
ControlLogix
Multi-Vendor
Interface Module
1756-MVI

Programming Reference
Manual

Important User Information Because of the variety of uses for the products described in this
publication, those responsible for the application and use of this
control equipment must satisfy themselves that all necessary steps
have been taken to assure that each application and use meets all
performance and safety requirements, including any applicable laws,
regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown
in this guide are intended solely for purposes of example. Since there
are many variables and requirements associated with any particular
installation, Allen-Bradley does not assume responsibility or liability
(to include intellectual property liability) for actual use based upon
the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the
Application, Installation and Maintenance of Solid-State Control
(available from your local Allen-Bradley office), describes some
important differences between solid-state equipment and
electromechanical devices that should be taken into consideration
when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole
or part, without written permission of Rockwell Automation, is
prohibited.

Throughout this manual we use notes to make you aware of safety
considerations:

Attention statements help you to:

• identify a hazard

• avoid a hazard

• recognize the consequences

Allen-Bradley and ControlLogix are trademarks of Rockwell Automation.

Borland C++ is a trademark of Borland Corporation.

Microsoft C++, Windows 95/98, and Windows NT are trademarks of Microsoft Corporation.

ATTENTION

!
Identifies information about practices or
circumstances that can lead to personal injury or
death, property damage or economic loss

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

European Communities (EC)
Directive Compliance

If this product has the CE mark it is approved for installation within
the European Union and EEA regions. It has been designed and
tested to meet the following directives.

EMC Directive

This product is tested to meet the Council Directive 89/336/EC
Electromagnetic Compatibility (EMC) by applying the following
standards, in whole or in part, documented in a technical
construction file:

• EN 50081-2 EMC — Generic Emission Standard, Part 2 —
Industrial Environment

• EN 50082-2 EMC — Generic Immunity Standard, Part 2 —
Industrial Environment

This product is intended for use in an industrial environment.

Low Voltage Directive

This product is tested to meet Council Directive 73/23/EEC Low
Voltage, by applying the safety requirements of EN 61131-2
Programmable Controllers, Part 2 - Equipment Requirements and
Tests. For specific information required by EN 61131-2, see the
appropriate sections in this publication, as well as the Allen-Bradley
publication Industrial Automation Wiring and Grounding Guidelines
For Noise Immunity, publication 1770-4.1.

This equipment is classified as open equipment and must be
mounted in an enclosure during operation to provide safety
protection.

Preface

About This Reference Manual

Introduction This reference manual provides information needed to develop
application programs for the 1756-MVI ControlLogix Multi-Vendor
Interface Module. The 1756-MVI module allows access through the
ControlLogix platform to devices with a serial port. The MVI module is
user programmable to accommodate devices with unique serial
protocols.

This manual contains the available software API (Application
Programming Interface) libraries and tools, module configuration and
programming information, and example code.

Audience This manual is intended for control engineers and technicians who are
installing, programming, and maintaining a control system that
includes a 1756-MVI module.

We assume that you:

• are familiar with software development in the 16-bit DOS
environment using the C programming language.

• are familiar with Allen-Bradley programmable controllers and
the ControlLogix platform.

Common Techniques Used
in this Manual

The following conventions are used throughout this manual:

• Bulleted lists provide information, not procedural steps.

• Numbered lists provide sequential steps.

• Information in bold contained within text identifies menu
windows, or screen options, screen names, and areas of the
screen.

• Change bars in the left margin of the page indicate material that
is new to this revision.
1 Publication 1756-RM004B-EN-P - October 2000

 P-2 About This Reference Manual
Contents This programming reference manual contains the following chapters:

References For additional information refer to the following publications:

• ControlLogix 1756-MVI Multi-Vendor Interface Module
Installation Instructions, publication number1756-1N001A-US-P

• General Software Embedded DOS 6-XL Developer’s Guide 1.2

• Introduction to ControlLogix Module Development, CID#X1557

Screen captures are pictures of the software’s actual
screens and windows. The names of screen buttons and
fields are often in bold in the text of a procedure.

The “MORE” icon is placed beside any paragraph that
references sources of additional information outside of this
document.

More

2

1

3

Application
Development
Overview

4 CIP Messaging

Serial Port API5

1756-MVI Module
Overview

MVI Backplane API
Programming the MVI
Module

6

More
Publication 1756-RM004B-EN-P - October 2000

About This Reference Manual P-3
Definitions of Terms
Used in this Manual

Rockwell Automation
Support

Rockwell Automation offers support services worldwide, with over 75
sales/support offices, 512 authorized distributors, and 260 authorized
systems integrators located throughout the United States alone, plus
Rockwell Automation representatives in every major country in the
world.

Local Product Support

Contact your local Rockwell Automation representative for:

• sales and order support

• product technical training

• warranty support

• support service agreements

Technical Product Assistance

If you need to contact Rockwell Automation for technical assistance,
call your local Rockwell Automation representative, or call Rockwell
directly at: 1 440 646-6800.

For presales support, call 1 440 646-3NET.

This term Means
API Application Programming Interface.
Backplane The electrical interface, or bus, to which modules connect when inserted

into the rack. The 1756-MVI module communicates with the control
processor(s) through the ControlLogix backplane (a.k.a. ControlBus).

BIOS Basic Input Output System. The BIOS firmware initializes the module at
power-on, performs self-diagnostics, and provides a DOS compatible
interface to the console and Flash ROM disk.

CIP Control and Information Protocol. This is the messaging protocol used for
communications over the ControlLogix backplane. See the ControlNet
Specification for details.

Connection A logical binding between two objects. A connection allows more efficient
use of bandwidth, since the message path is not included once the
connection is established.

Consumer A destination for data.
Library The library file containing the API functions. The library must be linked with

the developer’s application code to create the final executable program.
Originator A client that establishes a connection path to a target.
Producer A source of data.
Target The end-node to which a connection is established by an originator.
Publication 1756-RM004B-EN-P - October 2000

 P-4 About This Reference Manual
You can obtain technical assistance online from the following
Rockwell Automation WEB sites:

• www.ab.com/mem/technotes/kbhome.html (knowledge base)

• www.ab.com/networks/eds (electronic data sheets)

Your Questions or Comments about This Manual

If you find a problem with this manual, please notify us of it on the
enclosed Publication Problem Report (at the back of this manual).

If you have any suggestions about how we can make this manual
more useful to you, please contact us at the following address:

Rockwell Automation, Allen-Bradley Company, Inc.
Control and Information Group
Technical Communication
1 Allen-Bradley Drive
Mayfield Heights, OH 44124-6118
Publication 1756-RM004B-EN-P - October 2000

Table of Contents

Chapter 1
1756-MVI Module Overview What This Chapter Contains . 1-1

Features . 1-1
LED Indicators . 1-3
Configuration Jumpers . 1-4

System Firmware. 1-5
BIOS . 1-5
BIOS Console Services . 1-5
BIOS Setup . 1-5
Operating System. 1-8

Chapter 2
Application Development
Overview

What This Chapter Contains . 2-2
API Libraries . 2-2

Calling Convention . 2-2
Header Files . 2-3
Sample Application Code . 2-3
Multithreading . 2-3

Development Tools. 2-3

Chapter 3
MVI Backplane API What This Chapter Contains . 3-1

MVI API Files . 3-1
MVI Backplane API Architecture . 3-2
MVI Backplane API Functions . 3-5

Initialization Functions . 3-6
Configuration. 3-8
Direct I/O Access. 3-12
Messaging . 3-14
Synchronization . 3-18
Miscellaneous Functions. 3-20

Chapter 4
CIP Messaging API What This Chapter Contains . 4-1

CIP Messaging API Files . 4-1
CIP API Architecture . 4-1
Backplane Device Driver. 4-2
CIP API Functions . 4-4

Initialization. 4-5
Object Registration. 4-7
Connected Data Transfer . 4-10
Callback Functions. 4-13
Special Callback Registration . 4-25
Miscellaneous Functions. 4-28
i Publication 1756-RM004B-EN-P - October 2000

Table of Contents ii
Chapter 5
Serial Port API What This Chapter Contains . 5-1

Serial API Files . 5-1
Serial Data Transfer . 5-2
Serial Port API Functions . 5-2

Initialization. 5-4
Configuration. 5-9
Port Status . 5-12
Communications . 5-20
Miscellaneous Functions. 5-35

Chapter 6
Programming the MVI Module What This Chapter Contains . 6-1

ROM Disk Configuration . 6-1
CONFIG.SYS File . 6-2
Command Interpreter. 6-3
Sample ROM Disk Image . 6-3

Creating a ROM Disk Image . 6-4
Using DISKIMAG: DOS Disk Image Builder 6-4
Using WINIMAGE: Windows Disk Image Builder 6-6

Downloading a ROM Disk Image. 6-8
MVI Flash Update . 6-8

Installation . 6-8
Using the MVI Flash Update Utility 6-8

MVIUPDAT . 6-10
Booting from the C: (Compact Flash) Drive 6-11

Index
Publication 1756-RM004B-EN-P - October 2000

Chapter 1

1756-MVI Module Overview

What This Chapter Contains The following table identifies what this chapter contains and where to
find specific information.

Features The 1756-MVI module allows the user to develop C language code to
support the transfer of serial data to/from three serial ports, as well as
the transfer of 16-bit, 32-bit, float, and ASCII characters between the
ControlLogix processor and the MVI.

The MVI sits as a target device on the ControlLogix backplane and will
accept CIP connections from an originator based on the “generic
module” profile. The MVI can be configured with an I/O module
connection for scheduled (Class 1) data transfers up to 496 bytes
to/from the 5550 processor. The MVI supports unscheduled (class 3)
data transfers up to 478 bytes generated from MSG (message)
instructions in the 5550.

For information about See page
Features 1-1

LED Indicators 1-3

Configuration Jumpers 1-4

System Firmware 1-5

BIOS 1-5

BIOS Console Services 1-5

BIOS Setup 1-5

Operating System 1-8
1 Publication 1756-RM004B-EN-P - October 2000

1-2 1756-MVI Module Overview
A block diagram of the module is shown in figure 1.1.

Figure 1.1 1756-MVI Module Block Diagram

The 1756-MVI module has three serial ports. Serial port PRT1 (also
called the “console port”) is used with a programming console via an
RS-232 interface. The other two serial ports, PRT2 and PRT3, can be
configured to communicate with foreign devices via RS-232, RS-422,
or RS-485 interfaces.

The 1756-MVI module includes the following features:

• 1M bytes of RAM for temporary storage of user programs and
data

• Persistent program storage in FLASH memory, with 896K bytes
available for user program storage

• Two RS-232 / RS-422 / RS-485 compatible serial ports for
communications to foreign devices (PRT2 and PRT3)

• One RS-232 compatible serial port for communicating with a
programming terminal (PRT1, console)

• LED’s for module status, communications status, and general
purpose use

• ControlLogix bus interface

• Embedded BIOS and DOS-compatible operating system.

Communications
Processor

ControlBus
I/F

Flash
ROM RAM

RS-232
Serial Port

PRT1
(Console)

PRT2

PRT3

Compact
Flash

(Optional)
Publication 1756-RM004B-EN-P - October 2000

1756-MVI Module Overview 1-3
LED Indicators

The 1756-MVI module has seven LED indicators at the top of its front
panel. Five of these indicators display the module’s status and port
activity. The other two, LEDs U1 and U2, are controlled by the user
application and may be used for any purpose.

Figure 1.2 LED Indicators

LED Description Status Meaning
P1, P2, P3 Port Activity Off No serial activity detected on corresponding port.

Green Serial activity detected on corresponding port.

U1, U2 User Defined - Application dependent.

BATT Battery Off Battery voltage normal.

Red Battery voltage low. Service required.

OK (1)

(1) Defaults shown. The OK LED can also signify Status determined by the user-programmable
“SetModuleStatus” command. Note that neither the SetModuleStatus command nor the
BIOS/hardware has priority on the LED, so each can overwrite the other.

Module Status Off Power is OFF or module is not installed.

Green Power is ON. Normal Operation.

Red Power up non-recoverable fault.

Flashing
Green/Red

NVS update in progress.
Not configured.(2)

Not connected.(2)

Recoverable major fault.(2)

(2) These are “typical” for ControlLogix modules. Because the MVI module is user-programmable,
this has to be implemented by the user.
Publication 1756-RM004B-EN-P - October 2000

1-4 1756-MVI Module Overview
Configuration Jumpers

Three configuration jumpers are located on the 1756-MVI module’s
printed circuit board, as shown in figure 1.3.

Figure 1.3 Configuration Jumpers

Jumpers PRT2 and PRT3 are used to configure the serial ports for
RS-232, RS-485, or RS-422 compatibility. The Setup Jumper is used to
force the console port (PRT1) to a known state.

When the Setup Jumper is installed, the module will boot with the
console port enabled at 19200 baud, no parity, 8 data bits, and 1 stop
bit. If the Setup Jumper is not installed, the module will boot with the
console port set up as configured by the BIOS Setup Menu.

See chapter 6 of this manual and publication 1756-IN001A-US-P for
more information.

PRT2SETUP PRT3

IN = SETUP MODE
OUT = APPLICTION

MODE

RS232
RS422
RS485

RS485
RS422
RS232
Publication 1756-RM004B-EN-P - October 2000

1756-MVI Module Overview 1-5
System Firmware The 1756-MVI module includes an embedded BIOS and a
DOS-compatible operating system stored in Flash ROM. An additional
896K bytes of Flash ROM is configured as a ROM disk for user
program storage.

The ROM disk is mapped as drive A:/. The MVI also supports an
optional Compact Flash. The Compact Flash is mapped as C:/ and
must be enabled in the BIOS setup (see figure 1.5).

BIOS

The BIOS initializes the module and configures its devices. It provides
a DOS-compatible interface for the console and ROM disk services.
The BIOS also provides a means to update the ROM disk image
containing the user programs.

BIOS Console Services

The BIOS supports a DOS-compatible system console by redirecting
the BIOS video and keyboard services (INT10 and INT16) to serial
port PRT1. Special functions, such as cursor positioning, are translated
into ANSI escape sequences.

If the console is disabled in BIOS setup and the Setup Jumper is not
installed, then the video and keyboard redirection is not performed
and PRT1 is available for the user application.

BIOS Setup

The BIOS also allows the user to configure the module using the BIOS
Setup Menu. The Setup Menu provides module type and console port
(PRT1) configuration. The Setup Menu is invoked by typing Ctrl-C on
the console terminal connected to PRT1 when prompted during the
module boot process. The console terminal must be configured for
the ANSI or VT100 character sets in order to properly display the
Setup Menu.
Publication 1756-RM004B-EN-P - October 2000

1-6 1756-MVI Module Overview
Figure 1.4 shows the boot messages displayed on the console after
power-on:

Figure 1.4 Power-On Boot Messages

Type Ctrl-C to if you want to open the BIOS Setup Main Menu
(figure 1.5).

Figure 1.5 BIOS Setup Main Menu

The BIOS Setup Main Menu contains the three items shown above.
To move from one menu item to another, press Tab. To select the
current item, press Enter. To exit the Main Menu and continue
booting, press Esc or choose Exit.

TIP If the 1756-MVI module boot messages do not
appear on the console terminal when the module is
powered on, check the position of the Setup Jumper
(see the Installation Instructions). In Setup Mode
(setup jumper installed), the console port will be
enabled and configured for 19200 baud, no parity, 8
data bits, and 1 stop bit.

General Software 80C386-EX Embedded BIOS (tm) Version 4.1
Copyright (C) 1998 General Software, Inc.

1756-MVI Multi-Vendor Interface Module

MVI BIOS v1.00
Copyright (c) 1999-2000 Online Development, Inc.

Hit ^C if you want to run SETUP.

| System Bios Setup - Utility v4.001 |
| (C) 1998 General Software, Inc. All rights reserved |
+---+
| |
| |
| MVI Module Configuration |
| Begin Flash ROM Update Mode |
| Reset Configuration to Factory Default |
| Exit |
| |
| |
+---+
| <Esc> to continue |
Publication 1756-RM004B-EN-P - October 2000

1756-MVI Module Overview 1-7
Selecting the first item in the Main Menu, MVI Module
Configuration, displays the menu shown in figure 1.6:

Figure 1.6 MVI Module Configuration Menu

The MVI Module Configuration Menu is used to configure the
console port and module type. To move between menu items, press
Tab. Press + or - to change an item.

Note: The console settings configured on this menu are only used
when the Setup Jumper is in the Normal position (not installed). If the
Setup Jumper is in the Setup position, the console port is always
enabled and configured for 19200 baud. Console setting changes will
take effect the next time the module boots (after a reboot command
or power cycle).

The Compact Flash is an ideal tool for development because it is a
read/write device. It is much easier to download individual files to the
compact flash than to download a complete disk image to the ROM
disk, which is read-only. Typically, you use the compact flash for
development, and download the final runtime image to the A:\ ROM
disk.

The second choice on the Setup Main Menu, Begin Flash ROM
Update Mode, is used to update the ROM disk image. Once this
mode is entered, the module must be rebooted to continue normal
operation. A special Flash update utility, MVIUPDAT, is used to
transfer the disk image to the module.

| System BIOS Setup - Custom Configuration |
| (C) 1998 General Software, Inc. All rights reserved |
+--------------------------------+------------------------------+
Console on Port 1 >Disabled	Compact Flash Disabled
Console Baud Rate 19200	
+--------------------------------+------------------------------+	
^E/^X/<Tab> to select or +/- to modify	

<Esc> to return to main menu

TIP If you disable the console during the boot process
no characters will be sent to PRT1, and the boot
process will be shortened by several seconds.
Publication 1756-RM004B-EN-P - October 2000

1-8 1756-MVI Module Overview
See chapter 6 for more information.

