0);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_RMWPLC failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 291 of 318
December 12, 2006

Side-connect API Synchronization Functions

MVIsc_WaitForEos

Syntax
int MVIsc_WaitForEos(HANDLE handle, WORD timeout);

Parameters
handle Handle returned by previous call to MVIsc_Open
timeout Maximum number of milliseconds to wait

Description
MVIsc_WaitForEos allows an application to synchronize with the PLC-5's ladder
scan.

This function will return when the PLC-5 reaches the end of the ladder scan.

handle must be a valid handle returned from MVIsc_Open.

Return Value
MVISC_SUCCESS The PLC-5 has reached the end of the ladder scan.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT The timeout expired before an end of scan occurred.

Example
HANDLE Handle;
/* Wait here until EOS, 5 second timeout */
rc = MVIsc_WaitForEos(Handle, 5000);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 292 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-connect API PLC Message Handling Functions
The PLC-5 may use the message (MSG) instruction to read or write data to the
MVI. A message handler must be registered using the MVIsc_PLCMsgRead or
MVIsc_PLCMsgWrite functions. The MSG instruction in the PLC-5 ladder
program must be setup for communication port 3A. The command type must be
set to PLC-3 Word Range Read or PLC-3 Word Range Write. The destination
data table address must be set to "00" through "31", for message number 0-31.

MVIsc_PLCMsgRead

Syntax
int MVIsc_PLCMsgRead(HANDLE handle, void *buf, WORD datatype, WORD size, BYTE
msgnum, WORD timeout);

Parameters
handle Handle returned by previous call to MVIsc_Open
buf Pointer to user buffer containing data to be read by the PLC-5
datatype Type of data (MVISC_DTYP_WORD or MVISC_DTYP_FLOAT)
size Number of items of type datatype to be transferred. The total

size cannot exceed 240 bytes.
msgnum PLC-5 message number (0-31)
timeout Maximum number of milliseconds to wait for message-read

Description
MVIsc_PLCMsgRead handles a PLC-5 message-read instruction. This function
should be called before the PLC-5 issues the message-read instruction.

handle must be a valid handle returned from MVIsc_Open. timeout indicates the
number of milliseconds to wait for the message-read instruction from the PLC-5.
A value of zero will cause the function to register the message handler and return
immediately, without waiting for the message-read instruction. In this case, the
MVIsc_PLCMsgWait function must be used to determine if the instruction has
been completed.

Return Value
MVISC_SUCCESS The command completed without error. (Note: If timeout was

set to zero, this does not mean that the message-read
instruction has completed, but only that the message handler
was successfully registered. See MVIsc_PLCMsgWait.)

MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT The timeout expired before the message read instruction

occurred.

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 293 of 318
December 12, 2006

Example
HANDLE Handle;
float flt_array[8];
/* Setup message-read handler for msg 19, wait 5 seconds */
rc = MVIsc_PLCMsgRead(Handle, flt_array, MVISC_DTYP_FLOAT, 8, 19, 5000);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_PLCMsgRead failed");

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 294 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsc_PLCMsgWrite

Syntax
int MVIsc_PLCMsgWrite(HANDLE handle, void *buf, WORD datatype, WORD size, BYTE
msgnum, WORD timeout);

Parameters
handle Handle returned by previous call to MVIsc_Open
buf Pointer to user buffer to receive data written by PLC-5
datatype Type of data (MVISC_DTYP_WORD or MVISC_DTYP_FLOAT)
size Number of items of type datatype to be transferred. The total

size cannot exceed 240 bytes.
msgnum PLC-5 message number (0-31)
timeout Maximum number of milliseconds to wait for message-write

Description
MVIsc_PLCMsgRead handles a PLC-5 message-write instruction. This function
should be called before the PLC-5 issues the message-write instruction.

handle must be a valid handle returned from MVIsc_Open. timeout indicates the
number of milliseconds to wait for the message-write instruction from the PLC-5.
A value of zero will cause the function to register the message handler and return
immediately, without waiting for the message-write instruction. In this case, the
MVIsc_PLCMsgWait function must be used to determine if the instruction has
been completed.

Return Value
MVISC_SUCCESS The command completed without error. (Note: If timeout was

set to zero, this does not mean that the message-write
instruction has completed, but only that the message handler
was successfully registered. See MVIsc_PLCMsgWait.)

MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT The timeout expired before the message-write instruction

occurred.

Example
HANDLE Handle;
int N;
/* Setup message-write handler for msg 2, wait 5 seconds */
rc = MVIsc_PLCMsgWrite(Handle, &N, MVISC_DTYP_WORD, 1, 2, 5000);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_PLCMsgWrite failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 295 of 318
December 12, 2006

MVIsc_PLCMsgWait

Syntax
int MVIsc_PLCMsgWait(HANDLE handle, BYTE msgnum, BYTE msgtype, WORD timeout);

Parameters
handle Handle returned by previous call to MVIsc_Open
msgnum PLC-5 message number (0-31)
msgtype Message type (read or write)
timeout Maximum number of milliseconds to wait for message

instruction

Description
MVIsc_PLCMsgWait returns the current status of the message handler specified
by msgnum.

handle must be a valid handle returned from MVIsc_Open. msgtype must be set
to MVISC_MSGTYP_READ to specify a read message, or
MVISC_MSGTYP_WRITE to specify a write message. If timeout is set to zero,
the current status of the specified message handler is returned immediately. If
timeout is not zero, the function will return when the message instruction has
been completed, or when timeout milliseconds have expired.

Return Value
MVISC_SUCCESS The message-read or message-write instruction has completed

successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM No message handler has been registered for msgnum.
MVISC_ERR_PLCTIMEOUT The timeout expired before the message instruction occurred.
MVISC_ERR_PENDING The message instruction has not yet occurred. (Note: This

result code is only returned if timeout is set to zero.)

