

MVI-ADMNET
'C' Programmable

Ethernet Module

Developer's Guide

December 13, 2006

Please Read This Notice
Successful application of this module requires a reasonable working knowledge of the Allen-
Bradley hardware, the MVI-ADMNET Module and the application in which the combination is to be
used. For this reason, it is important that those responsible for implementation satisfy themselves
that the combination will meet the needs of the application without exposing personnel or
equipment to unsafe or inappropriate working conditions.

This manual is provided to assist the user. Every attempt has been made to assure that the
information provided is accurate and a true reflection of the product's installation requirements. In
order to assure a complete understanding of the operation of the product, the user should read all
applicable Allen-Bradley documentation on the operation of the Allen-Bradley hardware.

Under no conditions will ProSoft Technology, Inc. be responsible or liable for indirect or
consequential damages resulting from the use or application of the product.

Reproduction of the contents of this manual, in whole or in part, without written permission from
ProSoft Technology, Inc. is prohibited.

Information in this manual is subject to change without notice and does not represent a
commitment on the part of ProSoft Technology, Inc. Improvements and/or changes in this manual
or the product may be made at any time. These changes will be made periodically to correct
technical inaccuracies or typographical errors.

Your Feedback Please
We always want you to feel that you made the right decision to use our products. If you have
suggestions, comments, compliments or complaints about the product, documentation or support,
please write or call us.

ProSoft Technology, Inc.
1675 Chester Avenue, Fourth Floor
Bakersfield, CA 93301
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
http://www.prosoft-technology.com

Copyright © ProSoft Technology, Inc. 2000 - 2006. All Rights Reserved.

MVI-ADMNET Developer's Guide
December 13, 2006

http://www.prosoft-technology.com/

Contents MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 3 of 90
December 13, 2006

Contents

PLEASE READ THIS NOTICE...2
Your Feedback Please ..2

1 INTRODUCTION ...5
1.1 Definitions ..5
1.2 Operating System..6

2 PREPARING THE MVI-ADMNET MODULE...7
2.1 Package Contents ...7
2.2 Jumper Locations and Settings...7

2.2.1 Setup Jumper...7
2.2.2 Port 1 and Port 2 Jumpers ...7

2.3 Connections...8
2.3.1 MVI-ADMNET Communication Ports...8

3 SETTING UP YOUR DEVELOPMENT ENVIRONMENT..9
3.1 Setting Up Your Compiler...9

3.1.1 Configuring Digital Mars C++ 8.49...9
3.1.2 Configuring Borland C++5.02 ..19

3.2 Setting Up WINIMAGE...26
3.3 Installing and Configuring the Module..26

3.3.1 Using Side-Connect (Requires Side-Connect Adapter) (MVI71).................................27

4 UNDERSTANDING THE MVI-ADMNET API ..31
4.1 API Libraries...31

4.1.1 Calling Convention...31
4.1.2 Header File...32
4.1.3 Sample Code ...32
4.1.4 Multithreading Considerations ...32

4.2 Development Tools ...32
4.3 Theory of Operation ..32

4.3.1 ADM API ..32
4.3.2 ADMNET API Architecture...32

4.4 ADM API Files ..33
4.4.1 ADM Interface Structure ..33

5 APPLICATION DEVELOPMENT FUNCTION LIBRARY: ADMNET API37
5.1 ADMNET API Functions ..37
ADMNET API Initialize Functions...39

ADM_init_socket ..39
ADM_open_sk ...40

ADMNET API Release Socket Functions ..41
ADM_release_sockets ...41
ADM_close_sk ...42

ADMNET API Send Socket Functions ...43
ADM_send_socket...43
ADM_send_sk..44

ADMNET API Receive Socket Functions ..45
ADM_receive_socket ...45
ADM_receive_sk..46

MVI-ADMNET ♦ 'C' Programmable Contents
Ethernet Module

Page 4 of 90 ProSoft Technology, Inc.
December 13, 2006

ADMNET API Miscellaneous Functions.. 47
ADM_NET_GetVersionInfo ... 47
ADM_is_sk_open .. 48

6 WATTCP API FUNCTIONS.. 49
6.1 WATTCP API Functions ... 49
ADMNET API Initialize Functions .. 51

sock_init... 51
ADMNET API System Functionality .. 52

tcp_tick 52
tcp_open.. 53
tcp_open_fast .. 54
udp_open... 55
udp_open_fast... 56
resolve 57
sock_mode .. 58
sock_established... 59
ip_timer_init ... 60
ip_timer_expired.. 61
set_timeout .. 62
chk_timeout ... 63
sockerr 64
sockstate ... 65
gethostid .. 66

ADMNET API Release Socket Functions.. 67
sock_exit.. 67
sock_abort ... 68
sock_close... 69

ADMNET API Send Socket Functions... 70
sock_write.. 70
sock_fastwrite.. 71
sock_flush.. 72
sock_flushnext... 73
sock_puts .. 74
sock_putc .. 75

ADMNET API Receive Socket Functions.. 76
sock_read.. 76
sock_fastread .. 77
tcp_listen ... 78
sock_gets .. 79
sock_getc .. 80
sock_dataready ... 81
rip 82
inet_ntoa.. 83
inet_addr.. 84

SUPPORT, SERVICE & WARRANTY... 85
Module Service and Repair .. 85
General Warranty Policy – Terms and Conditions .. 86
Limitation of Liability.. 87
RMA Procedures ... 87

INDEX... 89

Introduction MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 5 of 90
December 13, 2006

1 Introduction

In This Chapter

 Definitions .. 5

 Operating System .. 6

This document provides information needed to develop application programs for
the MVI ADM Ethernet Serial Communication Module. The MVI suite of modules
is designed to allow devices with a serial and Ethernet port to be accessed by a
PLC. The modules and their corresponding platforms are as follows:

 MVI46 - 1746 (SLC)
 MVI56 - 1756 (ControlLogix)
 MVI69 - 1769 (CompactLogix)
 MVI71 - 1771 (PLC)

The modules are programmable to accommodate devices with unique Serial-
Ethernet protocols.

This document includes information about the available ethernet communication
software API libraries, programming information, and example code. For tools,
module configuration, serial communication software API, serial communication
programming information, and example code for both the module and the PLC,
refer to MVI ADM Developer's Guide.

This document assumes the reader is familiar with software development in the
16-bit DOS environment using the C programming language. This document also
assumes that the reader is familiar with Allen-Bradley programmable controllers
and the PLC platform.

1.1 Definitions
Term Definition
API Application Programming Interface
Backplane Refers to the electrical interface, or bus, to which modules connect when

inserted into the rack. The MVI-ADMNET module communicates with the
control processor(s) through the PLC backplane.

BIOS Basic Input Output System. The BIOS firmware initializes the module at
power up, performs self-diagnostics, and provides a DOS-compatible
interface to the console and Flashes the ROM disk.

Controller The PLC or other controlling processor that communicates with the MVI
module directly over the backplane or via a network or remote I/O adapter.

Input Image Refers to a contiguous block of data that is written by the module application
and read by the controller. The input image is read by the controller once
each scan. Also referred to as the input file.

MVI-ADMNET ♦ 'C' Programmable Introduction
Ethernet Module

Page 6 of 90 ProSoft Technology, Inc.
December 13, 2006

Term Definition
Library Refers to the library file containing the API functions. The library must be

linked with the developer's application code to create the final executable
program.

Long 32-bit value.
Word 16-bit value
Byte 8-bit value
MVI Suite The MVI suite consists of line products for the following Allen-Bradley

platforms:
 PLC
 ControlLogix
 CompactLogix
 SLC

1.2 Operating System
The MVI module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multitasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Digital Mars and Borland compilers. User programs may be
executed automatically by loading them from either the CONFIG.SYS file or an
AUTOEXEC.BAT file. In addition to MVI-ADMNET, ADMTCP.CFG is required to
assign an IP address to the module. Users can store the ADMTCP.CFG file
directly to a Compact Flash.

The format of the ADMTCP.CFG is as follows:

ProLinx Communication Gateways, Inc.
Default private class 3 address
my_ip=192.168.0.148
Default class 3 network mask
netmask=255.255.255.0
name server 1 up to 9 may be included
nameserver=xxx.xxx.xxx.xxx
name server 2
nameserver=xxx.xxx.xxx.xxx
The gateway I wish to use
gateway=192.168.0.1
some networks (class 2) require all three parameters
gateway,network,subnetmask
gateway 192.168.0.1,192.168.0.0,255.255.255.0
The name of my network
domainslist="mynetwork.name"

Note: DOS programs that try to access the video or keyboard hardware
directly will not function correctly on the MVI module. Only programs that use
the standard DOS and BIOS functions to perform console I/O are compatible.

Preparing the MVI-ADMNET Module MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 7 of 90
December 13, 2006

2 Preparing the MVI-ADMNET Module

In This Chapter

 Package Contents.. 7

 Jumper Locations and Settings.. 7

 Connections ... 8

2.1 Package Contents
Your MVI-ADMNET package includes:

 MVI-ADMNET Module
 ProSoft Technology Solutions CD-ROM (includes all documentation, sample

code, and sample ladder logic).
 Null Modem Cable
 Mini-DIN to DB-9 Cable

2.2 Jumper Locations and Settings
Each module has three jumpers:

 Setup
 Port 1
 Port 2

2.2.1 Setup Jumper
The Setup jumper, located at the bottom of the module, should have the two pins
jumpered when programming the module. Once programmed, the jumper should
be removed.

