
ControlLogix
Multi-Vendor
Interface Module
DH-485 API
1756-MVI

User Manual

Important User Information Because of the variety of uses for the products described in this
publication, those responsible for the application and use of this
control equipment must satisfy themselves that all necessary steps
have been taken to assure that each application and use meets all
performance and safety requirements, including any applicable laws,
regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown
in this guide are intended solely for purposes of example. Since there
are many variables and requirements associated with any particular
installation, Allen-Bradley does not assume responsibility or liability
(to include intellectual property liability) for actual use based upon
the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the
Application, Installation and Maintenance of Solid-State Control
(available from your local Allen-Bradley office), describes some
important differences between solid-state equipment and
electromechanical devices that should be taken into consideration
when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole
or part, without written permission of Rockwell Automation, is
prohibited.

Throughout this manual we use notes to make you aware of safety
considerations:

Attention statements help you to:

• identify a hazard

• avoid a hazard

• recognize the consequences

Allen-Bradley and ControlLogix are trademarks of Rockwell Automation.

Borland C++ is a trademark of Borland Corporation.

Microsoft C++, Windows 95/98, and Windows NT are trademarks of Microsoft Corporation.

ATTENTION

!
Identifies information about practices or
circumstances that can lead to personal injury or
death, property damage or economic loss

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

European Communities (EC)
Directive Compliance

If this product has the CE mark it is approved for installation within
the European Union and EEA regions. It has been designed and
tested to meet the following directives.

EMC Directive

This product is tested to meet the Council Directive 89/336/EC
Electromagnetic Compatibility (EMC) by applying the following
standards, in whole or in part, documented in a technical
construction file:

• EN 50081-2 EMC — Generic Emission Standard, Part 2 —
Industrial Environment

• EN 50082-2 EMC — Generic Immunity Standard, Part 2 —
Industrial Environment

This product is intended for use in an industrial environment.

Low Voltage Directive

This product is tested to meet Council Directive 73/23/EEC Low
Voltage, by applying the safety requirements of EN 61131-2
Programmable Controllers, Part 2 - Equipment Requirements and
Tests. For specific information required by EN 61131-2, see the
appropriate sections in this publication, as well as the Allen-Bradley
publication Industrial Automation Wiring and Grounding Guidelines
For Noise Immunity, publication 1770-4.1.

This equipment is classified as open equipment and must be
mounted in an enclosure during operation to provide safety
protection.

Preface

About This User Manual

Introduction This user manual provides information needed to develop application
programs for the 1756-MVI ControlLogix Multi-Vendor Interface
Module using the DH-485 API (Application Programming Interface).

This user manual describes the available software DH-485 API
libraries and tools, programming information, and example code.

Audience This user manual is intended for control engineers and technicians
who are installing, programming, and maintaining a control system
that includes a 1756-MVI module.

We assume that you:

• are familiar with software development in the 16-bit DOS
environment using the C programming language.

• are familiar with Allen-Bradley programmable controllers and
the ControlLogix platform.

References For additional information refer to the following publications:

• ControlLogix 1756-MVI Multi-Vendor Interface Module
Installation Instructions, publication number1756-1N001A-US-P

• ControlLogix 1756-MVI Multi-Vendor Interface Module
Programming Reference Manual, publication
number1756-RM004A-EN-P

• General Software Embedded DOS 6-XL Developer’s Guide 1.2

• Introduction to ControlLogix Module Development, CID#X1557

Rockwell Automation
Support

Rockwell Automation offers support services worldwide, with over 75
sales/support offices, 512 authorized distributors, and 260 authorized
systems integrators located throughout the United States alone, plus
Rockwell Automation representatives in every major country in the
world.

More
1 Publication 1756-UM011A-EN-P - August 2000

 P-2 About This User Manual
Local Product Support

Contact your local Rockwell Automation representative for:

• sales and order support

• product technical training

• warranty support

• support service agreements

Technical Product Assistance

If you need to contact Rockwell Automation for technical assistance,
call your local Rockwell Automation representative, or call Rockwell
directly at: 1 440 646-6800.

For presales support, call 1 440 646-3NET.