Example
HANDLE Handle;
/* Wait here until message handler 1 has completed, timeout=10 seconds */
rc = MVIsc_PLCMsgWait(Handle, 1, MVISC_MSGTYP_READ, 10000);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_PLCMsgWait failed");

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 296 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-connect API Block Transfer Functions

MVIsc_PLCBTRead

Syntax
int MVIsc_PLCBTRead(HANDLE handle, WORD *buf, BYTE rack, BYTE group, BYTE slot,
BYTE size);

Parameters
handle Handle returned by previous call to MVIsc_Open
buf Pointer to buffer to receive data from I/O module
rack Rack number of the I/O module to be read
group I/O group number of the I/O module
slot Slot number within the I/O group
size Number of words to read

Description
MVIsc_PLCBTRead requests the PLC-5 to perform a block transfer read from an
intelligent I/O module.

handle must be a valid handle returned from MVIsc_Open.

buf must point to a buffer of at least size words in size.

Return Value
MVISC_SUCCESS The block transfer was completed successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred

Example
HANDLE Handle;
WORD buf[8];
int rc;
/* Read 8 words of data from I/O module in rack 1, I/O group 1, slot 2 */
rc = MVIsc_PLCBTRead(Handle, buf, 1, 1, 2, 8);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_PLCBTRead failed");

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 297 of 318
December 12, 2006

MVIsc_PLCBTWrite

Syntax
int MVIsc_PLCBTWrite(HANDLE handle, WORD *buf, BYTE rack, BYTE group, BYTE slot,
BYTE size);

Parameters
handle Handle returned by previous call to MVIsc_Open
buf Pointer to buffer of data to be written to I/O module
rack Rack number of the I/O module to be written
group I/O group number of the I/O module
slot Slot number within the I/O group
size Number of words to write

Description
MVIsc_PLCBTWrite requests the PLC-5 to perform a block transfer write to an
intelligent I/O module.

handle must be a valid handle returned from MVIsc_Open.

buf must point to a buffer of at least size words in size.

Return Value
MVISC_SUCCESS The block transfer was completed successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_BADPARAM Parameter contains invalid value
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_XFERFAIL PLC-5 returned an error
MVISC_ERR_PCCCFAIL PCCC error occurred

Example
HANDLE Handle;
WORD buf[8];
int rc;
/* Write 8 words of data to I/O module in rack 1, I/O group 1, slot 2 */
rc = MVIsc_PLCBTWrite(Handle, buf, 1, 1, 2, 8);
if (rc != MVISC_SUCCESS)
printf("ERROR: MVIsc_PLCBTWrite failed");

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 298 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-connect API PLC Status and Control Functions

MVIsc_GetPLCStatus

Syntax
int MVIsc_GetPLCStatus(HANDLE handle, WORD *status, WORD *majfault);

Parameters
handle Handle returned by previous call to MVIsc_Open
status Pointer to variable to receive PLC-5 status word
majfault Pointer to variable to receive PLC-5 major fault word

Description
This function is used by an application to retrieve the PLC-5 status and major
fault words.

handle must be a valid handle returned from MVIsc_Open. Table 3 and Table 4
below define the bits of the status and major fault words, respectively. For
programming convenience and clarity, a definition is provided for each bit in the
API include file MVISCAPI.H.

PLC-5 Status Word

Bit Definition Description
0 MVISC_PLCSTS_RAM_BAD RAM bad
1 MVISC_PLCSTS_RUN_MODE Run mode
2 MVISC_PLCSTS_TEST_MODE Test mode
3 MVISC_PLCSTS_PROG_MODE Program mode
4 MVISC_PLCSTS_BURN_EEPROM Burning EEPROM
5 MVISC_PLCSTS_DWNLD_MODE Download mode
6 MVISC_PLCSTS_EDITS_ENAB Edits enabled
7 MVISC_PLCSTS_REM_MODE Remote modes
8 MVISC_PLCSTS_FRC_ENAB Forces enabled
9 MVISC_PLCSTS_FRC_PRES Forces present
10 MVISC_PLCSTS_EEPROM_SUCC Successful EEPROM burn
11 MVISC_PLCSTS_ONLINE_EDIT Online editing
12 MVISC_PLCSTS_DEBUG_MODE Debug mode
13 MVISC_PLCSTS_PROG_CKSM User program checksum done
14 MVISC_PLCSTS_LAST_SCAN Last scan of ladder/SFC step
15 MVISC_PLCSTS_FIRST_SCAN First scan of ladder/SFC step

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 299 of 318
December 12, 2006

PLC-5 Major Fault Word

Bit Definition Description
0 MVISC_PLCFLT_PROG_MEM_BAD Bad user program memory
1 MVISC_PLCFLT_BAD_OPRN_ADDR Illegal operand address
2 MVISC_PLCFLT_PROG_ERROR Programming error
3 MVISC_PLCFLT_SFC_ERROR Function chart error
4 MVISC_PLCFLT_DUP_LABELS Duplicate labels found
5 MVISC_PLCFLT_PWR_FAIL Power loss fault
6 MVISC_PLCFLT_PERIPHERAL Peripheral fault (Chan 3)
7 MVISC_PLCFLT_USER_JSR User jsr to fault routine
8 MVISC_PLCFLT_WATCHSOG Watchdog fault
9 MVISC_PLCFLT_BAD_CONFIG System illegally configured
10 MVISC_PLCFLT_HWFAIL Hardware fault
11 MVISC_PLCFLT_NOMCP MCP file does not exist or is not

ladder/SFC
12 MVISC_PLCFLT_NOPII PII program does not exist or is not

ladder
13 MVISC_PLCFLT_NOSTI STI program does not exist or is not

ladder
14 MVISC_PLCFLT_NOFLT Fault program does not exist or is not

ladder
15 MVISC_PLCFLT_NOFAULTED Faulted program does not exist or is not

ladder

Return Value
MVISC_SUCCESS Status was retrieved successfully
MVISC_ERR_NOACCESS handle does not have access