2.2.2 Port 1 and Port 2 Jumpers
These jumpers, located at the bottom of the module, configure the port settings
to RS-232, RS-422, or RS-485. By default, the jumpers for both ports are set to
RS-232. These jumpers must be set properly before using the module.

MVI-ADMNET ♦ 'C' Programmable Preparing the MVI-ADMNET Module
Ethernet Module

Page 8 of 90 ProSoft Technology, Inc.
December 13, 2006

2.3 Connections

2.3.1 MVI-ADMNET Communication Ports
The MVI-ADMNET module has three physical connectors; two application ports
and one debugging port, with an RJ45 plug and Ethernet port located on the front
of the module.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 9 of 90
December 13, 2006

3 Setting Up Your Development Environment

In This Chapter

 Setting Up Your Compiler .. 9

 Setting Up WINIMAGE... 26

 Installing and Configuring the Module 26

3.1 Setting Up Your Compiler
There are some important compiler settings that must be set in order to
successfully compile an application for the MVI platforms. The following topics
describe the setup procedures for each of the supported compilers.

3.1.1 Configuring Digital Mars C++ 8.49
The following procedure allows you to successfully build the sample ADM code
supplied by Prosoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital
Mars C++ 8.49 on your workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_MVI.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the ProSoft-
Technology.com web site. When you unzip the file, you will find the sample code
files in \ADM_TOOL_MVI\SAMPLES\.

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 10 of 90 ProSoft Technology, Inc.
December 13, 2006

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project → Open from the Main
Menu.

2 From the Folders field, navigate to the folder that contains the project
(C:\ADM_TOOL_MVI\SAMPLES\…).

3 In the File Name field, click on the project name (56adm-si.prj).
4 Click OK. The Project window appears:

5 Click Project → Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Porting Notes: The Digital Mars compiler classifies duplicate library names as
Level 1 Errors rather than warnings. These errors will manifest themselves as
"Previous Definition Different : function name". Level 1 errors are non-fatal and
the executable will build and run. The architecture of the ADM libraries will
cause two or more of these errors to appear when the executable is built. This
is a normal occurrence. If you are building existing code written for a different
compiler you may have to replace calls to run-time functions with the Digital

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 11 of 90
December 13, 2006

Mars equivalent. Refer to the Digital Mars documentation on the Run-time
Library for the functions available.

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be
accessed by clicking Project → Settings from the Main Menu.

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project → New from the Main
Menu.

2 Select the path and type in the Project Name.

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 12 of 90 ProSoft Technology, Inc.
December 13, 2006

3 Click Next.

4 In the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information

included in your build.
6 Click Next.

7 Select the first source file necessary for the project.
8 Click Add.
9 Repeat this step for all source files needed for the project.
10 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 13 of 90
December 13, 2006

11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

12 Click Next.

13 Add any defines or include directories desired.
14 Click Finish.

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 14 of 90 ProSoft Technology, Inc.
December 13, 2006

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

16 Click Project → Settings from the Main Menu.

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the MVI platform.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 15 of 90
December 13, 2006

18 Click the Directories tab and fill in directory information as required by your
project's directory structure.

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 16 of 90 ProSoft Technology, Inc.
December 13, 2006

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

22 Click Memory Models from the Topics field and ensure that the options
match those shown in the following screen:

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 17 of 90
December 13, 2006

23 Click Linker from the Topics field and ensure that the options match those
shown in the following screen:

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 18 of 90 ProSoft Technology, Inc.
December 13, 2006

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

26 Click OK.
27 Click Parse → Update All from the Project Window Menu. The new settings

may not take effect unless the project is updated and reparsed.
28 Click Project → Build All from the Main Menu.
29 When complete, the build results will appear in the Output window:

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, C:\ADM_TOOL_MVI\SAMPLES\…).
The Project Settings window can be accessed by clicking Project → Settings
from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as
Level 1 Errors rather than warnings. These errors will manifest themselves as
"Previous Definition Different : function name". Level 1 errors are non-fatal and
the executable will build and run. The architecture of the ADM libraries will
cause two or more of these errors to appear when the executable is built. This
is a normal occurrence. If you are building existing code written for a different
compiler you may have to replace calls to run-time functions with the Digital
Mars equivalent. Refer to the Digital Mars documentation on the Run-time
Library for the functions available.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 19 of 90
December 13, 2006

3.1.2 Configuring Borland C++5.02
The following procedure allows you to successfully build the sample ADM code
supplied by Prosoft Technology. using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland
C++ 5.02 on your workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_MVI.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the ProSoft-
Technology.com web site. When you unzip the file, you will find the sample code
files in \ADM_TOOL_MVI\SAMPLES\.

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click Project → Open Project from the
Main Menu.

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

3 In the File Name field, click on the project name (adm.ide).

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 20 of 90 ProSoft Technology, Inc.
December 13, 2006

4 Click OK. The Project window appears:

5 Click Project → Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

6 When Success appears in the Status field, click OK.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 21 of 90
December 13, 2006

7 The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options → Project Menu from the Main Menu.

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click File → Project from the Main Menu.

2 Type in the Project Path and Name. The Target Name is created
automatically.

3 In the Target Type field, choose Application (.exe).
4 In the Platform field, choose DOS (Standard).
5 In the Target Model field, choose Large.
6 Ensure that Emulation is checked in the Math Support field.

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 22 of 90 ProSoft Technology, Inc.
December 13, 2006

7 Click OK. A Project window appears:

8 Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

9 Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 23 of 90
December 13, 2006

12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 24 of 90 ProSoft Technology, Inc.
December 13, 2006

14 Click Options → Project from the Main Menu.

15 Click Directories from the Topics field and fill in directory information as
required by your project's directory structure.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 25 of 90
December 13, 2006

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.
19 Click Project → Build All from the Main Menu.

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 26 of 90 ProSoft Technology, Inc.
December 13, 2006

20 When complete, the Success window appears:

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options
window can be accessed by clicking Options → Project from the Main Menu.

3.2 Setting Up WINIMAGE
WINIMAGE is a Win9x/NT utility used to create disk images for downloading to
the MVI module. It does not require the used of a floppy diskette. In addition, it is
not necessary to estimate the disk image size, because WINIMAGE does this
automatically and can truncate the unused portion of the disk. WINIMAGE will
de-fragment a disk image so that files may be deleted and added to the image
without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file from the CD-ROM in a sub-
directory on your PC running Win9x or NT 4.0. To start WINIMAGE, run
WINIMAGE.EXE.

3.3 Installing and Configuring the Module
This chapter describes how to install and configure the module to work with your
application. The configuration process consists of the following steps.

1 Use RSLogix to identify the module to the processor and add the module to a
project.

NOTE: The RSLogix software must be in "offline" mode to add the module to a
project.

2 Modify the module's configuration files to meet the needs of your application,
and copy the updated configuration to the module. Example configuration
files are provided on the CD-ROM.

3 Modify the example ladder logic to meet the needs of your application, and
copy the ladder logic to the processor. Example ladder logic files are provided
on the CD-ROM.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 27 of 90
December 13, 2006

Note: If you are installing this module in an existing application, you can copy
the necessary elements from the example ladder logic into your application.

The rest of this chapter describes these steps in more detail.

Note for MVI94: Configuration information for the MVI94-ADM module is
stored in the module's Flash ROM. This provides permanent storage of the
information. The user configures the module using a text file and then using
the terminal emulation software provided with the module to download it to the
module's Flash ROM. The file contains the configuration for the Flex
backplane data transfer, master port and the command list. This file is
downloaded to the module for each application.

Note for MVI69: Configuration information for the MVI69-ADM module is
stored in the module's EEPROM. This provides permanent storage of the
information. The user configures the module using a text file and then using
the terminal emulation software provided with the module to download it to the
module's EEPROM. The file contains the configuration for the virtual database,
backplane data transfer, and serial port. This file is downloaded to the module
for each application.

Note for MVI71: The first step in installing and configuring the module is to
define whether the block transfer or side-connect interface will be used. If the
block transfer interface is used, remove the Compact Flash Disk from the
module if present and insert the module into the rack with the power turned off.

3.3.1 Using Side-Connect (Requires Side-Connect
Adapter) (MVI71)

If the side-connect interface is used, the file SC_DATA.TXT on the Compact
Flash Disk must contain the correct configuration file number. To set the
configuration file number to be used with your application, run the setdnpsc.exe
program. Install the module in the rack and turn on the power. Connect the
terminal emulator to the module's debug/configuration port and exit the program
by pressing the Esc key followed by the "X" key. This causes the program to exit
and remain at the operating system prompt. Run the setdnpsc.exe program with
a command line argument of the file number to use for the configuration file. For
example, to select N10: as the configuration file, enter the following:

SETDNPSC 10

The program will build the SC_DATA.TXT on the Compact Flash Disk (C: drive in
the root directory).

The next step in module setup is to define the data files to be used with the
application. If the block transfer interface is used, define the data files to hold the
configuration, status, and user data. Enter the module's configuration in the user
data files. Enter the ladder logic to handle the blocks transferred between the
module and the PLC. Download the program to the PLC and test the program
with the module.