You can obtain technical assistance online from the following
Rockwell Automation WEB sites:

• www.ab.com/mem/technotes/kbhome.html (knowledge base)

• www.ab.com/networks/eds (electronic data sheets)

Your Questions or Comments about This Manual

If you find a problem with this manual, please notify us of it on the
enclosed Publication Problem Report (at the back of this manual).

If you have any suggestions about how we can make this manual
more useful to you, please contact us at the following address:

Rockwell Automation, Allen-Bradley Company, Inc.
Control and Information Group
Technical Communication
1 Allen-Bradley Drive
Mayfield Heights, OH 44124-6118
Publication 1756-UM011A-EN-P - August 2000

Table of Contents

Chapter 1
MVI DH-485 API What This Chapter Contains . 1-1

DH-485 API Files . 1-1
DH-485 Serial Data Transfer . 1-1
DH-485 API Functions. 1-2

Initialization Functions . 1-3
Port Status Functions . 1-6
Communication Functions . 1-9
Miscellaneous Functions. 1-23

Index
i Publication 1756-UM011A-EN-P - August 2000

Table of Contents ii
Publication 1756-UM011A-EN-P - August 2000

Chapter 1

MVI DH-485 API

The DH-485 API is one component of the 1756-MVI API Suite. The
DH-485 API allows applications to communicate with foreign devices
over the serial ports in the RS-485 mode using the DH-485 Link Layer.

The DH-485 API provides a common applications interface for all of the
modules in the MVI family. This common interface allows application
portability between modules in the family.

What This Chapter Contains The following table identifies what this chapter contains and where to
find specific information.

DH-485 API Files Table 1.A lists the supplied DH-485 API file names. These files should
be copied to a convenient directory on the computer where the
application is to be developed. These files need not be present on the
module when executing the application.

DH-485 Serial Data Transfer The DH-485 API communicates with remote DH-485 devices via
standard UART hardware. The API acts as a high level interface that
hides the details of the DH-485 protocol from the application
programmer.

For information about See page
DH-485 API Files 1-1

DH-485 Serial Data Transfer 1-1

DH-485 API Functions 1-2

Initialization Functions 1-3

Port Status Functions 1-6

Communication Functions 1-9

Miscellaneous Functions 1-23

Table 1.A Serial API File Names

FileName Description

dh485api.h Include file

dh485api.lib Library (16-bit OMF format)
1 Publication 1756-UM011A-EN-P - August 2000

1-2 MVI DH-485 API
The primary purpose of the API is to allow data to be transferred
between the module and a remote DH-485 device. The application
needs to be programmed to implement the specific requirements the
remote device, and the data can then be processed by the application
and transferred to the control processor.

Note: The 1756-MVI hardware only supports RS-485 communication on
ports 2 and 3. The MVI jumpers must be correctly set to RS-485 mode.
The DH-485 API uses the MVI Serial Port API to control the serial port
hardware. The application should include the Serial port API library file
MVISPAPI.LIB when being linked. See the 1756-MVI Developers guide
for details.

DH-485 API Functions This section provides detailed programming information for each of the
API library functions. The calling convention for each API function is
shown in C format.

The API library routines are categorized according to functionality as
shown in Table 1.B.

Table 1.B - DH-485 API Functions

Function Category Function Name Description

Initialization MVIdh_Open Initializes access to a DH485 serial port.

MVIdh_Close Terminates access to the DH485 serial
port.

Port Status MVIdh_GetANTable Get the active node table.

MVIdh_GetCommStatus Get the DH-485 communication status.

MVIdh_GetLedState Get the DH-485 LED state.