Operating System

The 1756-MVI module contains a General Software Embedded DOS
6-XL operating system. This provides DOS compatibility along with
real-time multitasking functionality. The operating system is stored in
Flash ROM and is loaded by the BIOS when the module boots.

DOS compatibility allows development of applications using standard
DOS tools, such as Borland™ or Microsoft™ C/C++ compilers. User
programs may be executed automatically on powerup by loading
them from either the CONFIG.SYS file or an AUTOEXEC.BAT file.

 See the General Software Embedded DOS 6-XL Developer's Guide for
more information.

IMPORTANT DOS programs that try to access the video or
keyboard hardware directly will not function
correctly on the 1756-MVI module. Only programs
that use the standard DOS and BIOS functions to
perform console I/O are compatible.

More
Publication 1756-RM004B-EN-P - October 2000

Chapter 2

Application Development Overview

The 1756-MVI API suite allows developers to access the ControlLogix
backplane and serial ports without needing detailed knowledge of the
module’s hardware design. The 1756-MVI API Suite consists of three
distinct components:

• the MVI Backplane API

• the CIP Messaging API

• the Serial Port API

The MVI Backplane API and CIP Messaging API provide access to the
ControlBus. The Serial Port API provides access to the serial ports.

The MVI Backplane API is “generic,” and is portable among all MVI
form factors from Rockwell Automation and third parties. This
“generic” API performs read/write operations with the form factor’s
control processor (PLC) by calling the more specific backplane API
required for that form factor. For example, if running a 1756-MVI, the
generic backplane API calls the CIP API to actually read/write 5550
processor data. If running on third party 1794- form factor, the generic
backplane API calls a SERBUS API to communicate with the Flex
adapter, which in turn sends or receives data to/from a Flex scanner.
The serial port API is portable among all MVI form factors as well.

IMPORTANT Since the MVI API uses the CIP API to access the
backplane, an application that uses the MVI API
cannot directly access the CIP API (CIPAPI.lib,
CIPAPI.h). Similarly, an application using the CIP API
cannot also use the MVI API. In other words, you
use either the MVI Backplane API or the CIP API to
talk to the 5550, but you cannot use both.

• The CIP API is used if you want to control the
CIP connection between a 5550 processor (or
other originator) and the MVI module.

• The MVI Backplane API is used if you simply
want to read/write data for a single 5550
processor, with no concern about the CIP
connection between the processor and MVI.
1 Publication 1756-RM004B-EN-P - October 2000

2-2 Application Development Overview
What This Chapter Contains Applications for the 1756-MVI module may be developed using
industry-standard DOS programming tools and the appropriate API
components. This chapter provides general information pertaining to
application development for the 1756-MVI module. The following
table identifies what this chapter contains and where to find specific
information.

API Libraries Each of the three APIs provide a library of function calls. The libraries
support any programming language that is compatible with the Pascal
calling convention.

Each API library is a static object code library that must be linked with
the application to create the executable program. It is distributed as an
16-bit large model OMF library, compatible with Borland and
Microsoft development tools.

The following compiler versions have been tested and are known to
be compatible with the 1756-MVI module API:

• Borland™ C++ V3.1

• Borland™ C++ V5.02

• Microsoft™ VC++ V1.52

Note: Microsoft Visual C++ versions above 1.52 no longer support
16-bit development. However, Visual C++ 1.52 is available from
Microsoft for those who own later versions of Visual C++.

Calling Convention

The API library functions are specified using the C programming
language syntax. To allow applications to be developed in other
industry-standard programming languages, the standard Pascal calling
convention is used for all application interface functions.

For information about See page
API Libraries 2-2

Calling Convention 2-2

Header Files 2-3

Sample Application Code 2-3

Multithreading 2-3

Development Tools 2-3
Publication 1756-RM004B-EN-P - October 2000

Application Development Overview 2-3
Header Files

A header file is provided along with each library. This header file
contains API function declarations, data structure definitions, and
miscellaneous constant definitions. The header file is in standard C
format.

Sample Application Code

Sample application code is provided to illustrate the use of the API
functions. Full source code for each sample application is included.
The sample application may be compiled using Borland C++ or
Microsoft Visual C++.

Multithreading

The DOS 6-XL operating system supports the development of
multithreaded applications. Multithreading is fully supported by the
API. Critical sections of the API are protected from simultaneous
access; a thread attempting to access a critical API function at the
same time as another thread will be blocked until the previous thread
has completed the function.

Note: The 1756-MVI DOS 6-XL operating system has a system clock
tick of 5 milliseconds. Therefore, thread scheduling and timer
servicing occur at 5ms intervals. See the DOS 6-XL Developer’s Guide
for more information.

Development Tools An application that is developed for the 1756-MVI module must be
stored in the module’s Flash ROM disk to be executed. Software tools
to build the disk image and download it to the 1756-MVI module via
programming port PRT1 are provided with the API. See chapter 6 for
more information.
Publication 1756-RM004B-EN-P - October 2000

2-4 Application Development Overview
Publication 1756-RM004B-EN-P - October 2000

Chapter 3

MVI Backplane API

The MVI Backplane API (MVI API) is one component of the 1756-MVI
API Suite. The MVI API provides a simple backplane interface that is
portable among members of the MVI Family. This is useful when
developing an application that implements a serial protocol for a
particular device, such as a scale or barcode reader. Once developed,
the application may be used on any of the MVI family modules.

What This Chapter Contains The following table identifies what this chapter contains and where to
find specific information.

MVI API Files Table 3.A lists the supplied MVI backplane API file names. These files
should be copied to a convenient directory on the computer on which
the application is to be developed. These files need not be present on
the module when executing the application.

For information about See page
MVI Backplane API Architecture 3-2

MVI Backplane API Functions 3-5

Initialization Functions 3-6

Configuration 3-8

Direct I/O Access 3-12

Messaging 3-14

Synchronization 3-18

Table 3.A Supplied MVI Backplane API Files

File Name Description

Mvibpapi.h Include file

Mvibpapi.lib Library (16-bit OMF format)
1 Publication 1756-RM004B-EN-P - October 2000

3-2 MVI Backplane API
MVI Backplane API
Architecture

The MVI API is composed of three parts:

• a memory resident driver, MVI56DD.EXE (called the MVI driver)

• a statically-linked library (called the MVI library)

• a header file

Applications using the MVI backplane API must be linked with the MVI
library. The header file must be included. In addition, the MVI driver
must be loaded before an MVI API application can be executed. This
architecture makes it possible to design MVI applications that can be
run on any of the Rockwell or third party MVI modules without
modification or recompilation.

The MVI driver calls the CIP API (and its associated driver,
MVI56BP.EXE) to register the assembly object. Several instances of the
assembly object support the direct I/O and messaging data transfer
functions provided by the MVI API.

Both the backplane device driver (MVI56BP.EXE) and the MVI
backplane API driver (MVI56DD.EXE) must be loaded before executing
an application that uses the MVI API. MVI56BP.EXE must be loaded
prior to MVI56DD.EXE. These files may be loaded from the
CONFIG.SYS or AUTOEXEC.BAT files.
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-3
Figure 3.1 shows the relationship between the API components.

Figure 3.1 API Component Relationship

The MVI Backplane API implements a predefined configuration of the
assembly object. The configuration is shown in table 3.B.

ControlBus (Backplane)

Control Processor
(Logix 5550)

Midrange ASIC

Backplane Device
Driver

MVI API Library

Thread Thread Thread

CPI API Library

MVI Driver

Multi-threaded MVI Application

1756-MVI Module

(MVI56BP.EXE)

(MVI56DD.EXE)

Table 3.B - MVI API Assembly Object Implementation

Assembly Instance/
Connection Point

Max. Size (words) Connection Type Description

1 250(1) Class 1 Input data accessed via MVIbp_WriteInputImage

2 248(2) Class 1 Output data accessed via MVIbp_ReadOutputImage

5 3 Class 1 Status input (not accessible from MVI application)

6 0 Class 1 Status output (not used)

7 239(3) Unscheduled Message input data accessed via VIbp_SendMessage

8 239(3) Unscheduled Message output data accessed via MVIbp_ReceiveMessage
(1) The first 4 bytes are overwritten with “FF” when the connection is not open or broken (This applies only to Assembly Instance 1).
(2) The first 4 bytes (2 words) of 250 are status words, which the MVI API strips off. (Note that the CIP API does not.)
(3) The maximum number of words of data that can be transferred using MVI messaging will depend upon the path to the MVI module. The value shown

assumes that the controller and module are located in the same physical rack.
Publication 1756-RM004B-EN-P - October 2000

3-4 MVI Backplane API
The status connection may be used by the processor to determine the
current status of the 1756-MVI module. The first word of the status
input data contains the status bits shown in table 3.C.

The remaining two words of status data are simple counters which are
incremented by the module whenever a message is sent via
MVIbp_SendMessage (word 1) or received via MVIbp_ReceiveMessage
(word 2). These counters may be used for synchronization or diagnostic
purposes.

Table 3.C - Status Input Word 0

Bit Description

0 Module is ready (MVI driver is loaded)

1 Module application is active (MVIbp_Open has been called)

15 Module is faulted (MVIbp_SetModuleStatus called with MVI_MODULE_STATUS_FAULTED
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-5
MVI Backplane API
Functions

This section provides detailed programming information for each of the
MVI Backplane API library functions. The calling convention for each
API function is shown in C format. The API library routines are
categorized by functionality as shown in table 3.D.

Table 3.D - MVI Backplane API Functions

Function Category Function Name Description

Initialization MVIbp_Open Initialize access to the API Initialization

MVIbp_Close Terminate access to the API

Configuration MVIbp_GetIOConfig Get the I/O configuration of the module Configuration

MVIbp_SetIOConfig Set the I/O configuration of the module

Direct I/O Access MVIbp_ReadOutputImage Read data from the output image Direct I/O Access

MVIbp_WriteInputImage Write data to the input image

Messaging MVIbp_ReceiveMessage Retrieve a message sent to the module Messaging

MVIbp_SendMessage Send a message

Synchronization MVIbp_WaitForInputScan Wait for input data read (not supported)

MVIbp_WaitForOutputScan Wait for output data update

Miscellaneous MVIbp_GetVersionInfo Get the MVI API version information

MVIbp_GetModuleInfo Get the information for this module

MVIbp_GetProcessorStatus Get the current processor status

MVIbp_GetSetupMode Get the state of the Setup jumper

MVIbp_GetConsoleMode Get the state of the console

MVIbp_SetModuleStatus Set module status to OK or Faulted

MVIbp_SetUserLED Turn the user LED indicators on and off

MVIbp_ErrorString Get a text description for an error code

MVIbp_Sleep Suspend calling task for specified time
Publication 1756-RM004B-EN-P - October 2000

3-6 MVI Backplane API
Initialization Functions

MVIbp_Open

Syntax:

int MVIbp_Open(MVIHANDLE *handle);

Parameters:

handle pointer to variable of type MVIHANDLE

Description:

MVIbp_Open acquires access to the API and sets handle to a unique ID
that the application uses in subsequent functions. This function must be
called before any of the other API functions can be used.

Return Value:

MVI_SUCCESS API was opened successfully

MVI_ERR_REOPEN API is already open

MVI_ERR_NODEVICE backplane driver could not be accessed

Note: MVI_ERR_NODEVICE will be returned if the backplane device
driver is not loaded.

Example:

MVIHANDLE Handle;

if (MVIbp_Open(&Handle) != MVI_SUCCESS) {
printf(“Open failed!\n”);

} else {
printf(“Open succeeded\n”);

See Also:

MVIbp_Close

IMPORTANT Once the API has been opened, MVIbp_Close should
always be called before exiting the application.
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-7
MVIbp_Close

Syntax:

int MVIbp_Close(MVIHANDLE handle);

Parameters:

handle handle returned by previous call to MVIbp_Open

Description:

This function is used by an application to release control of the API.
handle must be a valid handle returned from MVIbp_Open.

Return Value:

MVI_SUCCESS API was closed successfully

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE Handle;

MVIbp_Close(Handle);

See Also:

MVIbp_Open

IMPORTANT Once the API has been opened, this function should
always be called before exiting the application.
Publication 1756-RM004B-EN-P - October 2000

3-8 MVI Backplane API
Configuration

MVIbp_GetIOConfig

Syntax:

int MVIbp_GetIOConfig(MVIHANDLE handle, MVIBPIOCONFIG
*ioconfig);

Parameters:

handle handle returned by previous call to MVIbp_Open

ioconfig pointer to MVIBPIOCONFIG structure to receive
configuration information

Description:

This function is used to obtain the I/O configuration of the MVI
module. handle must be a valid handle returned from MVIbp_Open.

The MVIBPIOCONFIG structure is defined as shown below:

typedef struct tagMVIBPIOCONFIG
{

WORD TotalInputSize; // Size of entire input image in words
WORD TotalOutputSize; // Size of entire output image in words
WORD DirectInputSize; // Input words available for direct access
WORD DirectOutputSize; // Output words available for direct access
WORD MsgRcvBufSize; // Max size in words for received messages
WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The sizes in words of the module’s input and output images are
returned in the MVIBPIOCONFIG structure pointed to by ioconfig. The
TotalInputSize and TotalOutputSize members are set equal to the size of
the entire input or output image, respectively. The DirectInputSize and
DirectOutputSize members are set equal to the number of words of the
respective image that is available for direct access via the
MVIbp_WriteInputImage or MVIbpReadOutputImage functions. The
MsgRcvBufSize and MsgSndBufSize members indicate the maximum
size in words for received or sent messages, respectively.

The IO data connection is configured by the processor and cannot by
altered by the module. Therefore, the direct and total sizes are always
equal and are set to the sizes configured by the module profile. The
message sizes are set to the maximum message size.

Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-9
Example:

MVIHANDLE handle;
MVIBPIOCONFIG ioconfig;

MVIbp_GetIOConfig(handle, &ioconfig);
printf(“%d words of input image available\n”,

ioconfig.DirectInputSize);
printf(“%d words of output image available\n”,

ioconfig.DirectOutputSize);

See Also:

MVIbp_SetIOConfig

MVIbp_GetIOConfig
Publication 1756-RM004B-EN-P - October 2000

3-10 MVI Backplane API
MVIbp_SetIOConfig

Syntax:

int MVIbp_SetIOConfig(MVIHANDLE handle, MVIBPIOCONFIG
*ioconfig);

Parameters:

handle handle returned by previous call to MVIbp_Open

ioconfig pointer to MVIBPIOCONFIG structure which contains
configuration information

Description:

This function may be used to set the size of the module’s I/O images
and messaging buffers. handle must be a valid handle returned from
MVIbp_Open.

MVIbp_SetIOConfig is a null function in the 1756-MVI module. The IO
image and message maximum sizes are configured by the controller
and cannot be changed by the MVI application. This function will
always return MVI_ERR_NOTSUPPORTED on the 1756-MVI module.

The MVIBPIOCONFIG structure is defined as shown below:

typedef struct tagMVIBPIOCONFIG
{

WORD TotalInputSize; // Size of entire input image in words
WORD TotalOutputSize; // Size of entire output image in words
WORD DirectInputSize; // Input words available for direct access
WORD DirectOutputSize; // Output words available for direct access
WORD MsgRcvBufSize; // Max size in words for received messages
WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The TotalInputSize and TotalOutputSize members are ignored by the
API, since the total (maximum) I/O image sizes cannot be changed by
the application. The DirectInputSize and DirectOutputSize members
should be set equal to the number of words of the respective image that
will be used for direct access via the MVIbp_WriteInputImage or
MVIbpReadOutputImage functions.

The MsgRcvBufSize member should be set to the maximum message
size expected via the MVIbp_ReceiveMessage function. Likewise, the
MsgSndBufSize member should be set to the maximum message size to
be sent via the MVIbp_SendMessage function. The message sizes are
expressed in words. The maximum message size is 2048 words
(1794-MVI). Setting a message size to zero will disable messaging for
the corresponding direction.
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-11
Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADCONFIG configuration is not valid

MVI_ERR_NOTSUPPORTED 1756-MVI always returns this error

Example:

MVIHANDLE handle;
MVIBPIOCONFIG ioconfig;

ioconfig.DirectInputSize = 20; // 20 words used for input
ioconfig.DirectOutputSize = 10; // 10 words used for output
MsgSndBufSize = 200; // 200 word (max) messages to processor
MsgRcvBufSize = 0; // Received messages not enabled
if (MVI_SUCCESS != MVIbp_SetIOConfig(handle, &ioconfig))

printf(“Error: I/O configuration failed\n”);

See Also:

MVIbp_GetIOConfig

MVIbp_SetIOConfig
Publication 1756-RM004B-EN-P - October 2000

3-12 MVI Backplane API
Direct I/O Access

MVIbp_ReadOutputImage

Syntax:

int MVIbp_ReadOutputImage(MVIHANDLE handle, WORD *buffer,
WORD offset, WORD length);

Parameters:

handle handle returned by previous call to MVIbp_Open

buffer pointer to buffer to receive data from output image

offset word offset into output image at which to begin reading

length number of words to read

Description:

MVIbp_ReadOutputImage reads from the module’s output image.
handle must be a valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the output image to begin reading, and
length specifies the number of words to read. The error
MVI_ERR_BADPARAM will be returned if an attempt is made to access
the output image beyond the range configured for direct I/O. See the
MVIbp_SetIOConfig function for more information.