Example
HANDLE Handle;
WORD plcstat;
WORD mfault;
MVIsc_GetPLCStatus(Handle, &plcstat, &mfault);
if (plcstat & MVISC_PLCSTS_RUN_MODE)
printf("PLC is in Run Mode");

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 300 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsc_GetPLCClock

Syntax
int MVIsc_GetPLCClock(HANDLE handle, MVISCCLOCK *clock);

Parameters
handle Handle returned by previous call to MVIsc_Open
clock Pointer to structure of type MVISCCLOCK

Description
MVIsc_GetPLCClock retrieves the current date and time from the PLC-5 clock.
The information is returned in the structure pointed to by clock.

handle must be a valid handle returned from MVIsc_Open. The MVISCCLOCK
structure is defined as follows:

typedef struct tagMVISCCLOCK
{
WORD year;
WORD month;
WORD day;
WORD hour;
WORD minute;
WORD second;
} MVISCCLOCK;

Return Value
MVISC_SUCCESS The clock information was read successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example
HANDLE Handle;
MVISCCLOCK clock;
/* print time and date from PLC */
MVIsc_GetPLCClock(Handle, &clock);
printf("Time: %d:%02d Date: %d/%d/%d",
clock.hour, clock.minute, clock.month, clock.day, clock.year);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 301 of 318
December 12, 2006

MVIsc_SyncPLCClock

Syntax
int MVIsc_SyncPLCClock(HANDLE handle);

Parameters
handle Handle returned by previous call to MVIsc_Open

Description
MVIsc_SyncPLCClock sets the PLC-5 date and time to the MVI's current date
and time.

Return Value
MVISC_SUCCESS The PLC-5 clock was set successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example
HANDLE Handle;
/* Synchronize PLC-5 clock with MVI clock */
MVIsc_SyncPLCClock(Handle);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 302 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsc_ClearFault

Syntax
int MVIsc_ClearFault(HANDLE handle, BYTE fault_flag);

Parameters
handle Handle returned by previous call to MVIsc_Open
fault_flag Bit flag specifying which faults to clear (major and minor)

Description
MVIsc_ClearFault clears the PLC-5 fault words in the status file as specified by
the bits set in fault_flag. The following bit definitions are valid for fault_flag:

Flag Description
MVISC_CLRFLT_MAJOR Major fault words are cleared (S:11-S:14)

MVISC_CLRFLT_MINOR Minor fault words are cleared (S:10, S:17)

These flags may be logically OR'ed together to clear both major and minor faults.

Return Value
MVISC_SUCCESS The fault was cleared successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond

Example
HANDLE Handle;
/* Clear major and minor faults */
MVIsc_ClearFault(Handle, MVISC_CLRFLT_MAJOR|MVISC_CLRFLT_MINOR);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 303 of 318
December 12, 2006

MVIsc_SetPLCMode

Syntax
int MVIsc_SetPLCMode(HANDLE handle, BYTE mode);

Parameters
handle Handle returned by previous call to MVIsc_Open
mode PLC-5 mode to set

Description
MVIsc_SetPLCMode sets the PLC-5 mode. The PLC-5 keyswitch must be in the
Remote position for this function to succeed. The valid mode definitions are
shown below:

Mode Description
MVISC_PLCMODE_RUN Run mode
MVISC_PLCMODE_PROG Program mode
MVISC_PLCMODE_TEST Test mode

Return Value
MVISC_SUCCESS The fault was cleared successfully.
MVISC_ERR_NOACCESS handle does not have access
MVISC_ERR_PLCTIMEOUT PLC-5 did not respond
MVISC_ERR_PCCCFAIL The PLC-5 denied the request. Check the keyswitch position.

Example
HANDLE Handle;
/* Put the PLC-5 in Run mode */
MVIsc_SetPLCMode(Handle, MVISC_PLCMODE_RUN);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 304 of 318 ProSoft Technology, Inc.
December 12, 2006

Side-connect API Miscellaneous Functions

MVIsc_GetVersionInfo

Syntax
int MVIsc_GetVersionInfo(HANDLE handle, MVISCVERSIONINFO *verinfo);

Parameters
handle Handle returned by previous call to MVIsc_Open
verinfo Pointer to structure of type MVISCVERSIONINFO

Description
MVIsc_GetVersionInfo retrieves the current version of the API library. The
version information is returned in the structure verinfo.

handle must be a valid handle returned from MVIsc_Open. The
MVISCVERSIONINFO structure is defined as follows:

typedef struct tagMVISCVERSIONINFO
{
WORD APISeries; /* API Series */
WORD APIRevision; /* API Revision */
} MVISCVERSIONINFO;

Return Value
MVISC_SUCCESS The version information was read successfully.
MVISC_ERR_NOACCESS handle does not have access

Example
HANDLE Handle;
MVISCVERSIONINFO verinfo;
/* print version of API library */
MVIsc_GetVersionInfo(Handle,&verinfo);
printf("Library Series %d, Rev %d\n", verinfo.APISeries, verinfo.APIRevision);

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 305 of 318
December 12, 2006

MVIsc_ErrorStr

Syntax
int MVIsc_ErrorStr(int errcode, char *buf);

Parameters
errcode Error code returned from an API function
buf Pointer to user buffer to receive message

Description
MVIsc_ErrorStr returns the text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value
MVISC_SUCCESS Message returned in buf
MVISC_ERR_BADPARAM Unknown error code

Example
char buf[80];
int rc;
/* print error message */
MVIsc_ErrorStr(rc, buf);
printf("Error: %s", buf);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 306 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsc_GetLastPcccError

Syntax
int MVIsc_GetLastPcccError(HANDLE handle, BYTE *status, BYTE *extstatus);

Parameters
handle Handle returned by previous call to MVIsc_Open
status Pointer to byte to receive PCCC status code
extstatus Pointer to byte to receive PCCC extended status code

Description
MVIsc_GetLastPcccError retrieves the status and extended status from the last
PCCC error response received from the PLC-5. This function should only be
called after a previous function call has returned MVISC_ERR_PCCCFAIL.