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 28 of 90 ProSoft Technology, Inc.
December 13, 2006

If the side-connect interface is used, no ladder logic is required for data transfer.
The user data files to interface with the module must reside in contiguous order
in the processor. The first file to be used by the interface is the configuration file.
This is the file number set in the SC_DATA.TXT file using the SETDNPSC.EXE
program. The following table lists the files used by the side-connect interface:

File Number Example Size Description
Cfg File N10 300 Configuration/Control/Status File
Cfg File+1 N11 to 1000 Port 1 commands 0 to 99
Cfg File+2 N12 to 1000 Port 2 commands 0 to 99
Cfg File+5 N15 to 1000 Data transferred from the module to the processor.
 Other files for read data.
Cfg File+5+n N16 to 1000 Data transferred from the processor to the module.
Cfg File +5+n+m Other files for write data.
n is the number of read data files minus one. Each file contains up to 1000
words.

m is the number of write data files minus one. Each file contains up to 1000
words.

Even if both files are not required for a port's commands, they are still reserved
and should only be used for that purpose. The read and write data contained in
the last set of files possess the data transferred between the module and the
processor. The number of files required for each is dependent on the number of
registers configured for each operation. Two examples follow:

Example of 240 words of read and write data (cfg file=10)
Data Files Description
N15:0 to 239 Read Data
N16:0 to 239 Write Data

Example of 2300 read and 3500 write data registers (cfg file=10)
Data Files Description
N15:0 to 999 Read data words 0 to 999
N16:0 to 999 Read data words 1000 to 1999
N17:0 to 299 Read data words 2000 to 2299
N18:0 to 999 Write data words 0 to 999
N19:0 to 999 Write data words 1000 to 1999
N20:0 to 999 Write data words 2000 to 2999
N21:0 to 499 Write data words 3000 to 3499
Special care must be taken when defining the files for the side-connect interface.
Because the module directly interacts with the PLC processor and its memory,
any errors in the configuration may cause the processor to fault and it may even
lose its configuration program. After defining the files and populating them with
the correct data, download the program to the processor, and place the
processor in Run mode. If everything is configured properly, the module should
start its normal operation.

Setting Up Your Development Environment MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 29 of 90
December 13, 2006

If all the configuration parameters are set correctly, the module's application LED
(OK LED) should remain off and the backplane activity LED (BP ACT) should
blink rapidly. Refer to the Diagnostics and Troubleshooting of this manual if you
encounter errors. Attach a terminal to Port 1 on the module and look at the status
of the module using the Configuration/Debug Menu in the module.

MVI-ADMNET ♦ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Page 30 of 90 ProSoft Technology, Inc.
December 13, 2006

Understanding the MVI-ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 31 of 90
December 13, 2006

4 Understanding the MVI-ADMNET API

In This Chapter

 API Libraries .. 31

 Development Tools .. 32

 Theory of Operation ... 32

 ADM API Files.. 33

The MVI ADM API Suite allows software developers access to the top layer of
the serial and Ethernet ports. The MVI-ADMNET API suite accesses the Ethernet
port. Both APIs can be easily used without having detailed knowledge of the
module's hardware design. The MVI ADMNET API Suite consists the Ethernet
Port API. The Ethernet Port API provides access to the Ethernet network.

Applications for the MVI ADMNET module may be developed using industry-
standard DOS programming tools and the appropriate API components.

This section provides general information pertaining to application development
for the MVI ADMNET module.

4.1 API Libraries
Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars or Borland development tools.

Note: The following compiler versions are intended to be compatible with the
MVI module API:

Digital Mars C++ 8.49

Borland C++ V5.02

More compilers will be added to the list as the API is tested for compatibility
with them.

4.1.1 Calling Convention
The API library functions are specified using the C programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

MVI-ADMNET ♦ 'C' Programmable Understanding the MVI-ADMNET API
Ethernet Module

Page 32 of 90 ProSoft Technology, Inc.
December 13, 2006

4.1.2 Header File
A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard C format.

4.1.3 Sample Code
A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is also provided. The sample application may
be compiled using Digital Mars or Borland C++.

4.1.4 Multithreading Considerations
The DOS 6-XL operating system supports the development of multithreaded
applications. Multithreading is fully supported by the API. Critical sections of the
API are protected from simultaneous access; a thread attempting to access a
critical API function at the same time as another thread will be blocked until the
previous thread has completed the function.

Note: The MVI ADM DOS 6-XL operating system has a system tick of 5
milliseconds.

Therefore, thread scheduling and timer servicing occur at 5ms intervals. Refer to
the DOS 6-XL Developer's Guide at the end of this manual for more information.

4.2 Development Tools
An application developed for the MVI ADM module must be stored on the
module's Flash ROM disk in order to be executed.

4.3 Theory of Operation

4.3.1 ADM API
The ADMNET API is one component of the MVI ADM API Suite. The ADMNET
API provides a simple module-level interface that is portable between members
of the MVI Family. This is useful when developing an application that implements
a serial-ethernet protocol for a particular device, such as a scale or bar code
reader. After an application has been developed, it can be used on any of the
MVI family modules.

4.3.2 ADMNET API Architecture
The ADMNET API is composed of a statically-linked library (called the ADMNET
library). Applications using the ADMNET API must be linked with the ADMNET
library.

Understanding the MVI-ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 33 of 90
December 13, 2006

The following figure shows the relationship between the API components.

4.4 ADM API Files
The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

File Name Description
ADMNETAPI.H Include file
ADMNETAPI.LIB Library (16-bit OMF format)

4.4.1 ADM Interface Structure
The ADMNET interface structure functions mainly as a protocol UDP and TCP
socket. Pointers to structures are used so that the API can access lower-level
Ethernet communication. The ADMNET API requires the interface structure and
the structures referenced by it. Refer to the example code section for examples
of the functions.

The interface structure is as follows:

typedef struct _tcp_socket {
 struct _tcp_socket *next;
 word ip_type; // always set to TCP_PROTO
 char *err_msg;
 char *usr_name;
 void (*usr_yield)(void);
 byte rigid;
 byte stress;
 word sock_mode; // a logical OR of bits

 longword usertimer; // ip_timer_set, ip_timer_timeout
 dataHandler_t dataHandler; // called with incoming data
 eth_address hisethaddr; // ethernet address of peer

MVI-ADMNET ♦ 'C' Programmable Understanding the MVI-ADMNET API
Ethernet Module

Page 34 of 90 ProSoft Technology, Inc.
December 13, 2006

 longword hisaddr; // internet address of peer
 word hisport; // tcp ports for this connection
 longword myaddr;
 word myport;
 word locflags;

 int queuelen;
 byte *queue;

 int rdatalen; // must be signed
 word maxrdatalen;
 byte *rdata;
 byte rddata[tcp_MaxBufSize+1]; // received data
 longword safetysig;
 word state; // connection state

 longword acknum;
 longword seqnum; // data ack'd and sequence num
 long timeout; // timeout, in milliseconds
 byte unhappy; // flag, indicates retransmitting
segt's
 byte recent; // 1 if recently transmitted
 word flags; // tcp flags word for last packet
sent

 word window; // other guy's window
 int datalen; // number of bytes of data to send
 // must be signed
 int unacked; // unacked data

 byte cwindow; // Van Jacobson's algorithm
 byte wwindow;

 word vj_sa; // VJ's alg, standard average
 word vj_sd; // VJ's alg, standard deviation
 longword vj_last; // last transmit time
 word rto;
 byte karn_count; // count of packets
 byte tos; // priority
 // retransmission timeout procedure
 // these are in clock ticks
 longword rtt_lasttran; // last transmission time
 longword rtt_smooth; // smoothed round trip time
 longword rtt_delay; // delay for next transmission
 longword rtt_time; // time of next transmission

 word mss;
 longword inactive_to; // for the inactive flag
 int sock_delay;

 byte data[tcp_MaxBufSize+1]; // data to send
} tcp_Socket;
typedef struct _udp_socket {
 struct _udp_socket *next;
 word ip_type; // always set to UDP_PROTO
 char *err_msg; // null when all is ok
 char *usr_name;

Understanding the MVI-ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 35 of 90
December 13, 2006

 void (*usr_yield)(void);
 byte rigid;
 byte stress;
 word sock_mode; // a logical OR of bits
 longword usertimer; // ip_timer_set, ip_timer_timeout
 dataHandler_t dataHandler;
 eth_address hisethaddr; // peer's ethernet address
 longword hisaddr; // peer's internet address
 word hisport; // peer's UDP port
 longword myaddr;
 word myport;
 word locflags;

 int queuelen;
 byte *queue;

 int rdatalen; // must be signed
 word maxrdatalen;
 byte *rdata;
 byte rddata[tcp_MaxBufSize + 1]; // if dataHandler = 0, len == 512
 longword safetysig;
} udp_Socket;

MVI-ADMNET ♦ 'C' Programmable Understanding the MVI-ADMNET API
Ethernet Module

Page 36 of 90 ProSoft Technology, Inc.
December 13, 2006

Application Development Function Library: ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 37 of 90
December 13, 2006

5 Application Development Function Library:
ADMNET API

In This Chapter

 ADMNET API Functions... 37

 ADMNET API Initialize Functions... 39

 ADMNET API Release Socket Functions............................... 41

 ADMNET API Send Socket Functions 43

 ADMNET API Receive Socket Functions............................... 45

 ADMNET API Miscellaneous Functions 47

5.1 ADMNET API Functions
This section provides detailed programming information for each of the ADMNET
API library functions. The calling convention for each API function is shown in C
format.

The same set of API functions is supported for all of the modules in the MVI
family.