The output image is written by the control processor and read by the
module.

Return Value:

MVI_SUCCESS data read from output image successfully.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM parameter contains invalid value

MVI_ERR_BADCONFIG IO data connection not open (1756-MVI only)

Example:

MVIHANDLE Handle;
WORD buffer[8];
int rc;

/* Read 8 words of data from the output image, starting with word 2 */
rc = MVIbp_ReadOutputImage(Handle, buffer, 2, 8);
if (rc != MVI_SUCCESS)

printf(“ERROR: MVIbp_ReadOutputImage failed”);

See Also:

MVIbp_GetIOConfig, MVIbp_WriteInputImage
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-13
MVIbp_WriteInputImage

Syntax:

int MVIbp_WriteInputImage(MVIHANDLE handle, WORD *buffer,
WORD offset, WORD length);

Parameters:

handle handle returned by previous call to MVIbp_Open

buffer pointer to buffer of data to be written to input image

offset word offset into input image at which to begin writing

length number of words to write

Description:

MVIbp_WriteInputImage writes to the module’s input image. handle
must be a valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the input image to begin writing, and length
specifies the number of words to write. The error
MVI_ERR_BADPARAM will be returned if an attempt is made to access
the input image beyond the range configured for direct I/O. If this error
is returned, no data will be written to the input image. See the
MVIbp_SetIOConfig function for more information.

The input image is written by the module and read by the control
processor.

Return Value:

MVI_SUCCESS data successfully written to the input image

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM parameter contains invalid value

MVI_ERR_BADCONFIG IO data connection not open (1756-MVI only)

Example:

MVIHANDLE Handle;
WORD buffer[2];
int rc;

/* Write 2 words of data to the input image, starting with word 0 */
rc = MVIbp_WriteInputImage(Handle, buffer, 0, 2);
if (rc != MVI_SUCCESS)

printf(“ERROR: MVIbp_WriteInputImage failed”);

See Also:

MVIbp_GetIOConfig, MVIbp_ReadOutputImage
Publication 1756-RM004B-EN-P - October 2000

3-14 MVI Backplane API
Messaging

MVIbp_ReceiveMessage

Syntax:

int MVIbp_ReceiveMessage(MVIHANDLE handle, WORD *buffer,
WORD *length, WORD reserved, WORD timeout);

Parameters:

handle handle returned by previous call to MVIbp_Open

buffer pointer to buffer to receive message data from processor

length pointer to a variable containing the maximum message
length in words. When this function is called, this should
be set to the size of the indicated buffer. Upon successful
return, this variable will contain the actual received
message length.

reserved must be set to 0

timeout maximum number of milliseconds to wait for message

Description:

This function retrieves a message sent from the control processor.
handle must be a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the maximum
message size in words to be received. buffer must point to a buffer of at
least length words in size. Upon successful return, length will contain
the actual length of the message received.

If length exceeds the maximum message size specified by the value
MsgRcvBufSize (see the MVIbp_SetIOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used for the 1756-MVI module and must be set to zero.
MVI_ERR_BADPARAM will be returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait
for a message. To poll for a message without waiting, set timeout to
zero. If no message has been received, MVI_ERR_TIMEOUT will be
returned.

If the message received from the control processor is larger than length,
the message will be truncated to length words and
MVI_ERR_MSGTOOBIG will be returned.
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-15
The MVIbp_ReceiveMessage function retrieves data written to the MVI
module by the processor via a MSG instruction. The MSG instruction
must be configured as shown in table 3.E. The MSG instruction
implements a ‘put attribute’ command to the MVI module’s assembly
object. The MSG instruction will fail if a message has already been
written to the MVI module but the application has not yet retrieved the
message via MVIbp_ReceiveMessage.

Return Value:

MVI_SUCCESS a message has been received

MVI_ERR_NOACCESS handle does not have access.

MVI_ERR_TIMEOUT timeout occurred before message received

MVI_ERR_BADPARAM a parameter is invalid

MVI_ERR_BADCONFIG receive messaging is not enabled

MVI_ERR_MSGTOOBIG the received message is too big for the buffer

Example:

MVIHANDLE Handle;
int rc;
WORD buffer[250];
WORD length;

length = 250; // maximum message size that can be received
// Wait up to 5 seconds for a message
rc = MVIbp_ReceiveMessage(Handle, buffer, &length, 0, 5000);
if (rc = = MVI_SUCCESS)

printf(“Message received. Length is %d words\n”, length);

See Also:

MVIbp_GetIOConfig

MVIbp_SendMessage

MVIbp_ReceiveMessage

Table 3.E - Receive MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type

Service Code 10 (Hex) Set_Attribute_Single service

Object Type 4 Assembly object class code

Object ID 8 Output message instance number

Object Attribute 3 Data attribute

Num Elements application dependent Size of message to be written

Path application dependent Path to MVI module
Publication 1756-RM004B-EN-P - October 2000

3-16 MVI Backplane API
MVIbp_SendMessage

Syntax:

int MVIbp_SendMessage(MVIHANDLE handle, WORD *buffer,
WORD length, WORD reserved, WORD timeout);

Parameters:

handle handle returned by previous call to MVIbp_Open

buffer pointer to buffer of data to send to processor

length the length in words of the message to send.

reserved must be set to 0

timeout maximum number of milliseconds to wait for processor to
read message

Description:

This function sends a message to the control processor. handle must be
a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the message size in
words. buffer must point to a buffer of at least length words in size.

If length exceeds the maximum message size specified by the value
MsgSndBufSize (see the MVIbp_SetIOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used for the 1756-MVI module and must be set to zero.
MVI_ERR_BADPARAM will be returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait
for the message to be transferred to the control processor. If the timeout
occurs before the message has been transferred, MVI_ERR_TIMEOUT
will be returned.

If timeout is 0, the function will return immediately. If the message was
successfully queued to be sent, MVI_SUCCESS will be returned. If the
message was not queued (e.g., no resources were available to queue
the message), MVI_ERR_TIMEOUT will be returned and the message
must be re-tried at a later time. A timeout of 0 allows an application to
perform other tasks while the message is being transmitted.
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-17
The MVIbp_SendMessage function copies the message data into a
buffer to be retrieved by the processor via a MSG instruction. The MSG
instruction must be configured as shown in table 3.F. The MSG
instruction implements a “get attribute” command to the MVI module’s
assembly object. The MSG instruction will fail if a message has not
already been written by the application via MVIbp_SendMessage.

Return Value:

MVI_SUCCESS a message has been received

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT timeout occurred before the message was
transferred

MVI_ERR_BADPARAM a parameter is invalid

MVI_ERR_BADCONFIG send messaging is not enabled

Example:

MVIHANDLE Handle;
int rc;
WORD buffer[250];

// Wait 5 seconds for the message to be sent
rc = MVIbp_SendMessage(Handle, buffer, 250, 5000);
if (rc = = MVI_SUCCESS)

printf(“Message sent\n”);

See Also:

MVIbp_GetIOConfig

MVIbp_ReceiveMessage

MVIbp_SendMessage

Table 3.F - Send MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type

Service Code OE (Hex) Get_Attribute_Single service

Object Type 4 Assembly object class code

Object ID 7 Output message instance number

Object Attribute 3 Data attribute

Num Elements application dependent Size of message to be written

Path application dependent Path to MVI module
Publication 1756-RM004B-EN-P - October 2000

3-18 MVI Backplane API
Synchronization

MVIbp_WaitForInputScan

Syntax:

int MVIbp_WaitForInputScan(MVIHANDLE handle, WORD timeout);

Parameters:

handle handle returned by previous call to MVIbp_Open

timeout maximum number of milliseconds to wait for scan

Description:

This function is not supported for the 1756-MVI and will return
MVI_ERR_NOTSUPPORTED.

Return Value:

MVI_SUCCESS the input scan has occurred

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT the timeout expired before an input scan
occurred

Example:

MVIHANDLE Handle;

/* Wait here until input scan, 50ms timeout */
rc = MVIbp_WaitForInputScan(Handle, 50);
if (rc == MVI_ERR_TIMEOUT)

printf(“Input scan did not occur within 50 milliseconds\n”);
else

printf(“Input scan has occurred\n”);

See Also:

MVIbp_WaitForOutputScan
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-19
MVIbp_WaitForOutputScan

Syntax:

int MVIbp_WaitForOutputScan(MVIHANDLE handle, WORD
timeout);

Parameters:

handle handle returned by previous call to MVIbp_Open

timeout maximum number of milliseconds to wait for scan

Description:

MVIbp_WaitForInputScan allows an application to synchronize with the
scan of the module’s output image. This function will return
immediately after the module’s output image has been written.

handle must be a valid handle returned from MVIbp_Open. timeout
specifies the number of milliseconds that the function will wait for the
output scan to occur.

This function is not supported for the 1756-MVI and will return
MVI_ERR_NOTSUPPORTED.

Return Value:

MVI_SUCCESS the output scan has occurred

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT timeout expired before an output scan
occurred

MVI_ERR_BADCONFIG the data connection is not open. (1756-MVI
only)

Example:

MVIHANDLE Handle;
int rc;

/* Wait here until output scan, 50ms timeout */
rc = MVIbp_WaitForOutputScan(Handle, 50);
if (rc == MVI_ERR_TIMEOUT)

printf(“Output scan did not occur within 50ms\n”);
else

printf(“Output scan has occurred\n”);

See Also:

MVIbp_WaitForInputScan
Publication 1756-RM004B-EN-P - October 2000

3-20 MVI Backplane API
Miscellaneous Functions

MVIbp_GetVersionInfo

Syntax:

int MVIbp_GetVersionInfo(MVIHANDLE handle,
MVIBPVERSIONINFO *verinfo);

Parameters:

handle handle returned by previous call to MVIbp_Open

verinfo pointer to structure of type MVIBPVERSIONINFO

Description:

MVIbp_GetVersionInfo retrieves the current version of the API library
and the backplane device driver. The information is returned in the
structure verinfo. handle must be a valid handle returned from
MVIbp_Open.

The MVIBPVERSIONINFO structure is defined as follows:

typedef struct tagMVIBPVERSIONINFO
{

WORD APISeries; /* API series */
WORD APIRevision; /* API revision */
WORD BPDDSeries; /* MVI driver series */
WORD BPDDRevision; /* MVI driver revision */

} MVIBPVERSIONINFO;

Return Value:

MVI_SUCCESS version information was read successfully.

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE Handle;
MVIBPVERSIONINFO verinfo;

/* print version of API library */
MVIbp_GetVersionInfo(Handle,&verinfo);
printf(“Library Series %d, Rev %d\n”, verinfo.APISeries, verinfo.APIRevision);
printf(“Driver Series %d, Rev %d\n”, verinfo.BPDDSeries,

verinfo.BPDDRevision);
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-21
MVIbp_GetModuleInfo

Syntax:

int MVIbp_GetModuleInfo(MVIHANDLE handle,
MVIBPMODULEINFO *modinfo);

Parameters:

handle handle returned by previous call to MVIbp_Open

modinfo pointer to structure of type MVIBPMODULEINFO

Description:

MVIbp_GetModuleInfo retrieves identity information for the module.
The information is returned in the structure modinfo. handle must be a
valid handle returned from MVIbp_Open.

The MVIBPMODULEINFO structure is defined as follows:

typedef struct tagMVIBPMODULEINFO
{

WORD VendorID; // Reserved
WORD DeviceType; // Reserved
WORD ProductCode; // Device model code
BYTEM MajorRevision; // Device major revision
BYTE MinorRevision; // Device minor revision
DWORD SerialNo; // Serial number
BYTE Name[32]; // Device name (string)
BYTE Month; // Date of manufacture - month
BYTE Day; // Date of manufacture - day
WORD Year; // Date of manufacture - year

} MVIBPMODULEINFO;

Return Value:

MVI_SUCCESS version information was read successfully.

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE Handle;
MVIBPMODULEINFO modinfo;

/* print module name */
MVIbp_GetModuleInfo(Handle,&modinfo);
printf(“Name is %s\n”, modinfo.Name);
Publication 1756-RM004B-EN-P - October 2000

3-22 MVI Backplane API
MVIbp_GetProcessorStatus

Syntax:

int MVIbp_GetProcessorStatus(MVIHANDLE handle, WORD
*pstatus);

Parameters:

handle handle returned by previous call to MVIbp_Open

pstatus pointer to a word that will be updated with the current
processor status

Description:

This function is used to query the state of the processor. handle must
be a valid handle returned from MVIbp_Open.

pstatus is a pointer to an word. When this function returns, certain bits
in this word will be set to indicate the current processor status, as
shown in table 3.G.

1756_MVI Note

The data connection must be established in order to receive the
processor status. Therefore, if the data connection is not established,
this function will return MVI_ERR_BADCONFIG and pstatus will be
zero.

1794-MVI Note

This function is not supported on the 1794-MVI and will always return
MVI_ERR_NOTSUPPORTED.

Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADCONFIG the data connection is not open. (1756-MVI
only)

Table 3.G - Processor Status Bits

Bit Name Description

0 MVI_PROCESSOR_STATUS_RUN Set if processor is in Run mode.

1 MVI_DATA_CONNECTION_OPEN Set if data connection is open (1756-MVI
only).

2 MVI_STATUS_CONNECTION_OPEN Set if status connection is open (1756-MVI
only)
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-23
Example:

MVIHANDLE handle;
WORDstatus;

MVIbp_GetProcessorStatus(handle, &status);
if (status & MVI_PROCESSOR_STATUS_RUN)

// Processor is in Run Mode
else

// Processor is not in Run Mode or there is no connection

MVIbp_GetProcessorStatus
Publication 1756-RM004B-EN-P - October 2000

3-24 MVI Backplane API
MVIbp_GetSetupMode

Syntax:

int MVIbp_GetSetupMode(MVIHANDLE handle, int *mode);

Parameters:

handle handle returned by previous call to MVIbp_Open

mode pointer to an integer that is set to 1 if the Setup Jumper is
installed, or 0 if the Setup Jumper is not installed.

Description:

This function is used to query the state of the Setup Jumper. handle
must be a valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will
be set to 1 if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup
Mode. It may be useful for an application to detect Setup Mode and
perform special configuration or diagnostic functions.

Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE handle;
int mode;

MVIbp_GetSetupMode(handle, &mode);
if (mode)

// Setup Jumper is installed - perform configuration/diagnostic
else

// Not in Setup Mode - normal operation
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-25
MVIbp_GetConsoleMode

Syntax:

int MVIbp_GetConsoleMode(MVIHANDLE handle, int *mode, int
*baud);

Parameters:

handle handle returned by previous call to MVIbp_Open

mode pointer to an integer that is set to 1 if the console is
installed, or 0 if the console is not enabled.

baud pointer to an integer that is set to the console baud rate
index if the console is enabled.

Description:

This function is used to query the state of the console. handle must be
a valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will
be set to 1 if the console is enabled, or 0 if the console is disabled.

baud is a pointer to an integer. When this function returns, baud will be
set to the console’s baud index value if the console is enabled. The
baud index values are shown in table 5.C. baud is not set if the console
is disabled.

It may be useful for an application to detect that the console is enabled
and allow user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200
baud.

Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE handle;
int mode;

MVIbp_GetConsoleMode(handle, &mode);
if (mode)

// Console is enabled - allow user interaction
else

// Console is not available - normal operation
Publication 1756-RM004B-EN-P - October 2000

3-26 MVI Backplane API
MVIbp_SetModuleStatus

Syntax:

int MVIbp_SetModuleStatus(MVIHANDLE handle, int status);

Parameters:

handle handle returned by previous call to MVIbp_Open

status module status, OK or Faulted

Description:

MVIbp_SetModuleStatus allows an application set the state of the
module to OK or Faulted. handle must be a valid handle returned from
MVIbp_Open.

status must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the status is Ok, the module status
LED indicator will be set to Green. If the status is Faulted, the status
indicator will be set to Red.

Note: The MVI hardware can set the OK LED to Red if any of the
following occurs:

• an unrecoverable fault

• hardware failure

• backplane driver failure

Neither the MVI hardware nor the Set ModuleStatus call has priority.
Either can overwrite the other.

Return Value:

MVI_SUCCESS the input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example:

MVIHANDLE Handle;

/* Set the Status indicator to Red */
MVIbp_SetModuleStatus(Handle, MVI_MODULE_STATUS_FAULTED);
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-27
MVIbp_SetUserLED

Syntax:

int MVIbp_SetUserLED(MVIHANDLE handle, int lednum, int
ledstate);

Parameters:

handle handle returned by previous call to MVIbp_Open

lednum specifies which of the user LED indicators is being
addressed

ledstate turns the LED on or off

Description:

MVIbp_SetUserLED allows an application to turn the user LED
indicators on and off. handle must be a valid handle returned from
MVIbp_Open.

lednum must be set to MVI_LED_USER1 or MVI_LED_USER2 to select
User LED 1 or User LED 2, respectively.

ledstate must be set to MVI_LED_STATE_ON or MVI_LED_STATE_OFF
to turn the indicator On or Off, respectively.