If status is equal to 0xF0, then extstatus contains an extended error code.

Return Value
MVISC_SUCCESS status and extstatus have been retrieved
MVISC_ERR_NOACCESS handle does not have access

Example
HANDLE Handle;
int rc;
BYTE status, extstatus;
/* assume rc is set to the return code from a function such */
/* as MVIsc_PLCBTRead */
if (rc == MVISC_ERR_PCCCFAIL) /* debug the PCCC failure */
{
MVIsc_GetLastPcccError(Handle, &status, &extstatus);
printf("\nStatus: %x Extended Status: %x\n", status, extstatus);
}

Side-Connect API Library Functions MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 307 of 318
December 12, 2006

MVIsc_BCD2BIN

Syntax
WORD MVIsc_BCD2BIN(WORD bcd);

Parameters
bcd BCD value to be converted into binary

Description
MVIsc_BCD2BIN converts a 4-digit BCD value to binary. The BCD value must be
within the range 0 to 9999.

Return Value
Binary representation of BCD value.

Example
WORD bcd, bin;
/* Convert the value in bcd to binary */
bin = MVIsc_BCD2BIN(bcd);

MVI-ADM ♦ 'C' Programmable Side-Connect API Library Functions
Application Development Module

Page 308 of 318 ProSoft Technology, Inc.
December 12, 2006

MVIsc_BIN2BCD

Syntax
WORD MVIsc_BIN2BCD(WORD bin);

Parameters
bin Binary value to be converted into BCD

Description
MVIsc_BIN2BCD converts a binary value to BCD. The value must be within the
range 0 to 9999 decimal.

Return Value
BCD representation of binary value.

Example
WORD bcd;
WORD bin;
/* Convert the value in binary to BCD */
bcd = MVIsc_BIN2BCD(bin);

DOS 6 XL Reference Manual MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 309 of 318
December 12, 2006

12 DOS 6 XL Reference Manual
The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The MVI-ADM and ADMNET modules
only support Digital Mars C++ and Borland C/C++ Compiler Version 5.02.
References to other compilers should be ignored.

MVI-ADM ♦ 'C' Programmable DOS 6 XL Reference Manual
Application Development Module

Page 310 of 318 ProSoft Technology, Inc.
December 12, 2006

Support, Service & Warranty MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 311 of 318
December 12, 2006

Support, Service & Warranty
ProSoft Technology, Inc. survives on its ability to provide meaningful support to
its customers. Should any questions or problems arise, please feel free to
contact us at:

Internet Web Site: http://www.prosoft-technology.com/support
E-mail address: support@prosoft-technology.com

Phone +1 (661) 716-5100
+1 (661) 716-5101 (Fax)

Postal Mail ProSoft Technology, Inc.
1675 Chester Avenue, Fourth Floor
Bakersfield, CA 93301

Before calling for support, please prepare yourself for the call. In order to provide
the best and quickest support possible, we will most likely ask for the following
information:

1 Product Version Number
2 System architecture
3 Module configuration and contents of configuration file
4 Module Operation

o Configuration/Debug status information
o LED patterns

5 Information about the processor and user data files as viewed through the
processor configuration software and LED patterns on the processor

6 Details about the serial devices interfaced
An after-hours answering system allows pager access to one of our qualified
technical and/or application support engineers at any time to answer the
questions that are important to you.

Module Service and Repair
The MVI-ADM device is an electronic product, designed and manufactured to
function under somewhat adverse conditions. As with any product, through age,
misapplication, or any one of many possible problems the device may require
repair.

When purchased from ProSoft Technology, Inc., the device has a 1 year parts
and labor warranty (3 years for RadioLinx) according to the limits specified in the
warranty. Replacement and/or returns should be directed to the distributor from
whom the product was purchased. If you must return the device for repair, obtain
an RMA (Returned Material Authorization) number from ProSoft Technology, Inc.
Please call the factory for this number, and print the number prominently on the
outside of the shipping carton used to return the device.

http://www.prosoft-technology.com/support
mailto:support@prosoft-technology.com

MVI-ADM ♦ 'C' Programmable Support, Service & Warranty
Application Development Module

Page 312 of 318 ProSoft Technology, Inc.
December 12, 2006

General Warranty Policy – Terms and Conditions
ProSoft Technology, Inc. (hereinafter referred to as ProSoft) warrants that the
Product shall conform to and perform in accordance with published technical
specifications and the accompanying written materials, and shall be free of
defects in materials and workmanship, for the period of time herein indicated,
such warranty period commencing upon receipt of the Product. Limited warranty
service may be obtained by delivering the Product to ProSoft in accordance with
our product return procedures and providing proof of purchase and receipt date.
Customer agrees to insure the Product or assume the risk of loss or damage in
transit, to prepay shipping charges to ProSoft, and to use the original shipping
container or equivalent. Contact ProSoft Customer Service for more information.

This warranty is limited to the repair and/or replacement, at ProSoft's election, of
defective or non-conforming Product, and ProSoft shall not be responsible for the
failure of the Product to perform specified functions, or any other non-
conformance caused by or attributable to: (a) any misuse, misapplication,
accidental damage, abnormal or unusually heavy use, neglect, abuse, alteration
(b) failure of Customer to adhere to ProSoft’s specifications or instructions, (c)
any associated or complementary equipment, software, or user-created
programming including, but not limited to, programs developed with any
IEC1131-3 programming languages, "C" for example, and not furnished by
ProSoft, (d) improper installation, unauthorized repair or modification (e)
improper testing, or causes external to the product such as, but not limited to,
excessive heat or humidity, power failure, power surges or natural disaster,
compatibility with other hardware and software products introduced after the time
of purchase, or products or accessories not manufactured by ProSoft; all of
which components, software and products are provided as-is. In no event will
ProSoft be held liable for any direct or indirect, incidental consequential damage,
loss of data, or other malady arising from the purchase or use of ProSoft
products.