The API library routines are categorized according to functionality as shown in
the following table.

Function Category Function Name Description
ADM_init_socket Initialize number of sockets used on

each port number and assign name
to each port.

Initialize Socket

ADM_open_sk Open and reopen each socket
separately after socket is initialized or
closed.

ADM_release_sockets Release all sockets that have been
initialized using ADM_init_socket.

Release Socket

ADM_close_sk Close each socket separately without
release socket.

ADM_send_socket Send socket according to name
assign throughout initialization
process as either UDP or TCP. This
function also takes care of opening
socket connection.

Send Socket

ADM_send_sk Send socket with previously open
with function ADM_open_sk.

MVI-ADMNET ♦ 'C' Programmable Application Development Function Library: ADMNET API
Ethernet Module

Page 38 of 90 ProSoft Technology, Inc.
December 13, 2006

Function Category Function Name Description
ADM_receive_socket Receive socket according to name

assigned throughout initialization
process as either UDP or TCP. This
function also takes care of opening
socket connection.

Receive Socket

ADM_receive_sk Receive socket with previously open
with function ADM_open_sk.

ADM_NET_GetVersionInfo Get ADMNET API version
information.

Miscellaneous

ADM_is_sk_open Test if the socket is still open.

Application Development Function Library: ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 39 of 90
December 13, 2006

ADMNET API Initialize Functions
The following topics detail the ADMNET API Initialize functions.

ADM_init_socket

Syntax:
int ADM_init_socket(int numSK, int portNum, int buffSize, char *name);

Parameters:
numSK Variable indicating how many sockets to use.
portNum Port Number.
buffSize The size of the buffer available in each socket.
name The name of the socket.

Description:
ADM_init_socket acquires access to the ADMNET API and dynamically
generates a set of sockets according to numSK and assigns portNum, buffSize,
then names each socket that the application will use in subsequent functions.
This function must be called before any of the other API functions can be used.

IMPORTANT: After the API has been opened, ADM_Release_Sockets should
always be called before exiting the application.

Return Value:
SK_SUCCESS API has successfully initialized variables.
SK_PORT_NOT_ALLOW API does not allow port number used.
SK_CANNOT_ALLOCATE_MEMORY API cannot allocate memory.

Example:
int numSK = 5;
int portNum = 5757;
int buffSize = 1000;

if(ADM_init_socket(numSK, portNum, buffSize, "ReceiveSK") != SK_SUCCESS)
{
 printf("\nFailed to open ADM API... exiting program\n");
 ADM_release_sockets();
}

See Also:
ADM_release_sockets (page 41)

MVI-ADMNET ♦ 'C' Programmable Application Development Function Library: ADMNET API
Ethernet Module

Page 40 of 90 ProSoft Technology, Inc.
December 13, 2006

ADM_open_sk

Syntax:
int ADM_open_sk(char *skName, char *ServerIPAddress, int protocol);

Parameters:
skName Name of the socket that has been initialized and used to send data.
ServerIPAddress IP address that will be used to send data to.
protocol Specified protocol to send over Ethernet (USE_TCP or USE_UDP).

Description:
ADM_open_sk open socket according to the name previously initialize, skName,
with ADM_init_socket given, and assigns ip address, ServerIPAddress for send
function with specific protocol, either UDP or TCP. ADM_init_socket must be
used before this function.

IMPORTANT: After the API has been opened, ADM_close_sk should always
be called for closing the socket. 0.0.0.0 passes as ServerIPAddress to open
socket as a server to listen to a message from client.

Return Value:
SK_SUCCESS API has successfully open socket.
SK_PROCESS_SOCKET Open process is still in
SK_NOT_FOUND API could not find an initialize socket with the name passed to the

function.
SK_TIMEOUT Time out opening socket.

Example:
char sockName1[] = "SendSocket";
int buffSize1 = 4096;
int port_1 = 6565;
int numSocket1 = 1;
int result;

sock_init(); //initialize the socket interface
ADM_init_socket(numSocket1, port_1, buffSize1, sockName1);
while ((result = ADM_open_sk(sockName1, "0.0.0.0", USE_TCP))==SK_PROCESS_SOCKET);
if (result==SK_SUCCESS)
{
 printf("successfully Opened a connection!\n");
} else {
 printf("Error Opening a connection! %d\n", result);
}

See Also:
ADM_close_sk (page 42)

Application Development Function Library: ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 41 of 90
December 13, 2006

ADMNET API Release Socket Functions
This section describes the ADMNET API Release Socket Functions.

ADM_release_sockets

Syntax:
int ADM_release_sockets(void);

Parameters:
none

Description:
This function is used by an application to release all sockets created by
ADM_init_socket.

IMPORTANT: After a socket has been generated, this function should always
be called before exiting the application.

Return Value:
SK_SUCCESS API was successfully released all the sockets.

Example:r
ADM_release_sockets();

See Also:
ADM_init_socket (page 39)

MVI-ADMNET ♦ 'C' Programmable Application Development Function Library: ADMNET API
Ethernet Module

Page 42 of 90 ProSoft Technology, Inc.
December 13, 2006

ADM_close_sk

Syntax:
int ADM_close_sk(char *skName);

Parameters:
skName Name of the socket that has been initialized and used

to send data.

Description:
This function is used by an application to close socket opened by ADM_open_sk.

IMPORTANT: After a socket has been opened, this function should always be
called to close socket, but not release socket.

Return Value:
SK_SUCCESS API was successfully released all the sockets.
SK_NOT_FOUND API could not find an initialize socket with the name

passed to the function.

Example:
char sockName1[] = "SendSocket";
ADM_close_sk(sockName1);
printf ("Connection Closed!\n");

See Also:
ADM_init_socket (page 39)

Application Development Function Library: ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 43 of 90
December 13, 2006

ADMNET API Send Socket Functions
This section describes the ADMNET API Send Socket functions.

ADM_send_socket

Syntax:
int ADM_send_socket(char *skName, char *holdSendPtr, int *sendLen, char
*ServerIPAddress, int protocol);

Parameters:
skName Name of the socket that has been initialized and used

to send data.
holdSendPtr Pointer to a string of data that will be sent to the

ServerIPAddress
sendLen Number of data specified to send.
ServerIPAddress IP address that will be used to send data to.
protocol Specified protocol to send over Ethernet (USE_TCP or

USE_UDP).

Description:
To simplify a program, this function opens connection and sends message.
skName must be a valid name that has been initialized with ADM_init_socket.

Return Value:
SK_SUCCESS Socket is successfully sent.
SK_NOT_FOUND Socket could not be found.
SK_PROCESS_SOCKET Socket is in the process of sending.

Example:
int sendLen = 10;
int se;

se = ADM_send_socket("sendSK", "1234567890", &sendLen, "192.168.0.148", USE_UDP);
if(se == SK_SUCCESS)
{
 printf("send Success\n");
}

See Also:
ADM_receive_socket (page 45)

MVI-ADMNET ♦ 'C' Programmable Application Development Function Library: ADMNET API
Ethernet Module

Page 44 of 90 ProSoft Technology, Inc.
December 13, 2006

ADM_send_sk

Syntax:
int ADM_send_sk(char *skName, char *holdSendPtr, int *sendLen);

Parameters:
skName Name of the socket that has been initialized and used

to send data.
holdSendPtr Pointer to a string of data that will be sent to the

ServerIPAddress
sendLen Number of data specified to send.

Description:
ADM_ send _sk sends with a socket previously open using ADM_open_sk.

Return Value:
SK_SUCCESS API has successfully open socket.
SK_PROCESS_SOCKET Open process is still in
SK_NOT_FOUND API could not find an initialize socket with the name

passed to the function.

Example:
char sockName1[] = "SendSocket";
char holdingReg[100];
int buffSize1 = 4096;
int port_1 = 6565;
int numSocket1 = 1;
int result;

sock_init(); //initialize the socket interface
ADM_init_socket(numSocket1, port_1, buffSize1, sockName1);
sprintf(holdingReg,"abcdefghijklmnopqrstuvwxyz-");
sendLen = 27;

while ((result = ADM_send_sk(sockName1, holdingReg, &sendLen)) ==
SK_PROCESS_SOCKET);
if(result == SK_SUCCESS)
{
printf("Data: %s Sent \n", holdingReg);
} else {
printf("Error sending data\n");
}

See Also:
ADM_receive_sk (page 46)

Application Development Function Library: ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 45 of 90
December 13, 2006

ADMNET API Receive Socket Functions
This section describes the ADMNET API Receive Socket functions.

ADM_receive_socket

Syntax:
int ADM_receive_socket(char *skName, char *holdRecPtr, int *readLen, int
protocol);

Parameters:
skName Name of the socket that has been initialized and used to receive

data.
holdRecPtr Pointer to a buffer to hold data that will be receive by the API.
readLen Length of data received by the API.
protocol Specified protocol to receive over Ethernet (USE_TCP or

USE_UDP).

Description:
To simplify a program, this function opens connection and receives message.

Return Value:
SK_SUCCESS Socket is successfully sent.
SK_NOT_FOUND Socket could not be found.
SK_PROCESS_SOCKET Socket is in the process of sending.