Communications MVIdh_GetDataFromCIF Retrieve data from the CIF data buffer

MVIdh_PutDataToCIF Save data to the CIF data buffer

MVIdh_CheckCIFRdStatus Checks the read status of the CIF data
buffer

MVIdh_CheckCIFWrStatus Checks the write status of the CIF data
buffer

MVIdh_WriteRemoteCIFFile Write data to a remote device’s CIF file

MVIdh_ReadRemoteCIFFile Read data from a remote device’s CIF file

MVIdh_WriteRemoteDataFile Write data to a remote device’s data file

MVIdh_ReadRemoteDataFile Read data from a remote device’s data file

Miscellaneous MVIdh_GetVersionInfo Get the DH-485 API version information

MVIdh_ErrorString Get a text description for an error code
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-3
Initialization Functions

MVIdh_Open

Syntax:

int MVIdh_Open(MVIHANDLE *handle, DH485CONFIG *dh485cfg);

Parameters:

handle Pointer to variable of type MVIHANDLE

dh485cfg Pointer to DH485CONFIG structure containing the DH485
configuration data

Description:

MVIdh_Open acquires access to the API and sets handle to a unique ID
that the application uses in subsequent functions. This function also
acquires to the specified serial port and allocates any resources needed
by the API. This function must be called before any of the other API
functions can be used.

dh485cfg specifies which comport is to be opened, the baudrate, node
number, and the mode. The valid values for comport on the 1756-MVI
module are MVI_COM2 (corresponds to PRT2) and MVI_COM3
(corresponds to PRT3). Valid Values for baudrate are MVI_BAUD_1200,
MVI_BAUD_2400, MVI_BAUD_9600, and MVI_BAUD19200. The node
can be set to any number from 0 to 31. The API supports two DH-485
mode values, MVI_MODE_SLAVE and MVI_MODE_MASTER.

typedef struct tagDH485CONFIG
{
int comport; /* COM2, COM3 *

BYTE baudrate; /* BAUD_1200 - BAUD_19200 */
BYTE node; /* Valid nodes are 0 - 31 */
BYTE mode; /* 0 = slave, 2 = master */

} DH485CONFIG;

Return Value:

MVI_SUCCESS port was opened successfully

MVI_ERR_REOPEN port is already open

MVI_ERR_NODEVICE UART not found on port

Note: MVI_ERR_NODEVICE will be returned if the port is not
supported by the module.

IMPORTANT Once the API has been opened, MVIdh_Close should
always be called before exiting the application.
Publication 1756-UM011A-EN-P - August 2000

1-4 MVI DH-485 API
Example:

DH485CONFIG dhcfg;

dhcfg.comport = MVI_COM2;
dhcfg.baudrate = MVI_BAUD_9600;
dhcfg.node = 5;
dhcfg.mode = MVI_MODE_MASTER;

if (MVIdh_Open(handle, &dhcfg) != MVI_SUCCESS) {
 printf(“Open failed!\n”);
} else {
 printf(“Open succeeded\n”);
}

See Also:

MVIdh_Close

MVIdh_Open
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-5
MVIdh_Close

Syntax:

int MVIdh_Close(MVIHANDLE handle);

Parameters:

handle Handle returned by previous call to MVIdh_Open

Description:

This function is used by an application to release control of the DH-485
API. handle must be a valid handle returned from MVIdh_Open.

Return Value:

MVI_SUCCESS API was closed successfully

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE handle;

MVIdh_Close(handle);

See Also:

MVIsp_Open

IMPORTANT Once the DH-485 API has been opened, this function
should always be called before exiting the
application.
Publication 1756-UM011A-EN-P - August 2000

1-6 MVI DH-485 API
Port Status Functions

MVIdh_GetANTable

Syntax:

int MVIdh_GetANTable(MVIHANDLE handle, DWORD *ANTable);

Parameters:

handle Handle returned by previous call to MVIdh_Open

ANTable Pointer to variable that will receive the Active node table

Description:

This function is used to retrieves a copy of the DH-485 network’s active
node table. handle must be a valid handle returned from MVIdh_Open.

ANTable is a pointer to a double word. When this function returns, each
bit of ANTable will be set to 1 if the corresponding node number is
active on the DH-485 network.

Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

DWORD ANTable;

if (MVIdh_GetANTable(handle, &ANTable) != MVI_SUCCESS) {

 printf(“Get ANT failed!\n”);

}

Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-7
MVIdh_GetCommStatus

Syntax:

int MVIdh_GetCommStatus(MVIHANDLE handle, BYTE *bStatus);

Parameters:

handle Handle returned by previous call to MVIdh_Open

bStatus Pointer to a byte that is set to 1 if online and 0 if offline

Description:

This function is used to query the state of the DH-485 port. handle must
be a valid handle returned from MVIdh_Open.

bStatus is a pointer to a byte. When this function returns, bStatus will be
set to MVI_COMM_STATUS_ON if the port is online, or
MVI_COMM_STATUS_OFF if the port is offline.

Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE handle;
BYTE status;

MVIdh_GetCommStatus(handle, &status);

if (status == MVI_COMM_STATUS_ON)
// Communication port is online

else
// Communication port is offline
Publication 1756-UM011A-EN-P - August 2000

1-8 MVI DH-485 API
MVIdh_GetLedState

Syntax:

int MVIdh_GetLedState(MVIHANDLE handle, BYTE *bState);

Parameters:

handle Handle returned by previous call to MVIdh_Open

bState Pointer to a byte that is set to 1 if DH-485 LED state is on,
or 0 if off

Description:

This function is used to query the state of the DH-485 port’s LED. An
application can use the state returned to turn an LED on or off. handle
must be a valid handle returned from MVIdh_Open.

bState is a pointer to a byte. When this function returns, bState will be
set to MVI_LED_STATE_ON if the DH-485 state machine is indicating
the LED should be on, or MVI_LED_STATE_OFF if the LED should be
off.

Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE handle;
BYTE state;

MVIdh_GetLEDState(handle, &state);
if (status == MVI_LED_STATE_ON)
// Turn user LED 1 on

else
// Turn user LED 1 off
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-9
Communication Functions

MVIdh_GetDataFromCIF

Syntax:

int MVIdh_GetDataFromCIF(
MVIHANDLE handle,
WORD offset,
WORD datasize,
BYTE *dataBuf);

Parameters:

handle Handle returned by previous call to MVIdh_Open

offset Offset in bytes from which to start getting data from the CIF

dataSize Number of bytes to read from the CIF

dataBuf Pointer to buffer to receive the data read from the CIF

Description:

This function is used to transfer dataSize bytes of data starting at offset
from the DH-485 Common Interface File to an application buffer
pointed to by dataBuf. handle must be a valid handle returned from
MVIdh_Open.

Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM offset or dataSize is invalid

Example:

MVIHANDLE Handle;
BYTE buffer[128];

// Write 128 bytes to the CIF data buffer

if(MVI_SUCCESS != MVIdh_GetDataFromCIF(Handle, 0, 128, buffer))
{
 printf(“Get Data from CIF Failed\n”);
}

See Also:

MVIdh_PutDataToCIF
Publication 1756-UM011A-EN-P - August 2000

1-10 MVI DH-485 API
MVIdh_PutDataToCIF

Syntax:

int MVIdh_PutDataToCIF(
MVIHANDLE handle,
BYTE *dataBuf,
WORD offset,
WORD dataSize);

Parameters:

handle Handle returned by previous call to MVIdh_Open

dataBuf Pointer to buffer from which data is copied to the CIF

offset Offset in bytes from which to start writing data into the CIF

dataSize Number of bytes to write to the CIF

Description:

This function is used to transfer dataSize bytes of data from an
application buffer pointed to by dataBuf to the DH-485 Common
Interface File starting at offset. handle must be a valid handle returned
from MVIdh_Open.

Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM offset or dataSize is invalid

Example:

MVIHANDLE Handle;
BYTE buffer[128];

// Write 128 bytes to the CIF data buffer
if(MVI_SUCCESS != MVIdh_PutDataToCIF(Handle, buffer, 0, 128))
{
 printf(“Put Data to CIF Failed\n”);
}

See Also:

MVIdh_GetDataFromCIF
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-11
MVIdh_CheckCIFRdStatus

Syntax:

int MVIdh_CheckCIFRdStatus(MVIHANDLE handle, BYTE *bStatus);

Parameters:

handle Handle returned by previous call to MVIdh_Open

bStatus Read status of the CIF buffer, 0 if not read since it was last
checked

Description:

This function is used to check the read status of the DH-485 Common
Interface File. bStatus returns MVI_CIF_ACCESSED if the CIF has been
read since it was last checked and MVI_CIF_NOTACCESSED if it has not
been read. handle must be a valid handle returned from MVIdh_Open.

Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE Handle;
int timeout;

timeout = 1000;
// Wait for CIF file to be read
while (--timeout)
{
 if (MVI_SUCCESS != MVIdh_CheckCIFRdStatus(Handle, &bStatus))
 {
 printf(Check of CIF read status failed \n”);
 Break;
 }
 if (bStatus == MVI_CIF_ACCESSED)
 break;
}

See Also:

MVIdh_CheckCIFWrStatus
Publication 1756-UM011A-EN-P - August 2000

1-12 MVI DH-485 API
MVIdh_CheckCIFWrStatus

Syntax:

int MVIdh_CheckCIFWrStatus(MVIHANDLE handle, BYTE *bStatus);

Parameters:

handle Handle returned by previous call to MVIdh_Open

bStatus Write status of the CIF buffer, 0 if not written since it was
last checked

Description:

This function is used to check the write status of the DH-485 Common
Interface File. bStatus returns MVI_CIF_ACCESSED if the CIF has been
written since it was last checked and MVI_CIF_NOTACCESSED if it has
not been written. handle must be a valid handle returned from
MVIdh_Open.

Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE Handle;
int timeout;

timeout = 1000;

// Wait for CIF file to be written
while (--timeout)
{
 if (MVI_SUCCESS != MVIdh_CheckCIFWrStatus(Handle, &bStatus))
 {
 printf(Check of CIF write status failed \n”);
 Break;
 }
 if (bStatus == MVI_CIF_ACCESSED)
 break;
}

See Also:

MVIdh_CheckCIFRdStatus
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-13
MVIdh_WriteRemoteCIFFile

Syntax:

int MVIdh_WriteRemoteCIFFile(
MVIHANDLE handle,
BYTE *dataBuf,
WORD node,
WORD offset,
WORD dataSize,
WORD timeout);

Parameters:

handle Handle returned by previous call to MVIdh_Open

dataBuf Pointer to buffer from which data is copied to the remote
device’s CIF

node Node number of remote device to access

offset Offset in bytes in the remote device’s CIF in which to
write data

dataSize Number of bytes to write to the remote device’s CIF

timeout Time to wait for remote device to respond in 100’s of
milliseconds

Description:

This function is used to write data to the DH-485 Common Interface file
on a remote device at node address. dataSize bytes will be copied from
the application buffer pointed to by dataBuf to the remote node’s CIF
data file starting at offset. If a response is not received in timeout, the
function aborts and returns a timeout error. handle must be a valid
handle returned from MVIdh_Open.
Publication 1756-UM011A-EN-P - August 2000

1-14 MVI DH-485 API
Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Invalid node, offset, dataSize, or
timeout

MVI_ERR_NOT_MASTER This function can only be executed in
master mode

MVI_ERR_TXCMD_BUSY Transmitter is already executing a
command

MVI_ERR_RM_MSGTIMEOUT Remote device did not respond in
timeout period

MVI_ERR_MEM_ALLOC Unable to allocate memory for request

MVI_ERR_ILL_CMD_FMT Target node, illegal command or
format

MVI_ERR_ADDRESS_PROBLEM Target node out of memory, file or
rung doe snot exist

Example:

MVIHANDLE Handle;
BYTE databuf[20];

// Write data to remote CIF

if (MVI_SUCCESS != MVIdh_WriteRemoteCIFFile(Handle, &databuf[0], 15, 0,
20, 30))
{
 printf(Write to remote CIF failed \n”);
}

See Also:

MVIdh_ReadRemoteCIFFile

MVIdh_WriteRemoteCIFFile
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-15
MVIdh_ReadRemoteCIFFile

Syntax:

int MVIdh_ReadRemoteCIFFile(
MVIHANDLE handle,
WORD node,
WORD offset,
WORD dataSize,
BYTE *dataBuf,
WORD timeout);

Parameters:

handle Handle returned by previous call to MVIdh_Open

node Node number of remote device to access

offset Offset in bytes in the remote device’s CIF from which to
read data

dataSize Number of bytes to read from the remote device’s CIF

dataBuf Pointer to buffer into which data is copied from the
remote device’s CIF

timeout Time to wait for remote device to respond in 100’s of
milliseconds

Description:

This function is used to read data from the DH-485 Common Interface
file on a remote device at node address. dataSize bytes will be copied
to the application buffer pointed to by dataBuf from the remote node’s
CIF data file starting at offset. If a response is not received in timeout,
the function aborts and returns a timeout error. handle must be a valid
handle returned from MVIdh_Open.
Publication 1756-UM011A-EN-P - August 2000

1-16 MVI DH-485 API
Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Invalid node, offset, dataSize, or timeout

MVI_ERR_NOT_MASTER This function can only be executed in
master mode

MVI_ERR_TXCMD_BUSY Transmitter is already executing a
command

MVI_ERR_RM_MSGTIMEOUT Remote device did not respond in
timeout period

MVI_ERR_MEM_ALLOC Unable to allocate memory for request

MVI_ERR_ILL_CMD_FMT Target node, illegal command or format

MVI_ERR_ADDRESS_PROBLEMTarget node out of memory, file or rung
does not exist

Example:

MVIHANDLE Handle;
BYTE databuf[20];

// Read remote CIF data into buffer

if (MVI_SUCCESS != MVIdh_ReadRemoteCIFFile(Handle, 15, 0, 20, &databuf[0],
30))
{
 printf(Read of remote CIF data failed \n”);
}

See Also:

MVIdh_WriteRemoteCIFFile

MVIdh_ReadRemoteCIFFile
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-17
MVIdh_WriteRemoteDataFile

Syntax:

int MVIdh_WriteRemoteDataFile(
MVIHANDLE handle,
BYTE *dataBuf,
BYTE node,
BYTE numElements,
WORD fileNum,
BYTE fileType,
WORD Element,
WORD timeout);

Parameters:

handle Handle returned by previous call to MVIdh_Open

dataBuf Pointer to buffer from which data is copied to the
remote device’s data file

node Node number of remote device to access

numElements Number of data elements to write to the remote device’s
data file

fileNum Number of remote device’s data file to access

fileType Type of remote device’s data file to access

Element Element number of remote device’s data file to start
writing to

timeout Time to wait for remote device to respond in 100’s of
milliseconds
Publication 1756-UM011A-EN-P - August 2000

1-18 MVI DH-485 API
Description:

This function copies data from dataBuf to a remote device at node
address. numElements data elements will be copied from the
application buffer to a remote node’s data file. If a response is not
received in timeout, the function aborts and returns a timeout error.
handle must be a valid handle returned from MVIdh_Open.

fileNum is the data file number to be written to on the remote device.

fileType is the type of file being accessed. Valid types are listed in
table 1.C.

Element is the offset into the data file to start writing the data. The
number of bytes per element is dependent on the file type and is listed
in table 1.C.

MVIdh_WriteRemoteDataFile

Table 1.C - Valid File Types

File Type Number of bytes
per element

MVI_FILETYPE_STATUS 2

MVI_FILETYPE_BIT 2

MVI_FILETYPE_TIMER 6

MVI_FILETYPE_COUNTER 6

MVI_FILETYPE_CONTROL 6

MVI_FILETYPE_INTEGER 2
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-19
Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Invalid node, offset, dataSize, or
timeout

MVI_ERR_NOT_MASTER This function can only be executed in
master mode

MVI_ERR_TXCMD_BUSY Transmitter is already executing a
command

MVI_ERR_RM_MSGTIMEOUT Remote device did not respond in
timeout period

MVI_ERR_MEM_ALLOC Unable to allocate memory for request

MVI_ERR_ILL_CMD_FMT Target node, illegal command or
format

MVI_ERR_ADDRESS_PROBLEM Target node out of memory, file or
rung doesn’t exist

MVI_ERR_CMD_EXECUTION Target node command can’t be
executed

MVI_ERR_FILE_OPEN Target node file open by another node

MVI_ERR_PROGRAM_OWNED Target node program owned by
another node

Example:

MVIHANDLE Handle;
BYTE dataBuf[20];

// Write Remote Data file

if (MVI_SUCCESS != MVIdh_WriteRemoteDataFile(Handle, 15, 10, 9,
 MVI_FILETYPE_INTEGER, 0, &databuf[0], 30))
{
 printf(Read of remote data file failed \n”);
}