Return Value:

MVI_SUCCESS the input scan has occurred

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid

Example:

MVIHANDLE Handle;

/* Turn User LED 1 on and User LED 2 off */
MVIbp_SetUserLED(Handle, MVI_LED_USER1, MVI_LED_STATE_ON);
MVIbp_SetUserLED(Handle, MVI_LED_USER2, MVI_LED_STATE_OFF);
Publication 1756-RM004B-EN-P - October 2000

3-28 MVI Backplane API
MVIbp_ErrorString

Syntax:

int MVIbp_ErrorString(int errcode, char *buf);

Parameters:

errcode error code returned from an API function

buf pointer to user buffer to receive message

Description:

MVIbp_ErrorString returns a text error message associated with the error
code errcode. The null-terminated error message is copied into the
buffer specified by buf. The buffer should be at least 80 characters in
length.

Return Value:

MVI_SUCCESS message returned in buf

MVI_ERR_BADPARAM unknown error code

Example:

char buf[80];
int rc;

/* print error message */
MVIbp_ErrorString(rc, buf);
printf(“Error: %s”, buf);
Publication 1756-RM004B-EN-P - October 2000

MVI Backplane API 3-29
MVIbp_Sleep

Syntax:

int MVIbp_Sleep(MVIHANDLE handle, WORD msdelay);

Parameters:

handle handle returned by previous call to MVIbp_Open

msdelay time in milliseconds to suspend task

Description:

MVIbp_Sleep suspends the calling thread for at least msdelay
milliseconds. The actual delay may be several milliseconds longer than
msdelay, due to system overhead and the system timer granularity
(5ms).

Return Value:

MVI_SUCCESS success

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE handle;
int timeout=200;

// Simple timeout loop
while(timeout--)
{

// Poll for data, etc.
// Break if condition is met (no timeout)
// Else sleep a bit and try again
MVIbp_Sleep(10);

}

Publication 1756-RM004B-EN-P - October 2000

3-30 MVI Backplane API
Publication 1756-RM004B-EN-P - October 2000

Chapter 4

CIP Messaging API

The CIP Messaging API is one component of the 1756-MVI API Suite.
CIP API provides the lowest level of access to the ControlLogix
backplane interface. Complex applications, such as certain
communications protocols, may interface directly with the CIP API.
Simple applications, such as a serial barcode reader interface, may use
the MVI backplane API instead (see chapter 3).

What This Chapter Contains The following table identifies what this chapter contains and where to
find specific information.

CIP Messaging API Files Table 4.A lists the supplied CIP messaging API file names. These files
should be copied to a convenient directory on the computer on which
the application is to be developed. These files need not be present on
the module when executing the application.

CIP API Architecture The CIP API communicates with the ControlBus through the backplane
device driver (MVI56BP.EXE). The backplane driver must be loaded
before running an application which uses the CIP API.

For information about See page
CIP API Architecture 4-1

Backplane Device Driver 4-2

CIP API Functions 4-4

Initialization 4-5

Object Registration 4-7

Connected Data Transfer 4-10

Callback Functions 4-13

Miscellaneous Functions 4-28

Table 4.A Supplied CIP Messaging API Files

File Name Description

Cipapi.h Include file

Cipapi.lib Library (16-bit OMF format)
1 Publication 1756-RM004B-EN-P - October 2000

4-2 CIP Messaging API
The relationship between the module application, CIP API, and
backplane driver is shown in figure 4.1.

Figure 4.1 CPI API Architecture

Backplane Device Driver The backplane device driver contains the functionality necessary to
perform CIP messaging over the ControlLogix backplane using the
Midrange 3E ASIC. It is based upon the ControlNet example code,
ported to the DOS 6-XL environment and modified to support the
Midrange ASIC. The user application interfaces with the backplane
device driver through the CIP API library.

The backplane device driver implements the following components and
objects:

• Communications Device (CD)

• Unconnected message manager (UCMM)

• Message router object (MR)

• Connection manager object (CM)

• Transports

• Identity object

• ICP object

• NVS object

• Assembly object (with API access)

ControlBus (Backplane)

Control Processor
(Logix 5550)

Midrange ASIC

Backplane Device
Driver

CIP API Library

Thread Thread Thread

(MVI56BP.EXE)
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-3
The relationship between these components, the CIP API, and the
application is shown in figure 4.2.

Figure 4.2 1756-MVI CIP API System Data Flow Diagram

For more information about these components, refer to the Introduction
to ControlLogix Module Development, CID#X1557.

All data exchange between the application and the backplane occurs
through the Assembly Object, using the functions provided by the CIP
API. Included in the API are functions to register or unregister the
object, accept or deny Class 1 scheduled connection requests, access
scheduled connection data, and service unscheduled messages.

The backplane device driver is designed to support multi-threaded
applications. Critical sections are protected to guarantee data integrity.

CPI API Interface

Application

ControlBus

Connection
Mapping

CD

CM

UCMM

MR

ID Object

ICP Object

NVS Object

Transports

Assembly
Object

Backplane
Device Driver

Application
Code

More
Publication 1756-RM004B-EN-P - October 2000

4-4 CIP Messaging API
CIP API Functions The CIP API library functions are listed in table 4.B. Details for each
function are provided in the following sections.

Table 4.B CIP API Library Functions

Function Category Function Name Description

Initialization MVIcip_Open Initialize access to the CIP API Initialization

MVIcip_Close Terminate access to the CIP API

Object Registration MVIcip_RegisterAssemblyObj Register all instances of the Assembly Object, enabling
other devices in the CIP system to establish
connections with the object. Callbacks are used to
handle connection and service requests.

MVIcip_UnregisterAssemblyObj Unregister all instances of the Assembly Object that
had previously been registered. Subsequent
connection requests to the object will be refused.

Connected Data Transfer MVIcip_WriteConnected Write data to a connection

MVIcip_ReadConnected Read data from a connection

Callback Functions connect_proc Application function called by the CIP API when a
connection request is received for the registered object

service_proc Application function called by the CIP API when a
message is received for the registered object

rxdata_proc Application function called by the CIP API when data is
received on an open connection

fatalfault_proc Application function called if the backplane device
driver detects a fatal fault condition

flashupdate_proc Application function called when flash update is
initiated

resetrequest_proc Application function called when a module reset
request is received

Special Callback
Registration

MVIcip_RegisterReset ReqRtn Register a reset request handler routine

MVIcip_RegisterFatalFaultRtn Register a fatal fault handler routine

MVIcip_RegisterFlashUpdateRtn Register a flash update callback routine

Miscellaneous MVIcip_GetIdObject Return data from the module’s Identity Object

MVIcip_GetVersionInfo Get the CIP API version information

MVIcip_SetUserLED Set the state of a user LED

MVIcip_SetModuleStatus Set the state of the status LED

MVIcip_ErrorString Get a text description of an error code

MVIcip_GetSetupMode Get the state of the setup jumper

MVIcip_GetConsoleMode Get the state of the console (programming port PRT1)

MVIcip_Sleep Suspend task for specified time
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-5
Initialization

MVIcip_Open

Syntax:

int MVIcip_Open(MVIHANDLE *apiHandle);

Parameters:

apiHandle pointer to variable of type MVIHANDLE

Description:

MVIcip_Open acquires access to the CIP Messaging API and sets
apiHandle to a unique ID that the application uses in subsequent
functions. This function must be called before any of the other CIP API
functions can be used.

Return Value:

MVI_SUCCESS API was opened successfully

MVI_ERR_REOPEN API is already open

MVI_ERR_NODEVICE backplane driver could not be accessed

Note: MVI_ERR_NODEVICE will be returned if the backplane device
driver is not loaded.

Example:

MVIHANDLE apiHandle;

if (MVIcip_Open(&apiHandle)!= MVI_SUCCESS)
{

printf (“Open failed!\n”);
}
else
{

printf (“Open succeeded\n”);
}

See Also:

MVIcip_Close

IMPORTANT Once the API has been opened, MVIcip_Close
should always be called before exiting the
application.
Publication 1756-RM004B-EN-P - October 2000

4-6 CIP Messaging API
MVIcip_Close

Syntax:

int MVIcip_Close(MVIHANDLE apiHandle);

Parameters:

apiHandle handle returned by previous call to MVIcip_Open

Description:

This function is used by an application to release control of the CIP API.
apiHandle must be a valid handle returned from MVIcip_Open.

Return Value:

MVI_SUCCESS API was closed successfully

MVI_ERR_NOACCESS apiHandle does not have access

Example:

MVIHANDLE apiHandle;

MVIcip_Close (apiHandle);

See Also:

MVIcip_Open

IMPORTANT Once the CIP API has been opened, this function
should always be called before exiting the
application.
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-7
Object Registration

MVIcip_RegisterAssemblyObj

Syntax:

int MVIcip_RegisterAssemblyObj(
MVIHANDLE apiHandle,
MVIHANDLE *objHandle,
DWORD reg_param,
MVICALLBACK (*connect_proc)(),
MVICALLBACK (*service_proc)(),
MVICALLBACK (*rxdata_proc)());

Parameters:

apiHandle handle returned by previous call to MVIcip_Open

objHandle pointer to variable of type MVIHANDLE. On successful
return, this variable will contain a value which identifies
this object.

reg_param value that will be passed back to the application as a
parameter in the connect_proc and service_proc
callback functions.

connect_proc pointer to callback function to handle connection
requests

service_proc pointer to callback function to handle service requests

rxdata_proc pointer to callback function to receive data from an
open connection

Description:

This function is used by an application to register all instances of the
Assembly Object with the CIP API. The object must be registered before
a connection can be established with it. apiHandle must be a valid
handle returned from MVIcip_Open.

reg_param is a value that will be passed back to the application as a
parameter in the connect_proc and service_proc callback functions. The
application may use this to store an index or pointer. It is not used by
the CIP API.

connect_proc is a pointer to a callback function to handle connection
requests to the registered object. This function will be called by the
backplane device driver when a Class 1 scheduled connection request
for the object is received. It will also be called when an established
connection is closed. See Section 4.3.4 for details.
Publication 1756-RM004B-EN-P - October 2000

4-8 CIP Messaging API
service_proc is a pointer to a callback function which handles service
requests to the registered object. This function will be called by the
backplane device driver when an unscheduled message is received for
the object. See Section 4.3.4 for details.

rxdata_proc is a pointer to a callback function which handles data
received on an open connection. If rxdata_proc is NULL, then the CIP
API buffers the received data and the application must retrieve the data
using the MVIcip_ReadConnected() function. If rxdata_proc is not
NULL, then the rxdata_proc callback routine must copy the received
data to a local buffer.

Return Value:

MVI_SUCCESS object was registered successfully

MVI_ERR_NOACCES SapiHandle does not have access

MVI_ERR_BADPARAM connect_proc or service_proc is NULL

MVI_ERR_ALREADY_REGISTEREDobject has already been registered

Example:

MVIHANDLE apiHandle;
MVIHANDLE objHandle;
MY_STRUCT mystruct;
int rc;

MVICALLBACK MyConnectProc (MVIHANDLE, MVICIPCONNSTRUC *);
MVICALLBACK MyServiceProc(MVIHANDLE, MVICIPSERVSTRUC *);

// Register all instances of the assembly object

rc = MVIcip_RegisterAssemblyObj(apiHandle, &objHandle,
(DWORD)&mystruct, MyConnectProc, MyServiceProc, NULL);

if (rc != MVI_SUCCESS) printf(“Unable to register assembly object\n”);

See Also:

MVIcip_UnregisterAssemblyObj

connect_proc

service_proc

MVIcip_RegisterAssemblyObj
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-9
MVIcip_UnregisterAssemblyObj

Syntax:

int MVIcip_UnregisterAssemblyObj(
MVIHANDLE apiHandle,
MVIHANDLE objHandle);

Parameters:

apiHandle handle returned by previous call to MVIcip_Open

objHandle handle for object to be unregistered

Description:

This function is used by an application to unregister all instances of the
Assembly Object with the CIP API. Any current connections for the
object specified by objHandle will be terminated.

apiHandle must be a valid handle returned from MVIcip_Open.
objHandle must be a handle returned from
MVIcip_RegisterAssemblyObj.

Return Value:

MVI_SUCCESS object was unregistered successfully

MVI_ERR_NOACCESS apiHandle does not have access

MVI_ERR_BADPARAM objHandle is invalid

Example:

MVIHANDLE apiHandle;
MVIHANDLE objHandle;

// Unregister all instances of the object
MVIcip_UnregisterAssemblyObj(apiHandle, objHandle);

See Also:

MVIcip_RegisterAssemblyObj
Publication 1756-RM004B-EN-P - October 2000

4-10 CIP Messaging API
Connected Data Transfer

MVIcip_WriteConnected

Syntax:

int MVIcip_WriteConnected(
MVIHANDLE apiHandle,
MVIHANDLE connHandle,
BYTE *dataBuf,
WORD offset,WORD dataSize);

Parameters:

apiHandle handle returned by previous call to MVIcip_Open

connHandle handle of open connection

dataBuf pointer to data to be written

offset offset of byte to begin writing

dataSize number of bytes of data to write

Description:

This function is used by an application to update data being sent on the
open connection specified by connHandle.

apiHandle must be a valid handle returned from MVIcip_Open.
connHandle must be a handle passed by the connect_proc callback
function.

offset is the offset into the connected data buffer to begin writing.
dataBuf is a pointer to a buffer containing the data to be written.
dataSize is the number of bytes of data to be written.

Note: For Assembly Instance 1, the first 4 bytes of the 5550 input image
table are overwritten with “FF” (hex) when the connection is not open
or broken.

Return Value:

MVI_SUCCESS data was updated successfully

MVI_ERR_NOACCESS apiHandle does not have access

MVI_ERR_BADPARAM connHandle or dataSize is invalid

Example:

MVIHANDLE apiHandle;
MVIHANDLE connHandle;
BYTE buffer[128];

// Write 128 bytes to the connected data buffer
MVIcip_WriteConnected(apiHandle, connHandle, buffer, 0, 128);

See Also: MVIcip_ReadConnected
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-11
MVIcip_ReadConnected

Syntax:

int MVIcip_ReadConnected(
MVIHANDLE apiHandle,
MVIHANDLE connHandle,
BYTE *dataBuf,
WORD offset,
WORD dataSize);

Parameters:

apiHandle handle returned by previous call to MVIcip_Open

connHandle handle of open connection

dataBuf pointer to buffer to receive data

offset offset of byte to begin reading

dataSize number of bytes to read

Description:

This function is used by an application read data being received on the
open connection specified by connHandle. apiHandle must be a valid
handle returned from MVIcip_Open. connHandle must be a handle
passed by the connect_proc callback function. offset is the offset into
the connected data buffer to begin reading. dataBuf is a pointer to a
buffer to receive the data. dataSize is the number of bytes of data to be
read.

Notes:

When a connection has been established with a ControlLogix 5550
controller, the first 4 bytes of received data are processor status and are
automatically set by the 5550. The first byte of data appears at offset 4
in the receive data buffer.

A Run/Idle status word is appended when the communication format is
one of the “Data-xxx” types. This status word is not used for “Input
Data-xxx” types or status connections. Only the least significant bit of
the word is used. All other bits are reset to 0. When set to 1 (run), the
bit signals the module to activate its I/O. When reset to 0, it signals the
module to deactivate I/O (idle state).

The Run/Idle bit can be set only when the processor is in Run mode.
The bit is reset when the 5550 processor:

• goes into a major fault state

• is in program mode

• is in test mode
Publication 1756-RM004B-EN-P - October 2000

4-12 CIP Messaging API
The MVIcip_ReadConnected function can only be used if the
rxdata_proc callback function pointer was set to NULL in the call to
MVIcp_RegisterAssemblyObject().

Return Value:

MVI_SUCCESS data was read successfully

MVI_ERR_NOACCESS apiHandle does not have access

MVI_ERR_BADPARAM connHandle or dataSize is invalid

MVI_ERR_INVALID an rxdata_proc callback has been registered

Example:

MVIHANDLE apiHandle;
MVIHANDLE connHandle;
BYTE buffer[128];

// Read 128 bytes from the connected data buffer
MVIcip_ReadConnected(apiHandle, connHandle, buffer, 0, 128);

See Also:

MVIcip_WriteConnected

MVIcip_ReadConnected
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-13
Callback Functions

Note: The functions in this section are not part of the CIP API, but must
be implemented by the application. The CIP API calls the connect_proc
or service_proc functions when connection or service requests are
received for the registered object. The optional rxdata_proc function is
called when data is received on a connection. The optional
fatalfault_proc function is called when the backplane device driver
detects a fatal fault condition. The optional resetrequest_proc function is
called when a reset request is received by the backplane device driver.

Special care must be taken when coding the callback functions, since
these functions are called directly from the backplane device driver. In
particular, no assumptions can be made about the segment registers DS
or SS. Therefore, the compiler options or directives used must disable
stack probes and reload DS. For convenience, the macro
MVICALLBACK has been defined to include the __loadds compiler
directive, which forces the data segment register to be reloaded upon
entry to the callback function.

Stack probes (or stack checking) must be disabled using compiler
command line arguments or pragmas. Stack checking is off by default
for the Borland compiler. For the Microsoft compiler, it must be
disabled either with the /Gs command line option, or with “pragma
checkstack(off)”.