Example:
char hold[5000];
int readLen;
int se, i;

se = ADM _receive_socket("receiveSK", holdingReg, &readLen, USE_UDP);
if(se == SK_SUCCESS)
{
 printf("Length == %d\n", readLen);
 for (i=0; i<readLen; i++)
 {
 printf("%02X ", *(holdingReg+i));
 if(i%10 == 0) printf("\n");
 }
 printf("\n");
}

See Also:
ADM_send_socket (page 43)

MVI-ADMNET ♦ 'C' Programmable Application Development Function Library: ADMNET API
Ethernet Module

Page 46 of 90 ProSoft Technology, Inc.
December 13, 2006

ADM_receive_sk

Syntax:
int ADM_receive_sk(char *skName, char *holdRecPtr, int *readLen, char *fromIP);

Parameters:
skName Name of the socket that has been initialized and used to receive

data.
holdRecPtr Pointer to a buffer to hold data that will be receive by the API.
readLen Length of data received by the API.
fromIP Pointer to character array which in turn return with client IP.

Description:
This function receives socket after ADM_open_sk is used. skName must be a
valid name that has been initialized with ADM_init_socket.

Return Value:
SK_SUCCESS Socket is successfully sent.
SK_NOT_FOUND Socket could not be found.
SK_PROCESS_SOCKET Socket is in the process of sending.
SK_TIMEOUT Time out opening socket.

Example:
char sockName1[] = "SendSocket";
char holdingReg[100];
int result;

while ((result=ADM_receive_sk(sockName1, holdingReg, &readLen, fromIP)) ==
SK_PROCESS_SOCKET);
if(result == SK_SUCCESS){
printf("Received data!\n");
 printf("Length == %d\n", readLen);
 for (i=0; i<readLen; i++)
 {
 printf("%c", *(holdingReg+i));
 }
 printf("\n");
} else {
 printf("Received no data Error: %d\n",result);
}

See Also:
ADM_send_socket (page 43)

Application Development Function Library: ADMNET API MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 47 of 90
December 13, 2006

ADMNET API Miscellaneous Functions

ADM_NET_GetVersionInfo

Syntax:
void ADM_NET_GetVersionInfo(ADMNETVERSIONINFO* admnet_verinfo);

Parameters:
admnet_verinfo Pointer to structure of type ADMNETVERSIONINFO.

Description:
ADM_GetVersionInfo retrieves the current version of the ADMNET API library.
The information is returned in the structure admnet_verinfo.

The ADMVERSIONINFO structure is defined as follows:

typedef struct
{
 char APISeries[4];
 short APIRevisionMajor;
 short APIRevisionMinor;
 long APIRun;
}ADMNETVERSIONINFO;

Return Value:
None

Example:
ADMNETVERSIONINFO verinfo;
/* print version of API library */

ADM_NET_GetVersionInfo(& verinfo);
printf("Revision %d.%d\n", verinfo.APIRevisionMajor, verinfo.APIRevisionMinor);

MVI-ADMNET ♦ 'C' Programmable Application Development Function Library: ADMNET API
Ethernet Module

Page 48 of 90 ProSoft Technology, Inc.
December 13, 2006

ADM_is_sk_open

Syntax:
int ADM_is_sk_open(char *skName);

Parameters:
skName Name of the socket that has been initialized and used to receive

data.

Description:
ADM_is_sk_open tests if connection is still valid or not.

Return Value:
SK_SUCCESS Socket is successfully sent.
SK_NOT_FOUND Socket could not be found.
SK_SOCKET_CLOSE Socket is closed.

Example:
char sockName1[] = "SendSocket";
if(ADM_is_sk_open(sockName1) != SK_SUCCESS) {
 printf("Socket not Opened\n");
} else {
 printf("Socket Opened\n");
}

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 49 of 90
December 13, 2006

6 WATTCP API Functions

In This Chapter

 WATTCP API Functions... 49

 ADMNET API Initialize Functions... 51

 ADMNET API System Functionality 52

 ADMNET API Release Socket Functions............................... 67

 ADMNET API Send Socket Functions 70

 ADMNET API Receive Socket Functions............................... 76

6.1 WATTCP API Functions
This API is a TCP/IP stack which is used on ADMNET API. Part of this document
are brought from Waterloo TCP by Erik Engelke. Each section provides detailed
programming information for each WATTCP API library functions. The calling
convention for each API function is shown in C format.

The API library routines are categorized according to functionality as shown in in
the following table.

Function Category Function Name Description
Initialize Socket sock_init TCP/IP system initialization.

tcp_tick Determine socket connection.
tcp_open &
tcp_open_fast

Generate socket session to a host
computer for TCP protocol.
tcp_open_fast will have no wait for if
the host computer is not found.

udp_open &
udp_open_fast

Generate socket session to a host
computer for UDP protocol.
udp_open_fast will have no wait for if
the host computer is not found.

resolve Convert string IP Address into a
longword.

sock_mode Setup socket protocol transfer mode
for the particular use (UDP or TCP).

sock_established Check if connect has been established.
ip_timer_init Initialize timing.
ip_timer_expired Check if timer has been expired.
set_timeout Set timer.

System Functionality

chk_timeout Check timer if expired.

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 50 of 90 ProSoft Technology, Inc.
December 13, 2006

Function Category Function Name Description
sockerr Return ASCII error message if there is

any.
sockstate Return ASCII message what is the

current state.
gethostid Returned value is the ip address in

host format.
sock_exit Release all the TCP/IP system

initialized by sock_init.
sock_abort Abort a connection.

Release Socket

sock_close Close a connection.
sock_write &
sock_fastwrite

Write data out to a port. sock_fastwrite
will have no check for data written out
to the socket.

sock_flush Flush data out to the socket to make
sure all the data has been sent.

sock_flushnext Call before write the data out to make
sure that after write the data out to the
socket, buffer will be flushed.

sock_puts Put string onto the buffer.

Send Socket

sock_putc Put a character onto the buffer.
sock_read & sock_fastread Read data coming into a port.
tcp_listen Listen to a message coming in to a

specified port.
sock_gets Get String
sock_getc Get Character
sock_dataready Return the number data ready to be

read.

Receive Socket

rip Remove carriage returns and line
feeds.

inet_ntoa Build ASCII representation of an IP
address with a user supply string from
decimal representation of the IP
address.

inet_addr Convert string dot address to host
format.

ntohs Convert network word to host word
htons Convert host word to network word
ntohl Convert network longword to host

longword

Miscellaneous

htonl Convert host longword to network
longword

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 51 of 90
December 13, 2006

ADMNET API Initialize Functions
The following topics detail the ADMNET API Initialize functions.

sock_init

Syntax:
void sock_init(void);

Parameters:
None

Description:
This function will read a stored TCP/IP configuration file and prepare a variable.

Return Value:
SK_SUCCESS API has successfully initialized variables.
SK_PORT_NOT_ALLOW API does not allow port number used.
SK_CANNOT_ALLOCATE_MEMOR
Y

API cannot allocate memory.

Example:
int numSK = 5;
int portNum = 5757;
int buffSize = 1000;

sock_init(); //initialize the socket interface
/* initialize each socket */ if(ADM_init_socket(numSK, portNum, buffSize,
"ReceiveSK") != SK_SUCCESS)
{
 printf("\nFailed to open ADM API... exiting program\n");
 ADM_release_sockets();
}

See Also:
sock_exit (page 67)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 52 of 90 ProSoft Technology, Inc.
December 13, 2006

ADMNET API System Functionality
The following topics describe the ADMNET API System Functionality calls.

tcp_tick

Syntax:
int tcp_tick(sock_type *skType);

Parameters:
skType Current socket Type or NULL for all sockets.

Description:
This function is used by an application to determine the connection status of the
sockets.

Return Value:
0 disconnected or reset.
>0 connected.

Example:
sock_type *socket;

 . . .

if(tcp_tick(socket)) //check socket
{
 printf("Connected\n");
}

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 53 of 90
December 13, 2006

tcp_open

Syntax:
int tcp_open(tcp_Socket *sk, word lPort, longword ina, word port, dataHandler_t
datahandler);

Parameters:
sk Pointer to the socket that has been initialized.
lPort Local port number.
ina Host IP Address.
port Host port number.
datahandler Data Handler. Not used in this version. Use NULL for this parameter.

Description:
This function opens a TCP socket connection to a host machine using
parameters passed to it. IPort is an option parameter. Most of the time, IPort can
be set to 0. The API will find an available port number for the socket. ina is a host
IP address passed as a longword. Function resolve can be used to convert an IP
address into longword-formatted variable.

Return Value:
 Connection cannot be made
>0 Connection is made

Example:
tcp_Socket *socket;

 . . .

if(tcp_open(socket, 0, resolve("192.168.0.1"), 5656, NULL))
{
 printf("Open Successfully\n");
}

See Also:
resolve (page 57)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 54 of 90 ProSoft Technology, Inc.
December 13, 2006

tcp_open_fast

Syntax:
int tcp_open_fast(tcp_Socket *sk, word lPort, longword ina, word port,
dataHandler_t datahandler);

Parameters:
sk Pointer to the socket that has been initialized.
lPort Local port number.
ina Host IP Address.
port Host port number.
datahandler Data Handler. Not used in this version. Use NULL for this parameter.

Description:
This function opens a TCP socket connection to a host machine using
parameters passed to it. For this function, there is no wait to resolve the IP
address. IPort is an option parameter. Most of the time, IPort can be set to 0. The
API will find an available port number for the socket. ina is a host IP address
passed as a longword. Function resolve can be used to convert an IP address
into a longword-formatted variable.