ProSoft’s software or electronic products are designed and manufactured to
function under adverse environmental conditions as described in the hardware
specifications for this product. As with any product, however, through age,
misapplication, or any one of many possible problems, the device may require
repair.

ProSoft warrants its products to be free from defects in material and
workmanship and shall conform to and perform in accordance with published
technical specifications and the accompanying written materials for up to one
year (12 months) from the date of original purchase (3 years for RadioLinx
products) from ProSoft. If you need to return the device for repair, obtain an RMA
(Returned Material Authorization) number from ProSoft Technology, Inc. in
accordance with the RMA instructions below. Please call the factory for this
number, and print the number prominently on the outside of the shipping carton
used to return the device.

If the product is received within the warranty period ProSoft will repair or replace
the defective product at our option and cost.

Support, Service & Warranty MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 313 of 318
December 12, 2006

Warranty Procedure: Upon return of the hardware product ProSoft will, at its
option, repair or replace the product at no additional charge, freight prepaid,
except as set forth below. Repair parts and replacement product will be furnished
on an exchange basis and will be either reconditioned or new. All replaced
product and parts become the property of ProSoft. If ProSoft determines that the
Product is not under warranty, it will, at the Customer's option, repair the Product
using then current ProSoft standard rates for parts and labor, and return the
product freight collect.

Limitation of Liability
EXCEPT AS EXPRESSLY PROVIDED HEREIN, PROSOFT MAKES NO
WARRANT OF ANY KIND, EXPRESSED OR IMPLIED, WITH RESPECT TO
ANY EQUIPMENT, PARTS OR SERVICES PROVIDED PURSUANT TO THIS
AGREEMENT, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. NEITHER PROSOFT OR ITS DEALER SHALL BE LIABLE FOR
ANY OTHER DAMAGES, INCLUDING BUT NOT LIMITED TO DIRECT,
INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES,
WHETHER IN AN ACTION IN CONTRACT OR TORT (INCLUDING
NEGLIGENCE AND STRICT LIABILITY), SUCH AS, BUT NOT LIMITED TO,
LOSS OF ANTICIPATED PROFITS OR BENEFITS RESULTING FROM, OR
ARISING OUT OF, OR IN CONNECTION WITH THE USE OR FURNISHING OF
EQUIPMENT, PARTS OR SERVICES HEREUNDER OR THE PERFORMANCE,
USE OR INABILITY TO USE THE SAME, EVEN IF ProSoft OR ITS DEALER'S
TOTAL LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT.

Where directed by State Law, some of the above exclusions or limitations may
not be applicable in some states. This warranty provides specific legal rights;
other rights that vary from state to state may also exist. This warranty shall not be
applicable to the extent that any provisions of this warranty are prohibited by any
Federal, State or Municipal Law that cannot be preempted. Contact ProSoft
Customer Service at +1 (661) 716-5100 for more information.

RMA Procedures
In the event that repairs are required for any reason, contact ProSoft Technical
Support at +1 661.716.5100. A Technical Support Engineer will ask you to
perform several tests in an attempt to diagnose the problem. Simply calling and
asking for a RMA without following our diagnostic instructions or suggestions will
lead to the return request being denied. If, after these tests are completed, the
module is found to be defective, we will provide the necessary RMA number with
instructions on returning the module for repair.

MVI-ADM ♦ 'C' Programmable Support, Service & Warranty
Application Development Module

Page 314 of 318 ProSoft Technology, Inc.
December 12, 2006

Index MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 315 of 318
December 12, 2006

Index

A
ADM • 96
ADM API • 19
ADM API Architecture • 45
ADM API Backplane Functions • 148
ADM API Clock Functions • 146
ADM API Database Functions • 111
ADM API Debug Port Functions • 104
ADM API Files • 47
ADM API Flash Functions • 156
ADM API Functions • 99
ADM API Initialization Functions • 102
ADM API Miscellaneous Functions • 164
ADM API RAM Functions • 172
ADM Functional Blocks • 19
ADM Interface Structure • 48
ADM LED Functions • 155
ADM Side-Connect Functions • 167
ADM_BtClose • 148, 149
ADM_BtFunc • 152
ADM_BtNext • 150
ADM_BtOpen • 148, 149, 150, 151, 152
ADM_CheckDBPort • 110
ADM_CheckTimer • 146, 147
ADM_Close • 102, 103
ADM_ConPrint • 109
ADM_DAWriteRecvCtl • 105, 106
ADM_DAWriteRecvData • 107, 108
ADM_DAWriteSendCtl • 105, 106
ADM_DAWriteSendData • 107, 108
ADM_DBAND_Byte • 142
ADM_DBBitChanged • 139
ADM_DBChanged • 138
ADM_DBClearBit • 115, 116
ADM_DBClose • 111, 112
ADM_DBGetBit • 114
ADM_DBGetBuff • 127, 128
ADM_DBGetByte • 117, 118
ADM_DBGetDFloat • 125, 126
ADM_DBGetFloat • 123, 124
ADM_DBGetLong • 121, 122
ADM_DBGetRegs • 129, 130
ADM_DBGetString • 131, 132
ADM_DBGetWord • 119, 120
ADM_DBNAND_Byte • 143
ADM_DBNOR_Byte • 141
ADM_DBOpen • 111, 112, 113
ADM_DBOR_Byte • 140
ADM_DBSetBit • 115, 116
ADM_DBSetBuff • 127, 128
ADM_DBSetByte • 117, 118
ADM_DBSetDFloat • 125, 126