See Also:

MVIdh_ReadRemoteDataFile

MVIdh_WriteRemoteDataFile
Publication 1756-UM011A-EN-P - August 2000

1-20 MVI DH-485 API
MVIdh_ReadRemoteDataFile

Syntax:

int MVIdh_ReadRemoteDataFile(
MVIHANDLE handle,
BYTE node,
BYTE numElements,
WORD fileNum,
BYTE fileType,
WORD Element,
BYTE *dataBuf,
WORD timeout);

Parameters:

handle Handle returned by previous call to MVIdh_Open

node Node number of remote device to access

numElements Number of data elements to read from the remote
device’s data file

fileNum Number of remote device’s data file to access

fileType Type of remote device’s data file to access

Element Element number of remote device’s data file to start
reading from

dataBuf Pointer to buffer into which data is copied from the
remote device’s data file

timeout Time to wait for remote device to respond in 100’s of
milliseconds
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-21
Description:

This function copies data into dataBuf from a remote device at node
address. numElements data elements will be copied to the application
buffer from the remote node’s data file. If a response is not received in
timeout, the function aborts and returns a timeout error. handle must be
a valid handle returned from MVIdh_Open.

fileNum is the data file number to be read from on the remote device.

fileType is the type of file being accessed. Valid types are listed in
table 1.D.

Element is the offset into the data file to start reading data. The number
of bytes per element is dependent on the file type and is listed in
table 1.D.

MVIdh_ReadRemoteDataFile

Table 1.D - Valid File Types

File Type Number of bytes
per element

MVI_FILETYPE_STATUS 2

MVI_FILETYPE_BIT 2

MVI_FILETYPE_TIMER 6

MVI_FILETYPE_COUNTER 6

MVI_FILETYPE_CONTROL 6

MVI_FILETYPE_INTEGER 2
Publication 1756-UM011A-EN-P - August 2000

1-22 MVI DH-485 API
Return Value:

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Invalid node, offset, dataSize, or
timeout

MVI_ERR_NOT_MASTER This function can only be executed in
master mode

MVI_ERR_TXCMD_BUSY Transmitter is already executing a
command

MVI_ERR_RM_MSGTIMEOUT Remote device did not respond in
timeout period

MVI_ERR_MEM_ALLOC Unable to allocate memory for request

MVI_ERR_ILL_CMD_FMT Target node, illegal command or
format

MVI_ERR_ADDRESS_PROBLEM Target node out of memory, file or
rung doesn’t exist

MVI_ERR_CMD_EXECUTION Target node command can’t be
executed

MVI_ERR_FILE_OPEN Target node file open by another node

MVI_ERR_PROGRAM_OWNED Target node program owned by
another node

Example:

MVIHANDLE Handle;
BYTE dataBuf[20];

// Read Remote Data file into buffer

if (MVI_SUCCESS != MVIdh_ReadRemoteDataFile(Handle, 15, 10, 9,
 MVI_FILETYPE_INTEGER, 0, &databuf[0], 30))
{
 printf(Read of remote data file failed \n”);
}

See Also:

MVIdh_WriteRemoteDataFile

MVIdh_ReadRemoteDataFile
Publication 1756-UM011A-EN-P - August 2000

MVI DH-485 API 1-23
Miscellaneous Functions

MVIdh_GetVersionInfo

Syntax:

int MVIdh_GetVersionInfo(MVIHANDLE handle,
DH485VERSIONINFO *verinfo);

Parameters:

handle Handle returned by previous call to MVIdh_Open

verinfo Pointer to structure of type DH485VERSIONINFO

Description:

MVIdh_GetVersionInfo retrieves the current version of the DH-485 API
library. The information is returned in the structure verinfo. handle
must be a valid handle returned from MVIdh_Open.

The DH485VERSIONINFO structure is defined as follows:

typedef struct tagDH485VERSIONINFO
{

WORD APISeries; /* API series */
WORD APIRevision; /* API revision */

} DH485VERSIONINFO;

Return Value:

MVI_SUCCESS The version information was read successfully.