Return Value:
 Connection cannot be made
>0 Connection is made

Example:
tcp_Socket *socket;

 . . .

if(tcp_open_fast(socket, 0, resolve("192.168.0.1"), 5656, NULL))
{
 printf("Open Successfully\n");
}

See Also:
resolve (page 57)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 55 of 90
December 13, 2006

udp_open

Syntax:
int udp_open(udp_Socket *sk, word lPort, longword ina, word port, dataHandler_t
datahandler);

Parameters:
sk Pointer to the socket that has been initialized.
lPort Local port number.
ina Host IP Address.
port Host port number.
datahandler Data Handler. Not used in this version. Use NULL for this parameter.

Description:
This function opens a UDP socket connection to a host machine using
parameters passed to it. IPort is an option parameter. Most of the time, IPort can
be set to 0. The API will find an available port number for the socket. ina is a host
IP address passed as a longword. Function resolve can be use to convert an IP
address into a longword-formatted variable.

Return Value:
 Connection cannot be made
>0 Connection is made

Example:
udp_Socket *socket;

 . . .

if(udp_open(socket, 0, resolve("192.168.0.1"), 5656, NULL))
{
 printf("Open Successfully\n");
}

See Also:
resolve (page 57)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 56 of 90 ProSoft Technology, Inc.
December 13, 2006

udp_open_fast

Syntax:
int udp_open_fast(tcp_Socket *sk, word lPort, longword ina, word port,
dataHandler_t datahandler);

Parameters:
sk Pointer to the socket that has been initialized.
lPort Local port number.
ina Host IP Address.
port Host port number.
datahandler Data Handler. Not used in this version. Use NULL for this parameter.

Description:
This function opens a UDP socket connection to a host machine using
parameters passed to it. For this function, there is no wait to resolve the IP
address that passes the function. IPort is an option parameter. Most of the time,
IPort can be set to 0. The API will find an available port number for the socket.
ina is a host IP address passed as a longword. Function resolve can be used to
convert an IP address into a longword-formatted variable.

Return Value:
 Connection cannot be made
>0 Connection is made

Example:
udp_Socket *socket;

 . . .

if(udp_open_fast(socket, 0, resolve("192.168.0.1"), 5656, NULL))
{
 printf("Open Successfully\n");
}

See Also:
resolve (page 57)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 57 of 90
December 13, 2006

resolve

Syntax:
longword resolve(char *name);

Parameters:
name String IP Address.

Description:
This function converts a string IP Address into a long.

Return Value:
longword Value of the IP Address in a long format.

Example:
resolve("192.168.0.1");

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 58 of 90 ProSoft Technology, Inc.
December 13, 2006

sock_mode

Syntax:
word sock_mode(sock_type *skType, word mode);

Parameters:
skType Current socket Type that will be used to setup socket mode.
mode The following is the available mode:
 TCP_BINARY 0 default
 TCP_ASCII 1 tread as an ascii data
 UDP_CRC 0 checksum enable
 UDP_NOCRC 2 checksum disable
 TCP_NAGLE 0 default
 TCP_NONAGLE 4 used for real time application.

Description:
This function is used set the socket transfer protocol mode.

Return Value:
Current mode.

Example:
sock_type *socket;

 . . .

sock_mode(socket, TCP_MODE_NONAGLE);

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 59 of 90
December 13, 2006

sock_established

Syntax:
int sock_established(sock_type *skType);

Parameters:
skType Current socket Type that will be used to check the connection.

Description:
This function is used check if the socket has been established.

Return Value:
 Not established.
1 Establish

Example:
sock_type *socket;

 . . .

if(sock_established(socket))
{
 printf("Socket has been established\n");
}

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 60 of 90 ProSoft Technology, Inc.
December 13, 2006

ip_timer_init

Syntax:
void ip_timer_init(sock_type *skType, word second);

Parameters:
skType Current socket Type that will be used to check the connection.
second Number of second to set the timer. 0 mean no timer out.

Description:
This function is used initialize the timer.

Return Value:
None

Example:
sock_type *socket;

 . . .

ip_timer_init (socket, 100);

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 61 of 90
December 13, 2006

ip_timer_expired

Syntax:
word ip_timer_expired(sock_type *skType);

Parameters:
skType Current socket Type that will be used to check the connection.

Description:
This function is used check if the timer has been expired.

Return Value:
1 timer has been expired.

Example:
sock_type *socket;

 . . .

if(ip_timer_expired (socket))
{
 printf("time's up\n");
}

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 62 of 90 ProSoft Technology, Inc.
December 13, 2006

set_timeout

Syntax:
longword set_timeout(word seconds);

Parameters:
seconds Number of second to set the timer.

Description:
This function is used set the timer.

Return Value:
Number of timeout.

Example:
set_timeout (100);

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 63 of 90
December 13, 2006

chk_timeout

Syntax:
word chk_timeout(longword timeout);

Parameters:
timeout Number of timeout return from set_timerout.

Description:
This function is used check if the time is out.

Return Value:
1 timeout

Example:
int timeout = set_timeout (100);
While(!chk_timeout (timeout))
 printf("Not timeout yet\n");

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 64 of 90 ProSoft Technology, Inc.
December 13, 2006

sockerr

Syntax:
char *sockerr (sock_type *skType);

Parameters:
skType Current socket Type that will be used to check the connection.

Description:
This function returns ASCII error message if there is any. Otherwise, NULL is
returned.

Return Value:
String message or NULL if there is no error.

Example:
sock_type *socket;
char *p;

 . . .

if(p = sockerr(socket) != NULL)
{
 printf("Error: %s\n", p);
}

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 65 of 90
December 13, 2006

sockstate

Syntax:
char *sockstate (sock_type *skType);

Parameters:
skType Current socket Type that will be used to check the connection.

Description:
This function returns ASCII message indicating current state.

Return Value:
String message.

Example:
sock_type *socket;
char *p;

 . . .

if(p = sockstate(socket) != NULL)
{
 printf("State: %s\n", p);
}

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 66 of 90 ProSoft Technology, Inc.
December 13, 2006

gethostid

Syntax:
char *gethostid (void);

Parameters:
None

Description:
This function returns value of the IP address in host format.

Return Value:
String IP Address.

Example:
sock_type *socket;
char *p;

 . . .

if(p = gethostid(socket) != NULL)
{
 printf("My IP: %s\n", p);
}

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 67 of 90
December 13, 2006

ADMNET API Release Socket Functions
This section describes the ADMNET API Release Socket Functions.

sock_exit

Syntax:
void sock_exit(void);

Parameters:
None

Description:
This function is used by an application to release all the TCP/IP variables created
by sock_init.

Return Value:
None

Example:
sock_exit();

See Also:
sock_init (page 51)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 68 of 90 ProSoft Technology, Inc.
December 13, 2006

sock_abort

Syntax:
void sock_abort(sock_type *skType);

Parameters:
skType Current socket Type that will be used to abort the connection.

Description:
This function is used abort a connection. This function is common for TCP
connections.

Return Value:
None

Example:
sock_type *socket;

 . . .

sock_abort(socket);

See Also:
sock_close (page 69)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 69 of 90
December 13, 2006

sock_close

Syntax:
void sock_close (sock_type *skType);

Parameters:
skType Current socket Type that will be used to close the connection.

Description:
This function is used to permanently close a connection. This function is common
for UDP connections.

Return Value:
None

Example:
sock_type *socket;

 . . .

sock_close(socket);

See Also:
sock_abort (page 68)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 70 of 90 ProSoft Technology, Inc.
December 13, 2006

ADMNET API Send Socket Functions
This section describes the ADMNET API Send Socket functions.

sock_write

Syntax:
int sock_write(sock_type *skType, byte *data, int len);

Parameters:
skType Socket that will be used to send data.
data Pointer to a buffer that contains data that will be sent to a server.
len Length of the data specified to send.

Description:
This function writes data to the socket being passed to the function. The function
will wait until the all the data is written.

Return Value:
Number of Bytes that are written to the socket or -1 if an error occurs.

Example:
sock_type *socket;
char theBuffer [512];
int len, bytes_sent;

 . . .

bytes_sent = sock_write(socket, (byte*)theBuffer, len);

See Also:
sock_fastwrite (page 71)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 71 of 90
December 13, 2006

sock_fastwrite

Syntax:
int sock_fastwrite(sock_type *skType, byte *data, int len);

Parameters:
skType Current socket that will be used to send data.
data Pointer to a buffer that contains data that will be sent to a server.
len Length of data specified to send.

Description:
This function writes data to the socket being passed to the function. The function
will not check to the data written out to the socket.

Return Value:
Number of bytes that are written to the socket or -1 if an error occurs.

Example:
sock_type *socket;
char theBuffer [512];
int len, bytes_sent;

 . . .

bytes_sent = sock_fastwrite(socket, (byte*)theBuffer, len);

See Also:
sock_write (page 70)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 72 of 90 ProSoft Technology, Inc.
December 13, 2006

sock_flush

Syntax:
void sock_flush(sock_type *skType);

Parameters:
skType Current socket that will be used to flush all the data out of the buffer.

Description:
This function is used to flush all the data that is still in the buffer out to the socket.
This function has no effect for UDP, since UDP is a connectionless protocol.

Return Value:
None

Example:
sock_type *socket;

 . . .

sock_flush(socket); // Flush the output

See Also:
sock_flushnext (page 73)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 73 of 90
December 13, 2006

sock_flushnext

Syntax:
void sock_flushnext(sock_type *skType);

Parameters:
skType Current socket that will be used to flush all the data in the buffer out.