ADM_DBSetFloat • 123, 124
ADM_DBSetLong • 121, 122
ADM_DBSetRegs • 129, 130
ADM_DBSetString • 131, 132
ADM_DBSetWord • 119, 120
ADM_DBSwapDWord • 134
ADM_DBSwapWord • 133
ADM_DBXNOR_Byte • 145
ADM_DBXOR_Byte • 144
ADM_DBZero • 113
ADM_EEPROM_ReadConfiguration • 172
ADM_FileGetChar • 156, 157, 158
ADM_FileGetInt • 156, 157, 158
ADM_FileGetString • 156, 157, 158
ADM_Getc • 159, 160, 161, 163
ADM_GetChar • 159, 160, 161, 163
ADM_GetDBCptr • 135
ADM_GetDBInt • 137
ADM_GetDBIptr • 136
ADM_GetStr • 159, 160, 161, 163
ADM_GetVal • 159, 160, 161, 163
ADM_GetVersionInfo • 164
ADM_Open • 102, 103
ADM_ProcessDebug • 104
ADM_RAM_Find_Section • 173
ADM_RAM_GetChar • 179
ADM_RAM_GetDouble • 178
ADM_RAM_GetFloat • 177
ADM_RAM_GetInt • 175
ADM_RAM_GetLong • 176
ADM_RAM_GetString • 174
ADM_ReadBtCfg • 151
ADM_ReadScCfg • 170
ADM_ReadScFile • 169
ADM_ScClose • 167, 168
ADM_ScOpen • 167, 169, 170, 171
ADM_ScScan • 171
ADM_SetBtStatus • 153, 154
ADM_SetConsolePort • 165, 166
ADM_SetConsoleSpeed • 165, 166
ADM_SetLed • 155
ADM_SetStatus • 153, 154
ADM_SkipToNext • 162
ADM_StartTimer • 146, 147
API Libraries • 17
Application Development Function Library

ADM API • 99

B
Backplane API Architecture • 51
Backplane API Configuration Functions • 185
Backplane API Direct I/O Access • 193
Backplane API Files • 51
Backplane API Functions • 181
Backplane API Initialization Functions • 183
Backplane API Messaging Functions • 195
Backplane API Miscellaneous Functions •

199

MVI-ADM ♦ 'C' Programmable Index
Application Development Module

Page 316 of 318 ProSoft Technology, Inc.
December 12, 2006

Backplane API Synchronization Functions •
189

Backplane Communications • 19
Backplane Device Driver • 247
Block Identification Codes • 40
Block Transfer • 280
Block Transfer Interface • 90
Block Transfer Routine • 91
Boot • 95
Building an Existing Borland C++ 5.02 ADM

Project • 65
Building an Existing Digital Mars C++ 8.49

ADM Project • 56

C
Cable Connections • 11
Calling Convention • 18
CIP API Architecture • 247
CIP API Initialization Functions • 249
CIP Callback Functions • 257
CIP Connected Data Transfer • 254
CIP Messaging API Files • 247
CIP Messaging Library Functions • 247
CIP Miscellaneous Functions • 271
CIP Object Registration • 251
CIP Special Callback Registration • 268
Cold Boot • 22, 37
Cold Boot (Block 9999) • 41
Command Control Blocks • 21, 35
Command Interpreter • 79, 80
Commdrv.c • 43
CONFIG.SYS File • 78
Configuration Data Transfer • 21, 25, 34
Configuring Borland C++5.02 • 65
Configuring Digital Mars C++ 8.49 • 55
connect_proc • 252, 257
Creating a New Borland C++ 5.02 ADM

Project • 67
Creating a New Digital Mars C++ 8.49 ADM

Project • 57
Creating a ROM Disk Image • 81
Creating Ladder Logic • 87

D
Data Transfer • 38, 52, 54
Database • 19
Debugging Strategies • 86
Debugprt.c • 41
Definitions • 9
Development Tools • 18
Direct I/O Access • 52
Disabling the RSLinx Driver for the Com Port

on the PC • 12
DOS 6 XL Reference Manual • 10, 309
Downloading a ROM Disk Image • 83
Downloading the Sample Program • 55, 65

E
Example Code Files • 46

F
fatalfault_proc • 265, 268
flashupdate_proc • 266, 270

H
Hardware • 44
Header File • 18

I
Initialization • 279
Installation • 83
Installing and Configuring the Module • 72
Introduction • 9

J
Jumper Locations and Settings • 11

M
Main Routine • 87, 88, 91, 96
Main_app.c • 41
Messaging • 52
Messaging Protocol • 53
Miscellaneous • 280
Module Configuration data • 26, 35
Module Configuration Data • 21
Multithreading Considerations • 18
MVI Flash Update • 83
MVI System BIOS Setup • 85
MVI46 • 42, 78
MVI46 Backplane Data Transfer • 19
MVI46 Ladder Logic • 87
MVI56 • 42, 79
MVI56 Backplane Data Transfer • 22
MVI56 Ladder Logic • 87
MVI69 • 42, 79
MVI69 Backplane Data Transfer • 26
MVI69 Ladder Logic • 88
MVI71 • 43, 79
MVI71 Backplane Data Transfer • 32
MVI71 Ladder Logic • 90
MVI94 • 43, 79
MVI94 Backplane Data Transfer • 37
MVI94 Ladder Logic • 96
MVIbp_Close • 183, 184
MVIbp_ErrorStr • 201
MVIbp_GetConsoleMode • 204
MVIbp_GetIOConfig • 185, 188
MVIbp_GetModuleInfo • 200
MVIbp_GetProcessorStatus • 206
MVIbp_GetSetupMode • 205

Index MVI-ADM ♦ 'C' Programmable
 Application Development Module

ProSoft Technology, Inc. Page 317 of 318
December 12, 2006

MVIbp_GetVersionInfo • 199
MVIbp_Open • 183, 184
MVIbp_ReadModuleFile (MVI46) • 209
MVIbp_ReadOutputImage • 52, 193, 194
MVIbp_ReceiveMessage • 195, 198
MVIbp_SendMessage • 196, 197
MVIbp_SetConsoleMode • 208
MVIbp_SetIOConfig • 52, 53, 186, 187, 193,