In general, the callback routines should be as short as possible,
especially rxdata_proc. Do not call any library functions from the
rxdata_proc callback routine. Stack size is limited, so keep stack
variables to a minimum.
Publication 1756-RM004B-EN-P - October 2000

4-14 CIP Messaging API
connect_proc

Syntax:

MVICALLBACK connect_proc(MVIHANDLE objHandle,
MVICIPCONNSTRUC *sConn);

Parameters:

objHandle handle of registered object instance

sConn pointer to structure of type MVICIPCONNSTRUCT

Description:

connect_proc is a callback function which is passed to the CIP API in
the MVIcip_RegisterAssemblyObj call. The CIP API calls the
connect_proc function when a Class 1 scheduled connection request is
made for the registered object instance specified by objHandle.

sConn is a pointer to a structure of type MVICIPCONNSTRUCT. This
structure is shown below:

typedef struct tagMVICIPCONNSTRUC
{

MVIHANDLE connHandle; // unique value which identifies this connection
DWORD reg_param; // value passed via MVIcip_Register AssemblyObj
WORD reason; // specifies reason for callback
WORD instance; // instance specified in open
WORD producerCP; // producer connection point specified in open
WORD consumerCP; // consumer connection point specified in open
DWORD *lOTApi; // pointer to originator to target packet interval
DWORD *lTOApi; // pointer to target to originator packet interval
DWORD lODeviceSn; // Serial number of the originator
WORD iOVendorId; // Vendor Id of the originator
WORD rxDataSize; // size in bytes of receive data
WORD txDataSize; // size in bytes of transmit data
BYTE *configData; // pointer to configuration data sent in open
WORD configSize; // size of configuration data sent in open
WORD *extendederr; // an extended error code if an error occurs

} MVICIPCONNSTRUC;
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-15
connHandle is used to identify this connection. This value must be
passed to the MVIcip_SendConnected and MVIcip_ReadConnected
functions.

reg_param is the value that was passed to
MVIcip_RegisterAssemblyObj. The application may use this to store an
index or pointer. It is not used by the CIP API.

reason specifies whether the connection is being opened or closed. A
value of MVI_CIP_CONN_OPEN indicates the connection is being
opened, MVI_CIP_CONN_OPEN_COMPLETE indicates the connection
has been successfully opened, and MVI_CIP_CONN_CLOSE indicates
the connection is being closed. If reason is MVI_CIP_CONN_CLOSE, the
following parameters are unused: producerCP, consumerCP, api,
rxDataSize, and txDataSize.

instance is the instance number that is passed in the forward open.
(Note: This corresponds to the Configuration Instance on the RSLogix
5000 generic profile.)

producerCP is the producer connection point from the open request.
(Note: This corresponds to the Input Instance on the RSLogix 5000
generic profile.)

consumerCP is the consumer connection point from the open request.
(Note: This corresponds to the Output Instance on the RSLogix 5000
generic profile.)

lOTApi is a pointer to the originator-to-target actual packet interval for
this connection, expressed in microseconds. This is the rate at which
connection data packets will be received from the originator. This value
is initialized according to the requested packet interval from the open
request. The application may choose to reject the connection if the
value is not within a predetermined range. If the connection is rejected,
return MVI_CIP_FAILURE and set extendederr to
MVI_CIP_EX_BAD_RPI. Note: The minimum RPI value supported by
the 1756-MVI module is 600us.

lTOApi is a pointer to the target-to-originator actual packet interval for
this connection, expressed in microseconds. This is the rate at which
connection data packets will be transmitted by the module. This value
is initialized according to the requested packet interval from the open
request. The application may choose to increase this value if necessary.

connect_proc
Publication 1756-RM004B-EN-P - October 2000

4-16 CIP Messaging API
lODeviceSn is the serial number of the originating device, and
iOVendorId is the vendor ID. The combination of vendor ID and serial
number is guaranteed to be unique, and may be used to identify the
source of the connection request. This is important when connection
requests may be originated by multiple devices.

rxDataSize is the size in bytes of the data to be received on this
connection. txDataSize is the size in bytes of the data to be sent on this
connection.

configData is a pointer to a buffer containing any configuration data
that was sent with the open request. configSize is the size in bytes of
the configuration data.

extendederr is a pointer to a word which may be set by the callback
function to an extended error code if the connection open request is
refused.

Return Value:

The connect_proc routine must return one of the following values if
reason is MVI_CIP_CONN_OPEN:

Note: If reason is MVI_CIP_CONN_OPEN_COMPLETE or
MVI_CIP_CONN_CLOSE, the return value must be MVI_SUCCESS.

MVI_SUCCESS connection is accepted

MVI_CIP_BAD_INSTANCE instance is invalid

MVI_CIP_NO_RESOURCE unable to support connection due to
resource limitations

MVI_CIP_FAILURE connection is rejected – extendederr may
be set

Extended Error Codes:

If the open request is rejected, extendederr can be set to one of the
following values:

MVI_CIP_EX_CONNECTION_USED The requested connection is
already in use.

MVI_CIP_EX_BAD_RPI The requested packet interval
cannot be supported.

MVI_CIP_EX_BAD_SIZE The requested connection sizes do
not match the allowed sizes.

connect_proc
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-17
Example:

MVIHANDLE Handle;

MVICALLBACK connect_proc(MVIHANDLE objHandle, MVICIPCONNSTRUCT
*sConn)
{

// Check reason for callback
switch(sConn->reason)
{

case MVI_CIP_CONN_OPEN:
// A new connection request is being made. Validate the
// parameters and determine whether to allow the
// connection.
// Return MVI_SUCCESS if the connection is to be
// established,
// or one of the extended error codes if not. See the sample
// code for more details.
return(MVI_SUCCESS);

case MVI_CIP_CONN_OPEN_COMPLETE:
// The connection has been successfully opened. If
// necessary,
// call MVIcip_WriteConnected to initialize transmit data.
return(MVI_SUCCESS);

case MVI_CIP_CONN_CLOSE:
// This connection has been closed – inform the application
return(MVI_SUCCESS);

}
}

See Also:

MVIcip_RegisterAssemblyObj

MVIcip_SendConnected

MVIcip_ReadConnected

connect_proc
Publication 1756-RM004B-EN-P - October 2000

4-18 CIP Messaging API
service_proc

Syntax:

MVICALLBACK service_proc(MVIHANDLE objHandle,
MVICIPSERVSTRUC *sServ);

Parameters:

objHandle handle of registered object

sServ pointer to structure of type MVICIPSERVSTRUC

Description:

service_proc is a callback function which is passed to the CIP API in the
MVIcip_RegisterAssemblyObj call. The CIP API calls the service_proc
function when an unscheduled message is received for the registered
object specified by objHandle.

For information on how to set up the message instructions within the
5550 processor, refer to the messaging information on pages 3-14 to
3-17.

Note that the object ID, Instance Number, is overwritten by the instance
parameter of the structure below.

sServ is a pointer to a structure of type MVICIPSERVSTRUC. This
structure is shown below:

typedef struct tagMVICIPSERVSTRUC
{

DWORD reg_param; // value passed via MVIcip_RegisterAssemblyObj
WORD instance; // instance number of object being accessed
BYTE serviceCode; // service being requested
WORD attribute; // attribute being accessed
BYTE **msgBuf; // pointer to pointer to message data
WORD offset; // member offset
WORD *msgSize; // pointer to size in bytes of message data
WORD *extendederr; // an extended error code if an error occurs

} MVICIPSERVSTRUC;

reg_param is the value that was passed to
MVIcip_RegisterAssemblyObj. The application may use this to store an
index or pointer. It is not used by the CIP API.

instance specifies the instance of the object being accessed.
serviceCode specifies the service being requested. attribute specifies the
attribute being accessed.

msgBuf is a pointer to a pointer to a buffer containing the data from the
message. This pointer should be updated by the callback routine to
point to the buffer containing the message response upon return.

offset is the offset of the member being accessed.
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-19
msgSize points to the size in bytes of the data pointed to by msgBuf.
The application should update this with the size of the response data
before returning.

extendederr is a pointer to a word which can be set by the callback
function to an extended error code if the service request is refused.

Return Value:

The service_proc routine must return one of the following values:

MVI_SUCCESS message processed successfully

MVI_CIP_BAD_INSTANCE invalid class instance

MVI_CIP_BAD_SERVICE invalid service code

MVI_CIP_BAD_ATTR invalid attribute

MVI_CIP_ATTR_NOT_SETTABLE attribute is not settable

MVI_CIP_PARTIAL_DATA data size invalid

MVI_CIP_BAD_ATTR_DATA attribute data is invalid

MVI_CIP_FAILURE generic failure code

Example:

MVIHANDLE Handle;

MVICALLBACK service_proc (MVIHANDLE objHandle, MVICIPSERVSTRUC
*sServ)
{

// Select which instance is being accessed.
// The application defines how each instance is defined.
switch(sServ->instance)
{

case 1: // Instance 1
// Check serviceCode and attribute; perform
// requested service if appropriate
break;

case 2: // Instance 2
// Check serviceCode and attribute; perform
// requested service if appropriate
break;

default:
return(MVI_CIP_BAD_INSTANCE); // Invalid instance

}
}

See Also:

MVIcip_RegisterAssemblyObj

service_proc
Publication 1756-RM004B-EN-P - October 2000

4-20 CIP Messaging API
rxdata_proc

Syntax:

int rxdata_proc(MVIHANDLE objHandle, MVICIPRECVSTRUC
*sRecv);

Parameters:

objHandle handle of registered object

sRecv pointer to structure of type MVICIPRECVSTRUC

Description:

rxdata_proc is an optional callback function which may be passed to
the CIP API in the MVIcip_RegisterAssemblyObj call. If the rxdata_proc
callback has been registered, the CIP API calls it when Class 1
scheduled data is received for the registered object specified by
objHandle.

sRecv is a pointer to a structure of type MVICIPRECVSTRUC. This
structure is shown below:

typedef struct tagMVICIPRECVSTRUC
{

DWORD reg_param; // value passed via MVIcip_Register AssemblyObj
MVIHANDLE connHandle; // unique value which identifies this connection
BYTE*‘ rxData; // pointer to buffer of received data
WORD dataSize; // size of received data in bytes

} MVICIPRECVSTRUC;

reg_param is the value that was passed to
MVIcip_RegisterAssemblyObj. The application may use this to store an
index or pointer. It is not used by the CIP API.

connHandle is the connection identifier passed to the connect_proc
callback when this connection was opened.

rxData is a pointer to a buffer containing the received data. dataSize is
the size of the received data in bytes.

Note:

Use of the rxdata_proc callback is not recommended. Registering this
callback increases CPU overhead and reduces overall performance,
especially for relatively small RPI values. It is recommended that this
callback only be used when the RPI is set to 10ms or greater.

This routine is called directly from an interrupt service routine in the
backplane device driver. It should not perform any operating system
calls and should execute as quickly as possible (200us maximum). Its
only function should be to copy the data to a local buffer. The data
must not be processed in the callback routine, or backplane
communications may be disrupted.
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-21
Return Value:

The rxdata_proc routine must return MVI_SUCCESS.

Example:

MVIHANDLE Handle;

int _loadds rxdata_proc(MVIHANDLE objHandle, MVICIPRECVSTRUC *sRecv)
{

// Copy the data to our local buffer.
memcpy(RxDataBuf, sRecv->rxData, sRecv->dataSize);

// Indicate that new data has been received
RxDataCnt++;

return(MVI_SUCCESS);
}

See Also:

MVIcip_RegisterAssemblyObj

rxdata_proc
Publication 1756-RM004B-EN-P - October 2000

4-22 CIP Messaging API
fatalfault_proc

Syntax:

MVICALLBACK fatalfault_proc();

Parameters:

None

Description:

fatalfault_proc is an optional callback function which may be passed to
the CIP API in the MVIcip_RegisterFatalFaultRtn call. If the
fatalfault_proc callback has been registered, it will be called if the
backplane device driver detects a fatal fault condition. This allows the
application an opportunity to take appropriate actions.

Return Value:

The fatalfault_proc routine must return MVI_SUCCESS.

Example:

MVIHANDLE Handle;

MVICALLBACK fatalfault_proc(void)
{

// Take whatever action is appropriate for the application:
// - Set local IO to safe state
// - Log error
// - Attempt recovery (e.g., restart module)

return(MVI_SUCCESS);
}

See Also:

MVIcip_RegisterFatalFaultRtn;
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-23
flashupdate_proc

Syntax:

MVICALLBACK flashupdate_proc();

Parameters:

None

Description:

flashupdate_proc is an optional callback function which may be passed
to the CIP API in the MVIcip_RegisterFlashUpdateRtn call. If the
flashupdate_proc callback has been registered, it will be called if the
backplane device driver receives a flash update command. This allows
the application an opportunity to take appropriate actions before it is
stopped.

Return Value:

The flashupdate_proc routine must return MVI_SUCCESS.

Example:

MVIHANDLE Handle;

MVICALLBACK flashupdate_proc(void)
{
 // Take whatever action is appropriate for the application:
 // - Set local IO to safe state
 // - Trigger an orderly shutdown
 return(MVI_SUCCESS);
}

See Also:

MVIcip_RegisterFlashUpdateRtn
Publication 1756-RM004B-EN-P - October 2000

4-24 CIP Messaging API
resetrequest_proc

Syntax:

MVICALLBACK resetrequest_proc();

Parameters:

None

Description:

resetrequest_proc is an optional callback function which may be passed
to the CIP API in the MVIcip_RegisterResetReqRtn call. If the
resetrequest_proc callback has been registered, it will be called if the
backplane device driver receives a module reset request (Identity
Object reset service). This allows the application an opportunity to take
appropriate actions to prepare for the reset, or to refuse the reset.

Return Value:

MVI_SUCCESS the module will reset upon return from the
callback

MVI_ERR_INVALID the module will not be reset and will continue
normal operation

Example:

MVIHANDLE Handle;

MVICALLBACK resetrequest_proc(void)
{

// Take whatever action is appropriate for the application:
// - Set local IO to safe state
// - Perform orderly shutdown
// - Reset special hardware
// - Refuse the reset

return(MVI_SUCCESS); // allow the reset
}

Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-25
Special Callback Registration

MVIcip_RegisterFatalFaultRtn

Syntax:

int MVIcip_RegisterFatalFaultRtn(
MVIHANDLE apiHandle,
MVICALLBACK (*fatalfault_proc)());

Parameters:

apihandle handle returned by previous call to MVIcip_Open

fatalfault_proc pointer to fatal fault callback routine

Description:

This function is used by an application to register a fatal fault callback
routine. Once registered, the backplane device driver will call
fatalfault_proc if a fatal fault condition is detected.

apiHandle must be a valid handle returned from MVIcip_Open.
fatalfault_proc must be a pointer to a fatal fault callback function.

A fatal fault condition will result in the module being taken offline; i.e.,
all backplane communications will halt. The application may register a
fatal fault callback in order to perform recovery, safe-state, or diagnostic
actions.

Return Value:

MVI_SUCCESS routine was registered successfully

MVI_ERR_NOACCESS apihandle does not have access

Example:

MVIHANDLE apihandle;

// Register a fatal fault handler
MVIcip_RegisterFatalFaultRtn(apiHandle, fatalfault_proc);

See Also:

fatalfault_proc
Publication 1756-RM004B-EN-P - October 2000

4-26 CIP Messaging API

MVIcip_RegisterResetReqRtn

Syntax:

int MVIcip_RegisterResetReqRtn(
MVIHANDLE apiHandle,
MVICALLBACK (*resetrequest_proc)());

Parameters:

apihandle handle returned by previous call to MVIcip_Open

resetrequest_proc pointer to reset request callback routine

Description:

This function is used by an application to register a reset request
callback routine. Once registered, the backplane device driver will call
resetrequest_proc if a module reset request is received.

apiHandle must be a valid handle returned from MVIcip_Open.
resetrequest_proc must be a pointer to a reset request callback function.

If the application does not register a reset request handler, receipt of a
module reset request will result in a software reset (i.e., reboot) of the
module. The application may register a reset request callback in order
to perform an orderly shutdown, reset special hardware, or to deny the
reset request.

Return Value:

MVI_SUCCESS routine was registered successfully

MVI_ERR_NOACCESS apihandle does not have access

Example:

MVIHANDLE apihandle;

// Register a reset request handler
MVIcip_RegisterResetReqRtn(apiHandle, resetrequest_proc);

See Also:

resetrequest_proc
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-27
MVIcip_RegisterFlashUpdateRtn

Syntax:

int MVIcip_RegisterFlashUpdateRtn(MVIHANDLE apiHandle,
MVICALLBACK (*flashupdate_proc)());

Parameters:

apiHandle handle returned by previous call to MVIcip_Open

flashupdate_proc pointer to flash update callback routine

Description:

This function is used by an application to register a flash update
callback routine. Once registered, the backplane device driver will call
flashupdate_proc if a flash update command is received. (A flash
update command is used to update the module’s firmware. It is
generated by a firmware update utility such as Control Flash.)

apiHandle must be a valid handle returned from MVIcip_Open.
flashupdate_proc must be a pointer to a flash update callback function.

The application may register a flash update callback in order to perform
an orderly shutdown. Once a flash update command is received, the
backplane device driver will close all open connections, and will refuse
any new connections until the update has completed. After calling the
flash update callback (if registered), the backplane device driver will
restart the module in flash update mode (no application will be loaded).
Once the flash update has completed, the module will be restarted in
normal mode.