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE Handle;
DH485VERSIONINFO verinfo;

/* print version of API library */

MVIdh_GetVersionInfo(Handle,&verinfo);
printf(“Library Series %d, Rev %d\n”, verinfo.APISeries, verinfo.APIRevision);
Publication 1756-UM011A-EN-P - August 2000

1-24 MVI DH-485 API
MVIdh_ErrorString

Syntax:

int MVIdh_ErrorString(int errcode, char *buf);

Parameters:

errcode Error code returned from an API function

buf Pointer to user buffer to receive message

Description:

MVIdh_ErrorString returns a text error message associated with the error
code errcode. The null-terminated error message is copied into the
buffer specified by buf. The buffer should be at least 80 characters in
length.

Return Value:

MVI_SUCCESS Message returned in buf

MVI_ERR_BADPARAM Unknown error code

Example:

char buf[80];
int rc;

/* print error message */
MVIdh_ErrorString(rc, buf);
printf(“Error: %s”, buf);
Publication 1756-UM011A-EN-P - August 2000

Publication 1756-UM011A-EN-P - August 2000

Index

A
about this addendum P-1 to P-2

audience P-1
introduction P-1
reference publications P-1

audience P-1

D
DH-485 API files 1-1
DH-485 API functions 1-2 to 1-24

communications 1-9 to 1-22
MVIdh_CheckCIFRdStatus 1-11
MVIdh_CheckCIFWrStatus 1-12
MVIdh_Get DataFromCIF 1-9
MVIdh_PutDataToCIF 1-10
MVIdh_ReadRemoteCIFFile 1-15 to 1-16
MVIdh_ReadRemoteDataFile 1-20 to 1-22
MVIdh_WriteRemoteCIFFile 1-13 to 1-14
MVIdh_WriteRemoteDataFile 1-17 to 1-19

initialization 1-3 to 1-5
MVIdh_Close 1-5
MVIdh_Open 1-3 to 1-4

miscellaneous 1-23 to 1-24
MVIdh_ErrorString 1-24
MVIdh_GetVersionInfo 1-23

port status 1-6 to 1-8
MVIdh_GetANTable 1-6
MVIdh_GetCommStatus 1-7
MVIdh_GetLedState 1-8

DH-485 serial data transfer 1-1 to 1-2

H
help

Rockwell Automation support P-1

M
MVI DH-485 API 1-1 to 1-24

Q
questions or comments about manual P-2

R
reference publications P-1
Rockwell Automation support P-1

S
support and technical assistance P-2

Allen-Bradley
Publication Problem Report
If you find a problem with our documentation, please complete and return this form.
Pub. Name ControlLogix Multi-Vendor Interface Module DH-485 API User Manual

Cat. No. 1756-MVI Pub. No. 1756-UM011A-EN-P Pub. Date August 2000 Part No. 957345-91

Check Problem(s) Type: Describe Problem(s) Internal Use Only

Technical Accuracy text illustration

Completeness procedure/step illustration definition info in manual

What information is missing? example guideline feature (accessibility)

explanation other info not in

Clarity

What is unclear?

 Sequence

What is not in the right order?

Other Comments

Use back for more comments.

Your Name Location/Phone

Return to: Marketing Communications, Allen-Bradley., 1 Allen-Bradley Drive, Mayfield Hts., OH 44124-6118Phone: (440) 646-3176
FAX: (440) 646-4320
Publication 1756-UM011A-EN-P - August 2000 957345-91

Other Comments

PLEASE FOLD HERE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

1 ALLEN BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

()

PL
EA

SE
 R

EM
OV

E

Publication 1756-UM011A-EN-P - August 2000 PN 957345-91
© 2000 Rockwell International Corporation. Printed in the U.S.A.

Back Cover

	1756-UM011A-EN-P, ControlLogix Multi-Vendor Interface Module DH-485 API User Manual
	Important User Information
	European Communities (EC) Directive Compliance
	Preface - About This User Manual
	Introduction
	Audience
	References
	Rockwell Automation Support

	Table of Contents
	1 - MVI DH-485 API
	What This Chapter Contains
	DH-485 API Files
	DH-485 Serial Data Transfer
	DH-485 API Functions

	Index
	Back Cover