194, 196, 198
MVIbp_SetModuleInterrupt (MVI46) • 211
MVIbp_SetModuleStatus • 203
MVIbp_SetUserLED • 202
MVIbp_Sleep • 207
MVIbp_WaitForInputScan • 189, 192
MVIbp_WaitForOutputScan • 190, 191
MVIbp_WriteInputImage • 52, 193, 194
MVIbp_WriteModuleFile (MVI46) • 210
MVIcfg.c • 42
MVIcip_Close • 249, 250
MVIcip_ErrorString • 275
MVIcip_GetConsoleMode • 277
MVIcip_GetIdObject • 271
MVIcip_GetSetupMode • 276
MVIcip_GetVersionInfo • 272
MVIcip_Open • 249, 250
MVIcip_ReadConnected • 254, 255, 260
MVIcip_RegisterAssemblyObj • 251, 253,

260, 262, 264
MVIcip_RegisterFatalFaultRtn • 265, 268
MVIcip_RegisterFlashUpdateRtn • 266, 270
MVIcip_RegisterResetReqRtn • 269
MVIcip_SetModuleStatus • 274
MVIcip_SetUserLED • 273
MVIcip_Sleep • 278
MVIcip_UnregisterAssemblyObj • 252, 253
MVIcip_WriteConnected • 254, 256
MVIsc_BCD2BIN • 307
MVIsc_BIN2BCD • 308
MVIsc_ClearFault • 302
MVIsc_Close • 282
MVIsc_ErrorStr • 305
MVIsc_GetLastPcccError • 306
MVIsc_GetPLCClock • 300
MVIsc_GetPLCFileInfo • 283
MVIsc_GetPLCStatus • 298
MVIsc_GetVersionInfo • 304
MVIsc_Open • 281
MVIsc_PLCBTRead • 296
MVIsc_PLCBTWrite • 297
MVIsc_PLCMsgRead • 292
MVIsc_PLCMsgWait • 295
MVIsc_PLCMsgWrite • 294
MVIsc_ReadPLC • 287
MVIsc_RMWPLC • 289
MVIsc_SetPLCMode • 303
MVIsc_SyncPLCClock • 301
MVIsc_WaitForEos • 291
MVIsc_WritePLC • 285
MVIsp_Close • 216, 219
MVIsp_Config • 220

MVIsp_Getch • 232, 233, 239, 241, 243
MVIsp_GetCountUnread • 243
MVIsp_GetCountUnsent • 242
MVIsp_GetCTS • 227
MVIsp_GetData • 240, 243
MVIsp_GetDCD • 229
MVIsp_GetDSR • 228
MVIsp_GetDTR • 225, 226
MVIsp_GetLineStatus • 230
MVIsp_GetRTS • 223, 224
MVIsp_Gets • 233, 235, 238, 241, 243
MVIsp_GetVersionInfo • 246
MVIsp_Open • 215, 218, 219, 221
MVIsp_OpenAlt • 217
MVIsp_PurgeDataUnread • 244, 245
MVIsp_PurgeDataUnsent • 244, 245
MVIsp_Putch • 231, 233, 235, 237, 242
MVIsp_PutData • 232, 235, 236, 239, 241,

242
MVIsp_Puts • 232, 234, 237, 239, 242
MVIsp_SetDTR • 225, 226
MVIsp_SetHandshaking • 222
MVIsp_SetRTS • 223, 224

N
Normal Data Transfer • 21, 24, 28, 33

O
Operating System • 10

P
Package Contents • 11
Platform Specific Functions • 209
PLC Data Table Access • 279
PLC Message Handling • 280
PLC Status and Control • 280
PLC-5 Data File Types • 283
PLC-5 Major Fault Word • 299
PLC-5 Status Word • 298
Please Read This Notice • 2
Port 1 and Port 2 Jumpers • 11
Preparing the MVI-ADM Module • 11
Programming the Module • 77

R
Read Block • 24, 28, 34
Read Routine • 87, 88
resetrequest_proc • 267, 269
ROM Disk Configuration • 77
RS-232 • 14
RS-232 -- Modem Connection • 14
RS-232 -- Null Modem Connection

(Hardware Handshaking) • 15
RS-232 -- Null Modem Connection (No

Hardware Handshaking) • 15

MVI-ADM ♦ 'C' Programmable Index
Application Development Module

Page 318 of 318 ProSoft Technology, Inc.
December 12, 2006

RS-232 Configuration/Debug Port • 12
RS-422 • 16
RS-485 • 16
RS-485 and RS-422 Tip • 16
RS-485 Programming Note • 44
rxdata_proc • 263

S
Sample Code • 18
Sample Ladder Logic • 90
Sample ROM Disk Image • 80
Serial API Architecture • 53
Serial API Files • 53
Serial Communications • 41
Serial Port API Communications • 231
Serial Port API Configuration Functions • 220
Serial Port API Initialization Functions • 215
Serial Port API Miscellaneous Functions •

246
Serial Port API Status Functions • 223
Serial Port Library Functions • 213
service_proc • 252, 261
Setting Up WINIMAGE • 72
Setting Up Your Compiler • 55
Setting Up Your Development Environment •

55
Setup Jumper • 11
Side-Connect API Architecture • 54
Side-connect API Block Transfer Functions •

296
Side-Connect API Files • 54
Side-connect API Initialization Functions •

281
Side-Connect API Library Functions • 279
Side-connect API Miscellaneous Functions •

304
Side-connect API PLC Data Table Access

Functions • 283
Side-connect API PLC Message Handling

Functions • 292
Side-connect API PLC Status and Control

Functions • 298
Side-connect API Synchronization Functions

• 291
Side-Connect Interface • 95
Software • 45
Support, Service & Warranty • 311
Synchronization • 279

T
Theory of Operation • 19

U
Understanding the MVI-ADM API • 17
Using Compact Flash Disks • 45
Using Side-Connect (Requires Side-Connect

Adapter) (MVI71) • 73

Using the MVI Flash Update Utility • 84

W
Warm Boot • 22, 31, 36
Warm Boot (Block 9998) • 40
WINIMAGE

Windows Disk Image Builder • 81
Write Block • 25, 31, 34
Write Configuration • 22, 35
Write Routine • 89