Return Value:

MVI_SUCCESS Routine was registered successfully

MVI_ERR_NOACCESS apiHandle does not have access

Example:

MVIHANDLE apiHandle;

// Register a flash update handler
MVIcip_RegisterFlashUpdateRtn(apiHandle, flashupdate_proc);

See Also:

flashupdate_proc
Publication 1756-RM004B-EN-P - October 2000

4-28 CIP Messaging API
Miscellaneous Functions

MVIcip_GetIdObject

Syntax:

int MVIcip_GetIdObject(MVIHANDLE apiHandle, MVICIPIDOBJ
*idobject);

Parameters:

apiHandle handle returned from MVIcip_Open call

Description:

MVIcip_GetIdObject retrieves the identity object for the module.
apiHandle must be a valid handle returned from MVIcip_Open.

idobject is a pointer to a structure of type MVICIPIDOBJ. The members
of this structure will be updated with the module identity data.

The MVICIPIDOBJ structure is defined below:

typedef struct tagMVICIPIDOBJ
{

WORD VendorID; // Vendor ID number
WORD DeviceType; // General product type
WORD ProductCode; // Vendor-specific product identifier
BYTE MajorRevision; // Major revision level
BYTE MinorRevision; // Minor revision level
DWORD SerialNo; // Module serial number
BYTE Name[32]; // Text module name (null-terminated)

} MVICIPIDOBJ;

Return Value:

MVI_SUCCESS ID object was retrieved successfully

MVI_ERR_NOACCESS apiHandle does not have access

Example:

MVIHANDLE apiHandle;
MVICIPIDOBJ idobject;

MVIcip_GetIdObject(apiHandle, &idobject);
printf(“Module Name: %s Serial Number: %lu\n”, idobject.Name,

idobject.SerialNo);
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-29
MVIcip_GetVersionInfo

Syntax:

int MVIcip_GetVersionInfo(MVIHANDLE handle,
MVICIPVERSIONINFO *verinfo);

Parameters:

handle handle returned by previous call to MVIcip_Open

verinfo pointer to structure of type MVICIPVERSIONINFO

Description:

MVIcip_GetVersionInfo retrieves the current version of the API library
and the backplane device driver. The information is returned in the
structure verinfo. handle must be a valid handle returned from
MVIcip_Open.

The MVICIPVERSIONINFO structure is defined as follows:

typedef struct tagMVICIPVERSIONINFO
{

WORD APISeries; /*API series */
WORD APIRevision; /* API revision */
WORD BPDDSeries; /* Backplane device driver series */
WORD BPDDRevision; /* Backplane device driver revision */

} MVICIPVERSIONINFO;

Return Value:

MVI_SUCCESS version information was read successfully

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE Handle;
MVICIPVERSIONINFO verinfo;

/* print version of API library */
MVIcip_GetVersionInfo(Handle,&verinfo);
printf(“Library Series %d, Rev %d\n”, verinfo.APISeries, verinfo.APIRevision);
printf(“Driver Series %d, Rev %d\n”, verinfo.BPDDSeries,

verinfo.BPDDRevision);
Publication 1756-RM004B-EN-P - October 2000

4-30 CIP Messaging API
MVIcip_SetUserLED

Syntax:

int MVIcip_SetUserLED(MVIHANDLE handle, int lednum, int
ledstate);

Parameters:

handle handle returned by previous call to MVIcip_Open

lednum specifies which of the user LED indicators is being
addressed

ledstate specifies state for LED indicator

Description:

MVIcip_SetUserLED allows an application to turn the user LED
indicators on and off. handle must be a valid handle returned from
MVIcip_Open.

lednum must be set to MVI_LED_USER1 or MVI_LED_USER2 to select
User LED 1 or User LED 2, respectively.

ledstate must be set to MVI_LED_STATE_ON or MVI_LED_STATE_OFF
to turn the indicator On or Off, respectively.

Return Value:

MVI_SUCCESS the input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example:

MVIHANDLE Handle;

/* Turn User LED 1 on and User LED 2 off */
MVIcip_SetUserLED(Handle, MVI_LED_USER1, MVI_LED_STATE_ON);
MVIcip_SetUserLED(Handle, MVI_LED_USER2, MVI_LED_STATE_OFF);
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-31
MVIcip_SetModuleStatus

Syntax:

int MVIcip_SetModuleStatus(MVIHANDLE handle, int status);

Parameters:

handle handle returned by previous call to MVIcip_Open

status module status, OK or Faulted

Description:

MVIcip_SetModuleStatus allows an application set the status of the
module to OK or Faulted. handle must be a valid handle returned from
MVIcip_Open.

status must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the status is Ok, the module status
LED indicator will be set to Green. If the status is Faulted, the status
indicator will be set to Red.

Return Value:

MVI_SUCCESS the input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example:

MVIHANDLE Handle;

/* Set the Status indicator to Red */
MVIcip_SetModuleStatus(Handle, MVI_MODULE_STATUS_FAULTED);
Publication 1756-RM004B-EN-P - October 2000

4-32 CIP Messaging API
MVIcip_ErrorString

Syntax:

int MVIcip_ErrorString(int errcode, char *buf);

Parameters:

errcode error code returned from an API function

buf pointer to user buffer to receive message

Description:

MVIcip_ErrorString returns a text error message associated with the
error code errcode. The null-terminated error message is copied into the
buffer specified by buf. The buffer should be at least 80 characters in
length.

Return Value:

MVI_SUCCESS message returned in buf

MVI_ERR_BADPARAM unknown error code

Example:

char buf[80];
int rc;

/* print error message */
MVIcip_ErrorString(rc, buf);
printf(“Error: %s”, buf);
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-33
MVIcip_GetSetupMode

Syntax:

int MVIcip_GetSetupMode(MVIHANDLE handle, int *mode);

Parameters:

handle handle returned by previous call to MVIcip_Open

mode pointer to an integer that is set to 1 if the Setup Jumper is
installed, or 0 if the Setup Jumper is not installed.

Description:

This function is used to query the state of the Setup Jumper. handle
must be a valid handle returned from MVIcip_Open.

mode is a pointer to an integer. When this function returns, mode will
be set to 1 if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup
Mode.

It may be useful for an application to detect Setup Mode and perform
special configuration or diagnostic functions.

Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE handle;
int mode;

MVIcip_GetSetupMode(handle, &mode);
if (mode)

// Setup Jumper is installed - perform configuration/diagnostic
else

// Not in Setup Mode - normal operation
Publication 1756-RM004B-EN-P - October 2000

4-34 CIP Messaging API
MVIcip_GetConsoleMode

Syntax:

int MVIcip_GetConsoleMode(MVIHANDLE handle, int *mode, int
*baud);

Parameters:

handle handle returned by previous call to MVIcip_Open

mode pointer to an integer that is set to 1 if the console is
enabled, or 0 if the console is disabled.

baud pointer to an integer that is set to the console baud rate
index if the console is enabled.

Description:

This function is used to query the state of the console. handle must be
a valid handle returned from MVIcip_Open.

mode is a pointer to an integer. When this function returns, mode will
be set to 1 if the console is enabled, or 0 if the console is disabled.

baud is a pointer to an integer. When this function returns, baud will be
set to the console’s baud index value if the console is enabled. The
baud index values are shown in table (4). baud is not set if the console
is disabled.

It may be useful for an application to detect that the console is enabled
and allow user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200
baud.

Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example:

MVIHANDLE handle;
int mode;

MVIcip_GetConsoleMode(handle, &mode);
if (mode)

// Console is enabled - allow user interaction
else

// Console is not available - normal operation
Publication 1756-RM004B-EN-P - October 2000

CIP Messaging API 4-35
MVIcip_Sleep

Syntax:

int MVIcip_Sleep(MVIHANDLE apiHandle, WORD msdelay);

Parameters:

apihandle handle returned by previous call to MVIcip_Open

msdelay time in milliseconds to suspend taskdelay);

Description:

MVIcip_Sleep suspends the calling thread for at least msdelay
milliseconds. The actual delay may be several milliseconds longer than
msdelay, due to system overhead and the system timer granularity
(5ms).

Return Value:

MVI_SUCCESS success

MVI_ERR_NOACCESS apihandle does not have access

Example:

MVIHANDLE apihandle;
int timeout=200;

// Simple timeout loop
while(timeout--)
{

// Poll for data, etc.
// Break if condition is met (no timeout)
// Else sleep a bit and try again
MVIcip_Sleep (apiHandle, 10);

}

Publication 1756-RM004B-EN-P - October 2000

4-36 CIP Messaging API
Publication 1756-RM004B-EN-P - October 2000

Chapter 5

Serial Port API

The Serial Port API is one of the three components of the 1756-MVI
API Suite. The Serial Port API allows applications to communicate
with foreign devices over the serial ports. The Serial Port API provides
a common applications interface for all of the modules in the MVI
family. This common interface allows application portability between
modules in the family.

What This Chapter Contains The following table identifies what this chapter contains and where to
find specific information.

Serial API Files Table 5.A lists the supplied API file names. These files should be
copied to a convenient directory on the computer on which the
application is to be developed. These files need not be present on the
module when executing the application.

For information about See page
Serial API Files 5-1

Serial Data Transfer 5-2

Serial Port API Functions 5-2

Initialization 5-4

Configuration 5-9

Port Status 5-12

Communications 5-20

Miscellaneous Functions 5-35

Table 5.A Supplied API Files

File Name Description

Mvispapi.h Include file

Mvispapi.lib Library (16-bit OMF format)
1 Publication 1756-RM004B-EN-P - October 2000

5-2 Serial Port API
Serial Data Transfer The serial API communicates with foreign serial devices via industry
standard UART hardware. The API acts as a high level interface that
hides the hardware details from the application programmer.

The primary purpose of the API is to allow data to be transferred
between the module and a foreign device. Because each foreign
device is different, the communications protocol used to transfer data
must be device specific. The application must be programmed to
implement the specific protocol of the device in order for the data can
to be processed by the application and transferred to the control
processor.

Serial Port API Functions This section provides detailed programming information for each of
the API library functions. The calling convention for each API function
is shown in C format. The API library routines are categorized by
functionality as shown in table 5.B.

IMPORTANT Take care if using PRT1 (COM1) when the console is
enabled or the Setup jumper is installed (see
chapter 1). If the console is enabled, the serial API
will not be able to change the baud rate on PRT1. In
addition, console functions such as keyboard input
may not behave properly while the serial API has
control of PRT1. To avoid this situation disable the
console when using PRT1 with the serial API.

Table 5.B Serial Port API Functions

Function Category Function Name Description

Initialization MVIsp_Open Initializes access to a serial port.

MVIsp_OpenAlt Alternate form of MVIsp_Open with more options

MVIsp_Close Terminates access to a serial port

Configuration MVIsp_Config Configures a serial port.

MVIsp_SetHandshaking Setup handshaking for a serial port

Port Status MVIsp_SetRTS Set the state of the RTS line.

MVIsp_GetRTS Get the state of the RTS line.

MVIsp_SetDTR Set the state of the DTR line.

MVIsp_GetDTR Get the state of the DTR line.

MVIsp_GetCTS Get the state of the CTS line.

MVIsp_GetDSR Get the state of the DSR line.

MVIsp_GetDCD Get the state of the DCD line.

MVIsp_GetLineStatus Get the serial port line status

Communications MVIsp_Putch Send a character to a serial port.
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-3
MVIsp_Getch Get a character from a serial port.

MVIsp_Puts Send a string to a serial port.

MVIsp_Gets Get a string from a serial port.

MVIsp_PutData Send an array of bytes to a serial port.

MVisp_GetData Receive an array of bytes from a serial port.

MVIsp_GetCountUnsent Get the number of bytes in the transmit queue.

MVIsp_GetCountUnread Get the number of bytes in the receive queue.

MVIsp_PurgeDataUnsent Empty the transmit queue

MVIsp_PurgeDataUnread Empty the receive queue

Miscellaneous MVIsp_GetVersionInfo Get the Serial API version information

Table 5.B Serial Port API Functions

Function Category Function Name Description
Publication 1756-RM004B-EN-P - October 2000

5-4 Serial Port API
Initialization

MVIsp_Open

Syntax:

int MVIsp_Open(int comport, BYTE baudrate, BYTE parity, BYTE
wordlen, BYTE stopbits);

Parameters:

comport communications port to open

baudrate baud rate for this port

parity parity setting for this port

wordlen number of bits for each character

stopbits number of stop bits for each character

Description:

MVIsp_Open acquires access to a communications port. This function
must be called before any of the other API functions can be used.

comport specifies which port is to be opened. The valid values for the
1756AV-MVI module are COM1 (corresponds to PRT1), COM2
(corresponds to PRT2), and COM3 (corresponds to PRT3).

baudrate is the desired baud rate. The allowable values for baudrate
are shown in table 5.C.

Valid values for parity are PARITY_NONE, PARITY_ODD,
PARITY_EVEN, PARITY_MARK, and PARITY_SPACE

Table 5.C Valid Baud Rates

Baud Rate Value
BAUD_110 0
BAUD_150 1
BAUD_300 2
BAUD_600 3
BAUD_1200 4
BAUD_2400 5
BAUD_4800 6
BAUD_9600 7
BAUD_19200 8
BAUD_28800 9
BAUD_38400 10
BAUD_57600 11
BAUD_115200 12
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-5
wordlen sets the word length in number of bits per character. Valid
values for word length are WORDLEN5, WORDLEN6, WORDLEN7,
and WORDLEN8.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

The handshake lines DTR and RTS of the port specified by comport
are turned on by MVIsp_Open.

Note: If the console is enabled or the Setup jumper is installed, the
baud rate for COM1 is set as configured in BIOS Setup and cannot be
changed by MVIsp_Open. MVIsp_Open will return MVI_SUCCESS, but
the baud rate will not be affected. The console should be disabled in
BIOS Setup if COM1 is to be accessed with the serial API.

Return Value:

MVI_SUCCESS port was opened successfully

MVI_ERR_REOPEN port is already open

MVI_ERR_NODEVICE UART not found on port

Note: MVI_ERR_NODEVICE will be returned if the port is not
supported by the module.

Example:

if (MVIsp_Open(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,
STOPBITS1) != MVI_SUCCESS)
{ printf(“Open failed!\n”); }

else
{ printf(“Open succeeded\n”); }

See Also:

MVIsp_Close

MVIsp_OpenAlt

MVIsp_Open

IMPORTANT Once the API has been opened, MVIsp_Close should
always be called before exiting the application.
Publication 1756-RM004B-EN-P - October 2000

5-6 Serial Port API
MVIsp_OpenAlt

Syntax:

int MVIsp_ OpenAlt(int comport, MVISPALTSETUP *altsetup);

Parameters:

comport communications port to open

altsetup pointer to structure of type MVISPALTSETUP

Description:

MVIsp_OpenAlt provides an alternate method to acquire access to a
communications port. With MVIsp_OpenAlt, the sizes of the serial port
data queues can be set by the application. See MVIsp_Open for any
considerations about opening a port.

comport specifies which port is to be opened. See MVIsp_Open for
valid values.

altsetup points to a MVISPALTSETUP structure that contains the
configuration information for the port. The MVISPALTSETUP structure
is defined as follows:

typedef struct tagMVISPALTSETUP
{

BYTE baudrate;
BYTE parity;
BYTE wordlen;
BYTE stopbits;
int txquesize; /* Transmit queue size */
int rxquesize; /* Receive queue size */

} MVISPALTSETUP;

See MVIsp_Open for valid values for the baudrate, parity, wordlen,
and stopbits members of the structure. The txquesize and rxquesize
members determine the size of the data buffers used to queue serial
data. Valid values for the queue sizes can be any value from
MINQSIZE to MAXQSIZE. The MVIsp_Open function uses a queue
size of DEFQSIZE. These values are defined as:

#define MINQSIZE 512 /* Minimum Queue Size */
#define DEFQSIZE 1024 /* Default Queue Size */
#define MAXQSIZE 16384 /* Maximum Queue Size */

Either MVIsp_OpenAlt or MVIsp_Open must be called before any of
the other API functions can be used.

Return Value:

MVI_SUCCESS port was opened successfully

MVI_ERR_REOPEN port is already open

MVI_ERR_NODEVICE UART not found for port
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-7
Example:

MVISPALTSETUP altsetup;

altsetup.baudrate = BAUD_9600;
altsetup.parity = PARITY_NONE;
altsetup.wordlen = WORDLEN8;
altsetup.stopbits = STOPBITS1;
altsetup.txquesize = DEFQSIZE;
altsetup.rxquesize = DEFQSIZE * 2;
if (MVIsp_OpenAlt(COM1, &altsetup) != MVI_SUCCESS)
{

printf(“Open failed!\n”);
} else {

printf(“Open succeeded!\n”);
}

See Also:

MVIsp_Open

MVIsp_OpenAlt
Publication 1756-RM004B-EN-P - October 2000

5-8 Serial Port API
MVIsp_Close

Syntax:

int MVIsp_Close(int comport);

Parameters:

comport port to close

Description:

This function is used by an application to release control of the a
communications port. comport must be previously opened with
MVIsp_Open.

comport specifies which port is to be closed. The valid values for the
1756-MVI module are COM1 (corresponds to PRT1), COM2
(corresponds to PRT2), and COM3 (corresponds to PRT3).

The handshake lines DTR and RTS of the port specified by comport
are turned off by MVIsp_Close.