Description:
This function is used after the write function is called to ensure that the data in a
buffer is flushed immediately.

Return Value:
None

Example:
sock_type *socket;

 . . .

sock_flushnext(socket); // Flush the output

See Also:
sock_flush (page 72)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 74 of 90 ProSoft Technology, Inc.
December 13, 2006

sock_puts

Syntax:
int sock_puts(sock_type *skType, byte *data);

Parameters:
e Socket that will be used to put string data to.
data Pointer to the string that will be sent.

Description:
This function sends a string to the socket. Character new line, '\n', will be
attached to the end of the string.

Return Value:
The length that is written to the socket.

Example:
sock_type *socket;
char data [512];
int len;

 . . .

len = sock_puts(socket, data);
printf("Put %d\n", len);

See Also:
sock_putc (page 75)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 75 of 90
December 13, 2006

sock_putc

Syntax:
byte sock_putc(sock_type *skType, byte character);

Parameters:
skType Socket that will be used to get string data from.
character A character that is used.

Description:
This function is used to put one character at a time to the socket.

Return Value:
Character put in is returned.

Example:
sock_type *socket;
char in;

 . . .

in = sock_putc(socket, 'A');
printf("%c", in);

See Also:
sock_puts (page 74)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 76 of 90 ProSoft Technology, Inc.
December 13, 2006

ADMNET API Receive Socket Functions
This section describes the ADMNET API Receive Socket functions.

sock_read

Syntax:
int sock_read(sock_type *skType, byte *data, int len);

Parameters:
skType Socket that will be used to receive data.
data Pointer to a buffer that contains data that is received.
len Length of the data specified to receive.

Description:
This function reads data from the socket being passed to the function. The
function will wait until the all the data is read.

Return Value:
Number of Bytes that are read to the socket or -1 if an error occurs.

Example:
sock_type *socket;
char theBuffer [512];
int len, bytes_receive;

 . . .

bytes_receive = sock_read(socket, (byte*)theBuffer, len);

See Also:
sock_fastread (page 77)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 77 of 90
December 13, 2006

sock_fastread

Syntax:
int sock_fastread(sock_type *skType, byte *data, int len);

Parameters:
skType Current socket that will be used to receive data.
data Pointer to a buffer that contains data that is received to a server.
len Length of data specified to receive.

Description:
This function reads data to the socket being passed to the function. The function
will not check to the data read into the socket.

Return Value:
Number of bytes that are read to the socket or -1 if an error occurs.

Example:
sock_type *socket;
char theBuffer [512];
int len, bytes_receive;

 . . .

bytes_receive = sock_fastread(socket, (byte*)theBuffer, len);

See Also:
sock_read (page 76)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 78 of 90 ProSoft Technology, Inc.
December 13, 2006

tcp_listen

Syntax:
int tcp_listen(tcp_Socket *sk, word lPort, longword ina, word port,
dataHandler_t datahandler, word timeout);

Parameters:
sk Pointer to the socket that has been initialized.
lPort Local port number.
datahandler Data Handler. Not used in this version. Use NULL for this parameter.
ina Host IP Address.
port Host port number.
timeout Value used to set the period of time to wait for data. 0 is set to indicate no

timeout.

Description:
This function is used for listening to an incoming message. port is an option
parameter. Most of the time, port can be set to 0. The API will find an available
port number for the socket. ina is a host IP address passed as a longword.
Function resolve can be used to convert an IP address into a longword-formatted
variable. 0 can be passed as an ina value if there is no specific IP Address to
listen too.

Example:
tcp_Socket *socket;
int port = 5656;

 . . .

tcp_listen(socket, port, 0L, 0, NULL, 0);

See Also:
ADM_send_socket (page 43)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 79 of 90
December 13, 2006

sock_gets

Syntax:
int sock_gets(sock_type *skType, byte *data, int len);

Parameters:
skType Socket that will be used to get string data from.
data Pointer to the string return.
len Specified length for the function to get the string.

Description:
This function is used for obtaining a string from the socket. The len parameter
specifies how long the string will be read.

Return Value:
The length read from the socket is returned.

Example:
sock_type *socket;
char data [512];
int len;

 . . .

len = sock_gets(socket, data, 100);
printf("Get %d\n", len);

See Also:
sock_getc (page 80)

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 80 of 90 ProSoft Technology, Inc.
December 13, 2006

sock_getc

Syntax:
int sock_getc(sock_type *skType);

Parameters:
skType Socket that will be used to get string data from.

Description:
This function gets one character at a time from the socket.

Return Value:
Character read in is returned.

Example:
sock_type *socket;
char in;

 . . .

in = sock_getc(socket);
printf("%c", in);

See Also:
sock_gets (page 79)

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 81 of 90
December 13, 2006

sock_dataready

Syntax:
int sock_dataready(sock_type *skType);

Parameters:
skType Current socket that will be used to check if data is ready to be read.

Description:
This function is used check if there is data ready to be read.

Return Value:
Number of bytes ready to be read or -1 if error occurs.

Example:
int in;
sock_type *socket;

 . . .

in = sock_dataready(socket);
printf("%d", in);

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 82 of 90 ProSoft Technology, Inc.
December 13, 2006

rip

Syntax:
Char * rip(char *String);

Parameters:
String Array of character string.

Description:
This function is used to strip out carriage return and line feed. If there are more
than one carriage return or line feed, the first one will be replace with 0 and the
rest of them will not be defined.

Return Value:
Pointer to the new string.

Example:
char s;

 . . .

s = sock_dataready("This is a test\n\r");
printf("%s", s);

WATTCP API Functions MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 83 of 90
December 13, 2006

inet_ntoa

Syntax:
Char * inet_ntoa(char *String, longword IP);

Parameters:
String Array of character string.
IP Decimal representation of IP address.

Description:
This function builds ASCII representation of an IP address with a user supply
string from decimal representation of the IP address. The size of the buffer has to
be at least 16 byte.

Return Value:
Pointer to the new string.

Example:
char buffer[20];
sock_init();
printf("My IP address is %s\n", inet_ntoa(buffer, gethostid()));

MVI-ADMNET ♦ 'C' Programmable WATTCP API Functions
Ethernet Module

Page 84 of 90 ProSoft Technology, Inc.
December 13, 2006

inet_addr

Syntax:
longword * inet_addr(char *String);

Parameters:
String Array of character string.

Description:
This function converts string dot address to host format.

Return Value:
Host IP address format.

Example:
char buffer[] = "192.168.0.1";
sock_init();
printf("My IP address is %ld\n", inet_addr(buffer));

Support, Service & Warranty MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 85 of 90
December 13, 2006

Support, Service & Warranty
ProSoft Technology, Inc. survives on its ability to provide meaningful support to
its customers. Should any questions or problems arise, please feel free to
contact us at:

Internet Web Site: http://www.prosoft-technology.com/support
E-mail address: support@prosoft-technology.com

Phone +1 (661) 716-5100
+1 (661) 716-5101 (Fax)

Postal Mail ProSoft Technology, Inc.
1675 Chester Avenue, Fourth Floor
Bakersfield, CA 93301

Before calling for support, please prepare yourself for the call. In order to provide
the best and quickest support possible, we will most likely ask for the following
information:

1 Product Version Number
2 System architecture
3 Module configuration and contents of configuration file
4 Module Operation

o Configuration/Debug status information
o LED patterns

5 Information about the processor and user data files as viewed through the
processor configuration software and LED patterns on the processor

6 Details about the serial devices interfaced
An after-hours answering system allows pager access to one of our qualified
technical and/or application support engineers at any time to answer the
questions that are important to you.

Module Service and Repair
The MVI-ADMNET device is an electronic product, designed and manufactured
to function under somewhat adverse conditions. As with any product, through
age, misapplication, or any one of many possible problems the device may
require repair.

When purchased from ProSoft Technology, Inc., the device has a 1 year parts
and labor warranty (3 years for RadioLinx) according to the limits specified in the
warranty. Replacement and/or returns should be directed to the distributor from
whom the product was purchased. If you must return the device for repair, obtain
an RMA (Returned Material Authorization) number from ProSoft Technology, Inc.
Please call the factory for this number, and print the number prominently on the
outside of the shipping carton used to return the device.

http://www.prosoft-technology.com/support
mailto:support@prosoft-technology.com

MVI-ADMNET ♦ 'C' Programmable Support, Service & Warranty
Ethernet Module

Page 86 of 90 ProSoft Technology, Inc.
December 13, 2006

General Warranty Policy – Terms and Conditions
ProSoft Technology, Inc. (hereinafter referred to as ProSoft) warrants that the
Product shall conform to and perform in accordance with published technical
specifications and the accompanying written materials, and shall be free of
defects in materials and workmanship, for the period of time herein indicated,
such warranty period commencing upon receipt of the Product. Limited warranty
service may be obtained by delivering the Product to ProSoft in accordance with
our product return procedures and providing proof of purchase and receipt date.
Customer agrees to insure the Product or assume the risk of loss or damage in
transit, to prepay shipping charges to ProSoft, and to use the original shipping
container or equivalent. Contact ProSoft Customer Service for more information.