Y
Your Feedback Please • 2

	Introduction
	Definitions
	Operating System

	Preparing the MVI-ADM Module
	Package Contents
	Jumper Locations and Settings
	Setup Jumper
	Port 1 and Port 2 Jumpers

	Cable Connections
	RS-232 Configuration/Debug Port
	Disabling the RSLinx Driver for the Com Port on the PC

	RS-232
	RS-232 -- Modem Connection
	RS-232 -- Null Modem Connection (Hardware Handshaking)
	RS-232 -- Null Modem Connection (No Hardware Handshaking)

	RS-422
	RS-485
	RS-485 and RS-422 Tip

	Understanding the MVI-ADM API
	API Libraries
	Calling Convention
	Header File
	Sample Code
	Multithreading Considerations

	Development Tools
	Theory of Operation
	ADM API

	ADM Functional Blocks
	Database
	Backplane Communications
	MVI46 Backplane Data Transfer
	Normal Data Transfer
	Configuration Data Transfer
	Module Configuration Data
	Command Control Blocks
	Write Configuration
	Warm Boot
	Cold Boot

	MVI56 Backplane Data Transfer
	Normal Data Transfer
	Read Block
	Write Block
	Configuration Data Transfer
	Module Configuration data

	MVI69 Backplane Data Transfer
	Normal Data Transfer
	Read Block
	Write Block
	Warm Boot

	MVI71 Backplane Data Transfer
	Normal Data Transfer
	Read Block
	Write Block
	Configuration Data Transfer
	Module Configuration data
	Command Control Blocks
	Write Configuration
	Warm Boot
	Cold Boot

	MVI94 Backplane Data Transfer
	Data Transfer
	Block Identification Codes
	Warm Boot (Block 9998)
	Cold Boot (Block 9999)

	Serial Communications
	Main_app.c
	Debugprt.c
	MVIcfg.c
	MVI46
	MVI56
	MVI69
	MVI71
	MVI94

	Commdrv.c
	RS-485 Programming Note
	Hardware
	Software

	Using Compact Flash Disks

	ADM API Architecture
	Example Code Files
	ADM API Files
	ADM Interface Structure

	Backplane API Files
	Backplane API Architecture
	Data Transfer
	Direct I/O Access
	Messaging
	Messaging Protocol

	Serial API Files
	Serial API Architecture

	Side-Connect API Files
	Side-Connect API Architecture
	Data Transfer

	Setting Up Your Development Environment
	Setting Up Your Compiler
	Configuring Digital Mars C++ 8.49
	Downloading the Sample Program
	Building an Existing Digital Mars C++ 8.49 ADM Project
	Creating a New Digital Mars C++ 8.49 ADM Project

	Configuring Borland C++5.02
	Downloading the Sample Program
	Building an Existing Borland C++ 5.02 ADM Project
	Creating a New Borland C++ 5.02 ADM Project

	Setting Up WINIMAGE
	Installing and Configuring the Module
	Using Side-Connect (Requires Side-Connect Adapter) (MVI71)

	Programming the Module
	ROM Disk Configuration
	CONFIG.SYS File
	MVI46
	MVI56
	MVI69
	MVI71
	MVI94

	Command Interpreter
	Sample ROM Disk Image

	Creating a ROM Disk Image
	WINIMAGE: Windows Disk Image Builder

	Downloading a ROM Disk Image
	MVI Flash Update
	Installation
	Using the MVI Flash Update Utility

	MVI System BIOS Setup
	Debugging Strategies

	Creating Ladder Logic
	MVI46 Ladder Logic
	Main Routine

	MVI56 Ladder Logic
	Main Routine
	Read Routine

	MVI69 Ladder Logic
	Main Routine
	Read Routine
	Write Routine

	MVI71 Ladder Logic
	Sample Ladder Logic
	Block Transfer Interface
	Main Routine
	Block Transfer Routine
	Side-Connect Interface
	Boot

	MVI94 Ladder Logic
	Main Routine
	ADM

	Application Development Function Library: ADM API
	ADM API Functions
	ADM API Initialization Functions
	ADM API Debug Port Functions
	ADM API Database Functions
	ADM API Clock Functions
	ADM API Backplane Functions
	ADM LED Functions
	ADM API Flash Functions
	ADM API Miscellaneous Functions
	ADM Side-Connect Functions
	ADM API RAM Functions

	Backplane API Functions
	Backplane API Initialization Functions
	Backplane API Configuration Functions
	Backplane API Synchronization Functions
	Backplane API Direct I/O Access
	Backplane API Messaging Functions
	Backplane API Miscellaneous Functions
	Platform Specific Functions

	Serial Port Library Functions
	Serial Port API Initialization Functions
	Serial Port API Configuration Functions
	Serial Port API Status Functions
	Serial Port API Communications
	Serial Port API Miscellaneous Functions

	CIP Messaging Library Functions
	CIP Messaging API Files
	CIP API Architecture
	Backplane Device Driver

	CIP API Initialization Functions
	CIP Object Registration
	CIP Connected Data Transfer
	CIP Callback Functions
	CIP Special Callback Registration
	CIP Miscellaneous Functions

	Side-Connect API Library Functions
	Initialization
	PLC Data Table Access
	Synchronization

	PLC Message Handling
	Block Transfer
	PLC Status and Control
	Miscellaneous

	Side-connect API Initialization Functions
	Side-connect API PLC Data Table Access Functions
	PLC-5 Data File Types

	Side-connect API Synchronization Functions
	Side-connect API PLC Message Handling Functions
	Side-connect API Block Transfer Functions
	Side-connect API PLC Status and Control Functions
	PLC-5 Status Word
	PLC-5 Major Fault Word

	Side-connect API Miscellaneous Functions

	DOS 6 XL Reference Manual
	Support, Service & Warranty
	Index