Return Value:

MVI_SUCCESS port was closed successfully

MVI_ERR_NOACCESS comport has not been opened

Example:

MVIsp_Close(COM1);

See Also:

MVIsp_Open

IMPORTANT Once the API has been opened, this function should
always be called before exiting the application.
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-9
Configuration

MVIsp_Config

Syntax:

int MVIsp_Config(int comport, BYTE baudrate, BYTE parity, BYTE
wordlen, BYTE stopbits);

Parameters:

comport communications port to open

baudrate baud rate for this port

parity parity setting for this port

wordlen number of bits for each character

stopbits number of stop bits for each character

Description:

MVIsp_Config allows the configuration of a serial port to be changed
after it has been opened.

comport specifies which port is to be opened. The valid values for the
1756-MVI module are COM1 (corresponds to PRT1), COM2
(corresponds to PRT2), and COM3 (corresponds to PRT3).

baudrate is the desired baud rate. The allowable values for baudrate
are shown in table 5.B.

Valid values for parity are PARITY_NONE, PARITY_ODD,
PARITY_EVEN, PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid
values for word length are WORDLEN5, WORDLEN6, WORDLEN7,
and WORDLEN8.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

Note: If the console is enabled or the Setup jumper is installed, the
baud rate for COM1 is set as configured in BIOS Setup and cannot be
changed by MVIsp_Open. MVIsp_Config will return MVI_SUCCESS,
but the baud rate will not be affected.

Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer
Publication 1756-RM004B-EN-P - October 2000

5-10 Serial Port API
Example:

if (MVIsp_Config(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,
STOPBITS1) != MVI_SUCCESS) {

printf(“Config failed!\n”);
} else{

printf(“Config succeeded\n”);
}

See Also:

MVIsp_Open

MVIsp_Config
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-11
MVIsp_SetHandshaking

Syntax:

int MVIsp_SetHandshaking(int comport, int shake);

Parameters:

comport port for which handshaking is to be set

shake desired handshake mode

Description:

This function is used to enable handshaking for a port after it has
been opened. comport must be previously opened with MVIsp_Open.

shake is the desired handshake mode. Valid values for shake are
HSHAKE_NONE, HSHAKE_XONXOFF, HSHAKE_RTSCTS, and
HSHAKE_DTRDSR.

Use HSHAKE_XONXOFF to enable software handshaking for a port.
Use HSHAKE_RTSCTS or HSHAKE_DTRDSR to enable hardware
handshaking for a port. Hardware and software handshaking cannot
be used together.

Handshaking is supported in both the transmit and receive directions.

Return Value:

MVI_SUCCESS no errors were encountered

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid handshaking mode

Example:

if (MVI_SUCCESS != MVIsp_SetHandshaking(COM1, HSHAKE_RTSCTS))
printf(“Error: Set Handshaking failed\n”);

IMPORTANT If hardware handshaking is enabled, using the
MVIsp_SetRTS and MVIsp_SetDTR functions will
cause unpredictable results.

If software handshaking is enabled, be sure that the
XON and XOFF ASCII characters are not transmitted
as data from a port or received into a port because
this will be treated as handshaking controls.
Publication 1756-RM004B-EN-P - October 2000

5-12 Serial Port API
Port Status

MVIsp_SetRTS

Syntax:

int MVIsp_SetRTS(int comport, int state);

Parameters:

comport port for which RTS is to be changed

state desired RTS state

Description:

This functions allows the state of the RTS signal to be controlled.
comport must be previously opened with MVIsp_Open.

state specifies desired state of the RTS signal. Valid values for state are
ON and OFF.

Note: If RTS/CTS hardware handshaking is enabled, using the
MVIsp_SetRTS function will cause unpredictable results.

Return Value:

MVI_SUCCESS the RTS signal was set successfully.

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid state

Example:

int rc;

rc = MVIsp_SetRTS(COM1, ON);
if (rc != MVI_SUCCESS)

printf(“SetRTS failed\n “);

See Also:

MVIsp_GetRTS
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-13
MVIsp_GetRTS

Syntax:

int MVIsp_GetRTS(int comport, int *state);

Parameters:

comport port for which RTS is requested

state pointer to int for desired state

Description:

This function allows the state of the RTS signal to be determined.
comport must be previously opened with MVIsp_Open.

The current state of the RTS signal is copied to the int pointed to by
state.

Return Value:

MVI_SUCCESS the RTS state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example:

int state;

if (MVIsp_GetRTS(COM1, &state) = = MVI_SUCCESS)
{

if (state = = ON)
printf(“RTS is ON\n”);

else
printf(“RTS is OFF\n”);

}

See Also:

MVIsp_SetRTS
Publication 1756-RM004B-EN-P - October 2000

5-14 Serial Port API
MVIsp_SetDTR

Syntax:

int MVIsp_SetDTR(int comport, int state);

Parameters:

comport port for which DTR is to be changed

state desired state

Description:

This function allows the state of the DTR signal to be controlled.
comport must be previously opened with MVIsp_Open.

state is the desired state of the DTR signal. Valid values for state are
ON and OFF.

Note: If DTR/DSR handshaking is enabled, changing the state of the
DTR signal with MVIsp_SetDTR will cause unpredictable results.

Return Value:

MVI_SUCCESS the DTR signal was set successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid state

Example:

if (MVIsp_SetDTR(COM1, ON) != MVI_SUCCESS)
printf(“Set DTR failed\n”);

See Also:

MVIsp_GetDTR
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-15
MVIsp_GetDTR

Syntax:

int MVIsp_GetDTR(int comport, int *state);

Parameters:

comport port for which DTR is requested

state pointer to int for desired state

Description:

This function allows the state of the DTR signal to be determined.
comport must be previously opened with MVIsp_Open. The current
state of the DTR signal is copied to the int pointed to by state.

Return Value:

MVI_SUCCESS the DTR state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example:

int state;

if (MVIsp_GetDTR(COM1, &state) = = MVI_SUCCESS)
{

if (state = = ON)
printf(“DTR is ON\n”);

else
printf(“DTR is OFF\n”);

}

See Also:

MVIsp_SetDTR
Publication 1756-RM004B-EN-P - October 2000

5-16 Serial Port API
MVIsp_GetCTS

Syntax:

int MVIsp_GetCTS(int comport, int *state);

Parameters:

comport port for which CTS is requested

state pointer to int for desired state

Description:

This function allows the state of the CTS signal to be determined.
comport must be previously opened with MVIsp_Open. The current
state of the CTS signal is copied to the int pointed to by state.

Return Value:

MVI_SUCCESS the CTS state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example:

int state;

if (MVIsp_GetCTS(COM1, &state) = = MVI_SUCCESS)
{

if (state = = ON)
printf(“CTS is ON\n”);

else
printf(“CTS is OFF\n”);

}

Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-17
MVIsp_GetDSR

Syntax:

int MVIsp_GetDSR(int comport, int *state);

Parameters:

comport port for which DSR is requested

state pointer to int for desired state

Description:

This function allows the state of the DSR signal to be determined.
comport must be previously opened with MVIsp_Open. The current
state of the DSR signal is copied to the int pointed to by state.

Return Value:

MVI_SUCCESS the DSR state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example:

int state;
if (MVIsp_GetDSR(COM1, &state) = = MVI_SUCCESS)
{

if (state = = ON)
printf(“DSR is ON\n”);

else
printf(“DSR is OFF\n”);

}

Publication 1756-RM004B-EN-P - October 2000

5-18 Serial Port API
MVIsp_GetDCD

Syntax:

int MVIsp_GetDCD(int comport, int *state);

Parameters:

comport port for which DCD is requested

state pointer to int for desired state

Description:

This function allows the state of the DCD signal to be determined.
comport must be previously opened with MVIsp_Open. The current
state of the DCD signal is copied to the int pointed to by state.

Return Value:

MVI_SUCCESS the DCD state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example:

int state;

if (MVIsp_GetDCD(COM1, &state) = = MVI_SUCCESS)
{

if (state = = ON)
printf(“DCD is ON\n”);

else
printf(“DCD is OFF\n”);

}

Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-19
MVIsp_GetLineStatus

Syntax:

int MVIsp_GetLineStatus(int comport, BYTE *status);

Parameters:

comport port for which line status is requested

status pointer to BYTE to receive line status

Description:

MVIsp_GetLineStatus returns any line status errors received over the
serial port. The status returned indicates if any overrun, parity, or
framing errors or break signals have been detected.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

status points to a BYTE that will receive a set of flags that indicate
errors received over the serial port. If the returned status is 0, no
errors have been detected. If status is non-zero, it can be logically
and’ed with the line status error flags LSERR_OVERRUN,
LSERR_PARITY, LSERR_FRAMING, LSERR_BREAK, and/or
QSERR_OVERRUN to determine the exact cause of the error. The
corresponding error flag will be set for each error type detected.
(Note: The QSERR_OVERRUN bit indicates that a receive queue
overflow has occurred.)

After returning the bit flags in status, line status errors are cleared.
Therefore, MVIsp_GetLineStatus actually returns line status errors
detected since the previous call to this function.

Return Value:

MVI_SUCCESS the line status was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example:

BYTE sts;

if (MVIsp_GetGetLineStatus(COM2,&sts) = = MVI_SUCCESS)
{

if (sts = = 0)
printf(“No Line Status Errors Received\n”);

else if ((sts & LSERR_BREAK) != 0)
printf(“A Break Signal was Received\n”);

else
printf(“A Line Status Error was Received\n”);

}

Publication 1756-RM004B-EN-P - October 2000

5-20 Serial Port API
Communications

MVIsp_Putch

Syntax:

int MVIsp_Putch(int comport, BYTE ch, DWORD timeout);

Parameters:

comport port to which data is to be sent

ch character to be sent

timeout amount of time to wait to send character

Description:

This function is used to transmit a single character across a serial port.
comport must be previously opened with MVIsp_Open.

ch is the byte to be sent.

All data sent to a port is queued before transmission across the serial
port. Therefore, some delay may occur between the time after this
function returns and the actual time that the character is transmitted
across the serial line. This function attempts to insert the character into
the transmission queue, and return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout
is TIMEOUT_ASAP, the function will return immediately if the
character cannot be queued immediately. If timeout is
TIMEOUT_FOREVER, the function will not return until the character is
queued successfully.

If the character can be queued immediately, MVIsp_Putch returns
MVI_SUCCESS. If the character cannot be queued immediately,
MVIsp_Putch tries to queue the character until the timeout elapses. If
the timeout elapses before the character can be queued,
MVI_ERR_TIMEOUT is returned.

Note: If handshaking is enabled and the receiving serial device has
paused transmission, timeouts may occur after the queue becomes
full.

Return Value:

MVI_SUCCESS the character was sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before character sent
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-21
Example:

if (MVIsp_Putch(COM1, ‘;’, 1000L) != MVI_SUCCESS)
printf(“Semicolon could not be sent in 1 second\n”);

See Also:

MVIsp_GetCh

MVIsp_Puts

MVIsp_PutData

MVIsp_Putch
Publication 1756-RM004B-EN-P - October 2000

5-22 Serial Port API
MVIsp_Getch

Syntax:

int MVIsp_Getch(int comport, BYTE *ch, DWORD timeout);

Parameters:

comport port from which data is to be received

ch pointer to BYTE to receive character

timeout amount of time to wait to receive character

Description:

This function is used to receive a single character from a serial port.
comport must be previously opened with MVIsp_Open.

ch points to a BYTE that will receive the character.

All data received from a port is queued after reception from the serial
port. Therefore, some delay may occur between the time a character is
received across the serial line and the time the character is returned by
MVIsp_Getch. This function attempts to retrieve a character from the
reception queue, and return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout
is TIMEOUT_ASAP, the function will return immediately if the queue is
empty. If timeout is TIMEOUT_FOREVER, the function will not return
until a character is retrieved from the reception queue successfully.

If the reception queue is not empty, the oldest character is retrieved
from the queue and MVIsp_Getch returns MVI_SUCCESS. If the queue
is empty, MVIsp_Getch tries to retrieve a character from the queue
until the timeout elapses. If the timeout elapses before a character can
be retrieved, MVI_ERR_TIMEOUT is returned.

Return Value:

MVI_SUCCESS a character was retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before character retrieved

Example:

BYTE ch;

if (MVIsp_Getch(COM1, &ch, 1000L) = = MVI_SUCCESS)
putch((char)ch);

See Also:

MVIsp_PutCh

MVIsp_Gets
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-23
MVIsp_Puts

Syntax:

int MVIsp_Puts (int comport, BYTE *str, BYTE term, int *len,
DWORD timeout);

Parameters:

comport port to which data is to be sent

str string of characters to be sent

term termination character of string

len pointer to BYTE to receive number of characters sent

timeout amount of time to wait to send character

Description:

This function is used to transmit a string of characters across a serial
port. comport must be previously opened with MVIsp_Open.

str is a pointer to an array of characters (or is a string) to be sent.

MVIsp_Puts sends each char in the array str to the serial port until it
encounters the termination character term. Therefore, the character
array must end with the termination character. The termination
character is not sent to the serial port.

All data sent to a port is queued before transmission across the serial
port. Therefore, some delay may occur between the time this function
returns and the actual time that the characters are transmitted across
the serial line. This function attempts to insert the characters into the
transmission queue, and return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout
is TIMEOUT_ASAP, the function will return immediately if any of the
characters cannot be queued immediately. If timeout is
TIMEOUT_FOREVER, the function will not return until all the
characters are queued successfully.

If all the characters can be queued immediately, MVIsp_Puts returns
MVI_SUCCESS. If the characters cannot be queued immediately,
MVIsp_Puts tries to queue the characters until the timeout elapses. If
the timeout elapses before the characters can be queued,
MVI_ERR_TIMEOUT is returned.

If len is not NULL, MVIsp_Puts writes to the int pointed to by len the
number of characters queued successfully. len is written for
successfully sent characters as well as timeouts.

Note: If handshaking is enabled and the receiving serial device has
paused transmission, timeouts may occur after the queue becomes
full.
Publication 1756-RM004B-EN-P - October 2000

5-24 Serial Port API
Return Value:

MVI_SUCCESS the characters were sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before characters sent

Example:

char str[] = “Hello, World!”;
int nn;

if (MVIsp_Puts(COM1, str, ‘\0’, &nn, 1000L) != MVI_SUCCESS)
printf(“%d characters were sent\n”,nn);

See Also:

MVIsp_Gets

MVIsp_PutCh

MVIsp_PutData

MVIsp_Puts
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-25
MVIsp_Gets

Syntax:

int MVIsp_Gets(int comport, BYTE *str, BYTE term, int *len,
DWORD timeout);

Parameters:

comport port from which data is to be received

str pointer to array of bytes to receive data

term termination character of data

len number of bytes to receive / bytes received

timeout amount of time to wait to receive character

Description:

This function is used to receive an array of bytes from a serial port.
comport must be previously opened with MVIsp_Open.

str points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_Gets retrieves bytes from the reception queue until either a
byte is equal to the termination character or the number of bytes
pointed to by len are retrieved. If a byte is retrieved that equals the
termination character, the byte is copied into the array str and the
function returns.

All data received from a port is queued after reception from the serial
port. Therefore, some delay may occur between the time a character is
received across the serial line and the time the character is returned by
MVIsp_Gets. This function attempts to retrieve characters from the
reception queue, and return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout
is TIMEOUT_ASAP, the function will return immediately if the queue is
empty. If timeout is TIMEOUT_FOREVER, the function will not return
until an array of bytes is retrieved from the reception queue
successfully.

If the timeout elapses before the termination character or len bytes are
received, MVI_ERR_TIMEOUT is returned. If the queue is not empty,
these characters are removed from the queue and both the str and the
len return values correspond accordingly.
Publication 1756-RM004B-EN-P - October 2000

5-26 Serial Port API
When MVIsp_Gets returns, it writes to the int pointed to by len the
number of bytes retrieved. len is written for successfully retrieved
bytes as well as timeouts. If the function returns because a termination
character was retrieved, len includes the termination character in the
length.

If the timeout elapses before the termination character or len bytes are
received, MVI_ERR_TIMEOUT is returned. If the queue is not empty,
these characters are removed from the queue and both the str and the
len return values correspond accordingly.

Note: If handshaking is enabled and the reception queue is full, this
API may pause transmissions from the external device, and timeouts
may then occur.

Return Value:

MVI_SUCCESS bytes were retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved

Example:

BYTE str[10];
int nn;

nn = 10;
if (MVIsp_Gets(COM1, &str[0], ‘\r’, &nn, 1000L) = = MVI_SUCCESS)

printf(“%d bytes were received\n”,nn);

See Also:

MVIsp_Getch

MVIsp_Puts

MVIsp_PutData

MVIsp_Gets
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-27
MVIsp_PutData

Syntax:

int MVIsp_PutData(int comport, BYTE *data, int *len, DWORD
timeout);

Parameters:

comport port to which data is to be sent

data pointer to array of bytes to be sent

len pointer to number of bytes to send / bytes sent

timeout amount of time to wait to send byte

Description:

This function is used to transmit an array of bytes across a serial port.
comport must be previously opened with MVIsp_Open.

data is a pointer to an array of bytes to be sent.

MVIsp_PutData sends each byte in the array data to the serial port. len
should point to the number of bytes in the array data to be sent.

All data sent to a port is queued before transmission across the serial
port. Therefore, some delay may occur between the time this function
returns and the actual time that the bytes are transmitted across the
serial line. This function attempts to insert the bytes into the
transmission queue, and return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout
is TIMEOUT_ASAP, the function will return immediately if any of the
bytes cannot be queued immediately. If timeout is
TIMEOUT_FOREVER, the function will not return until all the bytes
are queued successfully.