This warranty is limited to the repair and/or replacement, at ProSoft's election, of
defective or non-conforming Product, and ProSoft shall not be responsible for the
failure of the Product to perform specified functions, or any other non-
conformance caused by or attributable to: (a) any misuse, misapplication,
accidental damage, abnormal or unusually heavy use, neglect, abuse, alteration
(b) failure of Customer to adhere to ProSoft’s specifications or instructions, (c)
any associated or complementary equipment, software, or user-created
programming including, but not limited to, programs developed with any
IEC1131-3 programming languages, "C" for example, and not furnished by
ProSoft, (d) improper installation, unauthorized repair or modification (e)
improper testing, or causes external to the product such as, but not limited to,
excessive heat or humidity, power failure, power surges or natural disaster,
compatibility with other hardware and software products introduced after the time
of purchase, or products or accessories not manufactured by ProSoft; all of
which components, software and products are provided as-is. In no event will
ProSoft be held liable for any direct or indirect, incidental consequential damage,
loss of data, or other malady arising from the purchase or use of ProSoft
products.

ProSoft’s software or electronic products are designed and manufactured to
function under adverse environmental conditions as described in the hardware
specifications for this product. As with any product, however, through age,
misapplication, or any one of many possible problems, the device may require
repair.

ProSoft warrants its products to be free from defects in material and
workmanship and shall conform to and perform in accordance with published
technical specifications and the accompanying written materials for up to one
year (12 months) from the date of original purchase (3 years for RadioLinx
products) from ProSoft. If you need to return the device for repair, obtain an RMA
(Returned Material Authorization) number from ProSoft Technology, Inc. in
accordance with the RMA instructions below. Please call the factory for this
number, and print the number prominently on the outside of the shipping carton
used to return the device.

If the product is received within the warranty period ProSoft will repair or replace
the defective product at our option and cost.

Support, Service & Warranty MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 87 of 90
December 13, 2006

Warranty Procedure: Upon return of the hardware product ProSoft will, at its
option, repair or replace the product at no additional charge, freight prepaid,
except as set forth below. Repair parts and replacement product will be furnished
on an exchange basis and will be either reconditioned or new. All replaced
product and parts become the property of ProSoft. If ProSoft determines that the
Product is not under warranty, it will, at the Customer's option, repair the Product
using then current ProSoft standard rates for parts and labor, and return the
product freight collect.

Limitation of Liability
EXCEPT AS EXPRESSLY PROVIDED HEREIN, PROSOFT MAKES NO
WARRANT OF ANY KIND, EXPRESSED OR IMPLIED, WITH RESPECT TO
ANY EQUIPMENT, PARTS OR SERVICES PROVIDED PURSUANT TO THIS
AGREEMENT, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. NEITHER PROSOFT OR ITS DEALER SHALL BE LIABLE FOR
ANY OTHER DAMAGES, INCLUDING BUT NOT LIMITED TO DIRECT,
INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES,
WHETHER IN AN ACTION IN CONTRACT OR TORT (INCLUDING
NEGLIGENCE AND STRICT LIABILITY), SUCH AS, BUT NOT LIMITED TO,
LOSS OF ANTICIPATED PROFITS OR BENEFITS RESULTING FROM, OR
ARISING OUT OF, OR IN CONNECTION WITH THE USE OR FURNISHING OF
EQUIPMENT, PARTS OR SERVICES HEREUNDER OR THE PERFORMANCE,
USE OR INABILITY TO USE THE SAME, EVEN IF ProSoft OR ITS DEALER'S
TOTAL LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT.

Where directed by State Law, some of the above exclusions or limitations may
not be applicable in some states. This warranty provides specific legal rights;
other rights that vary from state to state may also exist. This warranty shall not be
applicable to the extent that any provisions of this warranty are prohibited by any
Federal, State or Municipal Law that cannot be preempted. Contact ProSoft
Customer Service at +1 (661) 716-5100 for more information.

RMA Procedures
In the event that repairs are required for any reason, contact ProSoft Technical
Support at +1 661.716.5100. A Technical Support Engineer will ask you to
perform several tests in an attempt to diagnose the problem. Simply calling and
asking for a RMA without following our diagnostic instructions or suggestions will
lead to the return request being denied. If, after these tests are completed, the
module is found to be defective, we will provide the necessary RMA number with
instructions on returning the module for repair.

MVI-ADMNET ♦ 'C' Programmable Support, Service & Warranty
Ethernet Module

Page 88 of 90 ProSoft Technology, Inc.
December 13, 2006

Index MVI-ADMNET ♦ 'C' Programmable
 Ethernet Module

ProSoft Technology, Inc. Page 89 of 90
December 13, 2006

Index

A
ADM API • 32
ADM API Files • 33
ADM Interface Structure • 33
ADM_close_sk • 40, 42
ADM_init_socket • 39, 41, 42
ADM_is_sk_open • 48
ADM_NET_GetVersionInfo • 47
ADM_open_sk • 40
ADM_receive_sk • 44, 46
ADM_receive_socket • 43, 45
ADM_release_sockets • 39, 41
ADM_send_sk • 44
ADM_send_socket • 43, 45, 46, 78
ADMNET API Architecture • 32
ADMNET API Functions • 37
ADMNET API Initialize Functions • 39, 51
ADMNET API Miscellaneous Functions • 47
ADMNET API Receive Socket Functions •

45, 76
ADMNET API Release Socket Functions •

41, 67
ADMNET API Send Socket Functions • 43,

70
ADMNET API System Functionality • 52
API Libraries • 31
Application Development Function Library

ADMNET API • 37

B
Building an Existing Borland C++ 5.02 ADM

Project • 19
Building an Existing Digital Mars C++ 8.49

ADM Project • 10

C
Calling Convention • 31
chk_timeout • 63
Configuring Borland C++5.02 • 19
Configuring Digital Mars C++ 8.49 • 9
Connections • 8
Creating a New Borland C++ 5.02 ADM

Project • 21
Creating a New Digital Mars C++ 8.49 ADM

Project • 11

D
Definitions • 5

Development Tools • 32
Downloading the Sample Program • 9, 19

G
gethostid • 66

H
Header File • 32

I
inet_addr • 84
inet_ntoa • 83
Installing and Configuring the Module • 26
Introduction • 5
ip_timer_expired • 61
ip_timer_init • 60

J
Jumper Locations and Settings • 7

M
Multithreading Considerations • 32
MVI-ADMNET Communication Ports • 8

O
Operating System • 6

P
Package Contents • 7
Please Read This Notice • 2
Port 1 and Port 2 Jumpers • 7
Preparing the MVI-ADMNET Module • 7

R
resolve • 53, 54, 55, 56, 57
rip • 82

S
Sample Code • 32
set_timeout • 62
Setting Up WINIMAGE • 26
Setting Up Your Compiler • 9
Setting Up Your Development Environment •

9
Setup Jumper • 7
sock_abort • 68, 69
sock_close • 68, 69
sock_dataready • 81
sock_established • 59

MVI-ADMNET ♦ 'C' Programmable Index
Ethernet Module

Page 90 of 90 ProSoft Technology, Inc.
December 13, 2006

sock_exit • 51, 67
sock_fastread • 76, 77
sock_fastwrite • 70, 71
sock_flush • 72, 73
sock_flushnext • 72, 73
sock_getc • 79, 80
sock_gets • 79, 80
sock_init • 51, 67
sock_mode • 58
sock_putc • 74, 75
sock_puts • 74, 75
sock_read • 76, 77
sock_write • 70, 71
sockerr • 64
sockstate • 65
Support, Service & Warranty • 85

T
tcp_listen • 78
tcp_open • 53
tcp_open_fast • 54
tcp_tick • 52
Theory of Operation • 32

U
udp_open • 55
udp_open_fast • 56
Understanding the MVI-ADMNET API • 31
Using Side-Connect (Requires Side-Connect

Adapter) (MVI71) • 27

W
WATTCP API Functions • 49

Y
Your Feedback Please • 2

	Introduction
	Definitions
	Operating System

	Preparing the MVI-ADMNET Module
	Package Contents
	Jumper Locations and Settings
	Setup Jumper
	Port 1 and Port 2 Jumpers

	Connections
	MVI-ADMNET Communication Ports

	Setting Up Your Development Environment
	Setting Up Your Compiler
	Configuring Digital Mars C++ 8.49
	Downloading the Sample Program
	Building an Existing Digital Mars C++ 8.49 ADM Project
	Creating a New Digital Mars C++ 8.49 ADM Project

	Configuring Borland C++5.02
	Downloading the Sample Program
	Building an Existing Borland C++ 5.02 ADM Project
	Creating a New Borland C++ 5.02 ADM Project

	Setting Up WINIMAGE
	Installing and Configuring the Module
	Using Side-Connect (Requires Side-Connect Adapter) (MVI71)

	Understanding the MVI-ADMNET API
	API Libraries
	Calling Convention
	Header File
	Sample Code
	Multithreading Considerations

	Development Tools
	Theory of Operation
	ADM API
	ADMNET API Architecture

	ADM API Files
	ADM Interface Structure

	Application Development Function Library: ADMNET API
	ADMNET API Functions
	ADMNET API Initialize Functions
	ADMNET API Release Socket Functions
	ADMNET API Send Socket Functions
	ADMNET API Receive Socket Functions
	ADMNET API Miscellaneous Functions

	WATTCP API Functions
	WATTCP API Functions
	ADMNET API Initialize Functions
	ADMNET API System Functionality
	ADMNET API Release Socket Functions
	ADMNET API Send Socket Functions
	ADMNET API Receive Socket Functions

	Support, Service & Warranty
	Index