If all the bytes can be queued immediately, MVIsp_PutData returns
MVI_SUCCESS. If the characters cannot be queued immediately,
MVIsp_PutData tries to queue the bytes until the timeout elapses. If
the timeout elapses before the bytes can be queued,
MVI_ERR_TIMEOUT is returned.

When MVIsp_PutData returns, it writes to the int pointed to by len the
number of bytes queued successfully. len is written for successfully
sent bytes as well as timeouts.

Note: If software handshaking is enabled on the external serial device,
sending data that contains XOFF characters may stop transmission
from the external serial device.

If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.
Publication 1756-RM004B-EN-P - October 2000

5-28 Serial Port API
Return Value:

MVI_SUCCESS the bytes were sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid parameter

MVI_ERR_TIMEOUT timeout elapsed before bytes sent

Example:

BYTE dd[5] = { 10, 20, 30, 40, 50 };
int nn;

nn = 5;
if (MVIsp_PutData(COM1, &dd[0], &nn, 1000L) != MVI_SUCCESS)

printf(“%d bytes were sent\n”,nn);

See Also:

MVIsp_PutCh

MVIsp_Puts

MVIsp_PutData
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-29
MVIsp_GetData

Syntax:

int MVIsp_GetData(int comport, BYTE *data, int *len, DWORD
timeout);

Parameters:

comport port from which data is to be received

data pointer to array of bytes to receive data

len number of bytes to receive / bytes received

timeout amount of time to wait to receive character

Description:

This function is used to receive an array of bytes from a serial port.
comport must be previously opened with MVIsp_Open.

data points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_GetData retrieves bytes from the reception queue until either
the number of bytes pointed to by len are retrieved or the timeout
elapses.

All data received from a port is queued after reception from the serial
port. Therefore, some delay may occur between the time a character is
received across the serial line and the time the character is returned by
MVIsp_GetData. This function attempts to retrieve characters from the
reception queue, and return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout
is TIMEOUT_ASAP, the function will return immediately if the queue is
empty. If timeout is TIMEOUT_FOREVER, the function will not return
until an array of bytes is retrieved from the reception queue
successfully.

If the timeout elapses before the termination character or len bytes are
received, MVI_ERR_TIMEOUT is returned.

When MVIsp_GetData returns, it writes to the int pointed to by len the
number of bytes retrieved. len is written for successfully retrieved
bytes as well as timeouts.

Return Value:

MVI_SUCCESS bytes were retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved
Publication 1756-RM004B-EN-P - October 2000

5-30 Serial Port API
Example:

BYTE data[10];
int nn;

nn = 10;
if (MVIsp_GetData(COM1, data, &nn, 1000L) = = MVI_SUCCESS)

printf(“%d bytes were received\n”,nn);

See Also:

MVIsp_Gets

MVIsp_Getch

MVIsp_PutData

MVIsp_GetData
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-31
MVIsp_GetCountUnsent

Syntax:

int MVIsp_GetCountUnsent(int comport, int *count);

Parameters:

comport desired communications port

count pointer to int to receive unsent character count

Description:

MVIsp_GetCountUnsent returns the number of characters in the
transmit queue that are waiting to be sent. Since data sent to a port is
queued before transmission across a serial port, the application may
need to determine if all characters have been transmitted or how
many characters remain to be transmitted.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that
have been sent to the serial port but not transmitted. If the returned
count is 0, all data has been transmitted. If it is non-zero, t contains the
number of characters put into the queue with MVIsp_Putch,
MVIsp_Puts, or MVIsp_PutData but that have not been transmitted.

Return Value:

MVI_SUCCESS count retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example:

int count;

if (MVIsp_GetCountUnsent(COM2,&count) = = MVI_SUCCESS)
{

if (count = = 0)
printf(“All chars sent\n”);

else
printf(“%d characters remaining\n”,count);

}

See Also:

MVIsp_Putch

MVIsp_Puts

MVIsp_PutData
Publication 1756-RM004B-EN-P - October 2000

5-32 Serial Port API
MVIsp_GetCountUnread

Syntax:

int MVIsp_GetCountUnread(int comport, int *count);

Parameters:

comport desired communications port

count pointer to int to receive unread character count

Description:

MVIsp_GetCountUnread returns the number of characters in the
receive queue that are waiting to be read. Since data received from a
port is queued after reception from a serial port, the application may
need to determine if all characters have been read or how many
characters remain to be read.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that
have been received from the serial port but not read by the
application. If the returned count is 0, all received data has been read.
If it is non-zero, it contains the number of characters placed into the
receive queue after reception from a serial port but that have not been
read from the queue with MVIsp_Getch, MVIsp_Gets, or
MVIsp_GetData.

Return Value:

MVI_SUCCESS count retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

Example:

int count;

if (MVIsp_GetCountUnread(COM2,&count) = = MVI_SUCCESS)
{

if (count = = 0)
printf(“All chars read\n”);

else
printf(“%d characters remaining\n”,count);

}

See Also:

MVIsp_Getch

MVIsp_Gets

MVIsp_GetData
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-33
MVIsp_PurgeDataUnsent

Syntax:

int MVIsp_PurgeDataUnsent(int comport);

Parameters:

comport port whose transmit data is to be purged

Description:

MVIsp_PurgeDataUnsent deletes all data waiting in the transmit
queue. The data is discarded and is not transmitted.

comport specifies the port whose transmit queue is to be purged.

Return Value:

MVI_SUCCESS the data was purged successfully

MVI_ERR_BADPARAM invalid comport

MVI_ERR_NOACCESS the comport has not been opened

Example:

if (MVIsp_PurgeDataUnsent(COM1) = = MVI_SUCCESS)
printf(“Transmit Data purged.\n”);

See Also:

MVIsp_PurgeDataUnread
Publication 1756-RM004B-EN-P - October 2000

5-34 Serial Port API
MVIsp_PurgeDataUnread

Syntax:

int MVIsp_PurgeDataUnread(int comport)

Parameters:

comport port whose receive data is to be purged

Description:

MVIsp_PurgeDataUnread deletes all data waiting in the receive queue.
The data is discarded and is no longer available for reading.

Note: If handshaking is enabled and the transmitting serial device has
been paused, this function will release the transmitting serial device to
resume transmission.

Return Value:

MVI_SUCCESS the data was purged successfully

MVI_ERR_BADPARAM invalid comport

MVI_ERR_NOACCESS the comport has not been opened

Example:

if (MVIsp_PurgeDataUnread(COM1) = = MVI_SUCCESS)
printf(“Transmit Data purged.\n”);

See Also:

MVIsp_PurgeDataUnsent
Publication 1756-RM004B-EN-P - October 2000

Serial Port API 5-35
Miscellaneous Functions

MVIsp_GetVersionInfo

Syntax:

int MVIsp_GetVersionInfo(MVISPVERSIONINFO *verinfo);

Parameters:

verinfo pointer to structure of type MVISPVERSIONINFO

Description:

MVIsp_GetVersionInfo retrieves the current version of the API. The
version information is returned in the structure verinfo.

The MVISPVERSIONINFO structure is defined as follows:

typedef struct tagMVISPVERSIONINFO
{

WORD APISeries; /* API series */
WORD APIRevision; /* API revision */

} MVISPVERSIONINFO;

Return Value:

MVI_SUCCESS the version information was read successfully.

Example:

MVISPVERSIONINFO verinfo;

/* print version of API library */
MVIsp_GetVersionInfo(&verinfo);
printf (“Library Series %d, Rev %d\n”, verinfo.APISeries, verinfo.APIRevision);
Publication 1756-RM004B-EN-P - October 2000

5-36 Serial Port API
Publication 1756-RM004B-EN-P - October 2000

Chapter 6

Programming the MVI Module

What This Chapter Contains This chapter describes how to get your application running on the
MVI module. Once an application has been developed using the
backplane and serial APIs, it must be downloaded to the MVI module
in order to run. The application may then be run manually from the
console command line, or automatically on powerup from the
AUTOEXEC.BAT or CONFIG.SYS files.

The following table identifies what this chapter contains and where to
find specific information.

ROM Disk Configuration User programs are stored in the 1756-MVI module’s ROM disk. The
ROM disk is an 896K byte portion of Flash ROM that appears as
Drive A:

The MVI module also supports an optional compact flash, which
appears as drive C:/. The size of this drive is currently limited only by
compact flash technology; the MVI module will support CHS
technology drives up to 512 Mbyte.

For information about See page
ROM Disk Configuration 6-1

CONFIG.SYS File 6-2

Command Interpreter 6-3

Sample ROM Disk Image 6-3

Creating a ROM Disk Image 6-4

Using DISKIMAG: DOS Disk Image Builder 6-4

Using WINIMAGE: Windows Disk Image Builder 6-6

Downloading a ROM Disk Image 6-8

MVI Flash Update 6-8

Installation 6-8

Using the MVI Flash Update Utility 6-8

MVIUPDAT 6-10

Booting from the C: (Compact Flash) Drive 6-11
1 Publication 1756-RM004B-EN-P - October 2000

6-2 Programming the MVI Module
In addition to the user application, the ROM disk image must also
contain, at a minimum, a CONFIG.SYS file and the backplane device
driver file (MVI56BP.EXE). If a command interpreter is needed, it
should also be included.

CONFIG.SYS File

The following lines must be present in the CONFIG.SYS file:

• IRQPRIORITY=1

• INSTALL=A:\mvi56bp.exe

The first line, IRQPRIORITY=1, assigns the highest interrupt priority to
the I/O backplane interrupt. If you want the serial ports to have the
highest interrupt priority, set IRQPRIORITY to 3.

Interrupts are assigned as follows:

• Backplane Interrupt = Interrupt 1

• Serial Port 1 = Interrupt 3

• Serial Port 2 = Interrupt 4

• Serial Port 3 = Interrupt 5

The second line loads the backplane device driver. In this example,
the backplane device driver file (MVI56BP.EXE) must be located in the
root directory (A:\) of the ROM disk.

If a command interpreter is needed, you should include a line similar
to the following in CONFIG.SYS:

SHELL=A:\TINYCMD.COM /s /p, where:

/s = “Exit” command cannot be used to stop the command interpreter.

/p = run Autoexec.bat.

TIP One advantage of a compact flash is that you can
write files to it using the RY utility that ships on the
MVI ROM disk. By contrast, the ROM disk is read
only, and therefore requires utilities that both
create and download a new disk image to make
even the smallest change to it.

A typical scenario is to use a compact flash for
development and simply do a single image build/
download to the ROM disk for runtime units.
Publication 1756-RM004B-EN-P - October 2000

Programming the MVI Module 6-3
If a command interpreter is not needed, the user application may be
executed directly from the CONFIG.SYS file as shown below (where
USERAPP.EXE is the user application executable file name):

SHELL=A:\USERAPP.EXE

The user application may also be executed automatically from an
AUTOEXEC.BAT file, or manually from the console command line. In
either of these cases, a command interpreter must be loaded.

The following lines are necessary to provide resources for the OS,
application, and interrupts:

SYSTEMPOOL = 6000

STACKS = 10

Command Interpreter

A command interpreter is needed to boot the 1756-MVI to a command
prompt or to execute an AUTOEXEC.BAT file. Two command
interpreters are included in the DOS directory of the CD ROM: a
full-featured COMMAND.COM, and the smaller, more limited
TINYCMD.COM.

See the General Software Embedded DOS 6-XL Developer’s Guide for
more information.

Sample ROM Disk Image

The sample ROM disk image included with the 1756-MVI module
contains the following files:

• CONFIG.SYS Loads the backplane device driver and the
command interpreter

• TINYCMD.COM Command interpreter

• MVI56BP.EXE Backplane device driver

• SAMPLE.EXE Sample application

• AUTOEXEC.BAT Automatically runs files on startup

• BARCODE.EXE Sample application

• MVI56DD.EXE MVI API device driver

• RY.EXE Y-modem receive utility

More
Publication 1756-RM004B-EN-P - October 2000

6-4 Programming the MVI Module
• SY.EXE Y-modem send utility

• DOS DIRECTORY:
ATTRIB
CHKDSK
DELTREE
FORMAT
MEM
XCOPY

Creating a ROM Disk Image To change the contents of the ROM disk, a new disk image must be
created using the DISKIMAG (DOS) or WINIMAGE (Windows)
utilities. The disk image must then be downloaded to the MVI module
using the MVIUPDAT utility (see pages 6-8 to 6-11).

The DISKIMAG and WINIMAGE utilities for creating disk images are
described in the following sections. You may use either utility to
create the ROM image disk.

Using DISKIMAG: DOS Disk Image Builder

The General Software DISKIMAG utility transfers raw sectors from a
floppy disk to a BINARY (unformatted) file suitable for use as input to
the MVIUPDAT.EXE utility.

To create a ROM-based image of a bootable floppy disk using
DISKIMAG, follow the procedure below.

1. Format a floppy diskette.

If the disk has been previously formatted and used for other
things, re-format it. Otherwise, your desktop DOS may not start
writing files at the beginning of the floppy. This could cause
missed files if you make an image file of only the partial
contents of the floppy.

IMPORTANT When using DISKIMAG to copy the partial contents
of a floppy to a file, make sure that the files are
packed at the beginning of the disk, and that the size
of the output file is large enough to include the files
themselves plus the floppy’s boot record, FATs, and
root directory.
Publication 1756-RM004B-EN-P - October 2000

Programming the MVI Module 6-5
Typically, plan on an extra 10KB for system overhead. Also plan
on additional wasted bytes at the end of each file, since files are
allocated on the disk in units of clusters, not individual bytes.
For 1.44 MB floppies, one cluster equals one sector (512 bytes),
so the maximum waste per file is 511 bytes.

2. Copy the files you want to the floppy.

3. Run DISKIMAG on the floppy to create a file that contains its
image, or the first portion of the floppy. DISKIMAG is run from
the command line with three arguments, as follows:

DISKIMAG d: filename [kb_to_copy]

The d: operand specifies the drive letter from which to read raw
sectors. This must be A: or B:

The filename operand specifies the name of the output file to
copy the raw sectors into as a contiguous byte stream.

The kb_to_copy operand specifies the number of kilobytes (1024
byte units) of data to transfer from the floppy. Note that 1K is
two sectors for 512-byte sectors. The size specified here cannot
exceed the maximum size of the MVI module ROM disk (896K).

For example, to copy 360KB from your drive B: to a file called
OUTPUT.BIN, use the following command:

DISKIMAG B: OUTPUT.BIN 360

As another example, if you have some files on a 1.44MB 3.5"
diskette that you need to turn into a 96KB ROM disk, then you
would use the following command:

DISKIMAG B: OUTPUT.BIN 96

TIP If you need to change the contents of the
floppy, re-format the disk, then copy the
desired files. Do not simply delete unwanted
files from the floppy, as this will cause disk
fragmentation and will waste ROM space.
Publication 1756-RM004B-EN-P - October 2000

6-6 Programming the MVI Module
Using WINIMAGE: Windows Disk Image Builder

You can also use WINIMAGE, a Win95/98/NT utility, to create disk
images for downloading to the 1756-MVI module. WINIMAGE is more
convenient to use than DISKIMAG, since it does not require a floppy
diskette. WINIMAGE will automatically determine the disk image size
and truncate the unused portion of the disk. In addition, WINIMAGE
will de-fragment a disk image so that files may be deleted and added
to the image without resulting in wasted space.

Install WINIMAGE in a subdirectory on your PC running Win95/98 or
NT 4.0. To start WINIMAGE, simply run WINIMAGE.EXE.

To build a disk image suitable for downloading with MVIUPDAT.EXE,
follow these steps:

1. Start WINIMAGE.

2. Select File > New and choose a disk format as shown in figure
6.1 below. Any format large enough to contain your files is
acceptable. The default is 1.44Mb. Select the format and click on
OK.

Figure 6.1 Choose Diskette Format

3. Drag and drop the files you want in your image to the
WINIMAGE window.

4. Answer “Yes” when prompted to inject the file.

TIP This prompt usually appears in the
background, so you may have to minimize
your application to see the prompt.
Publication 1756-RM004B-EN-P - October 2000

Programming the MVI Module 6-7
5. Select Options > Settings and make sure the Truncate unused
image part option is selected, as shown in figure 6.2. Click on
OK.

Figure 6.2 Winimage Settings

6. Select File > Save As, and choose a directory and filename for
the disk image file.

The image must be saved as an uncompressed disk image, so be
sure to select Save as type: Image file (*.IMA) as shown in
figure 6.3. Then click on Save.

Figure 6.3 Save Disk Image

7. Check the disk image file size to be sure it does not exceed the
maximum size of the 1756-MVI module’s ROM disk (896K
bytes). If it is too large, use WINIMAGE to remove files from the
image, then de-fragment the image and try again.
Publication 1756-RM004B-EN-P - October 2000

6-8 Programming the MVI Module
To de-fragment an image, select Image > Defrag current
image.

8. The disk image is now ready for downloading to the1756- MVI
module using the MVIUPDAT utility (see the following section).

For more details on using WINIMAGE, see the documentation that
accompanies it.

Note: WINIMAGE is a shareware utility. If you find the program
useful, please register it with the author.

Downloading a
ROM Disk Image

Two utilities are provided for downloading the ROM disk image to the
1756-MVI module’s Flash memory. One utility, MVI Flash Update, is a
Windows-compatible program for Win95/98 and NT; the other,
MVIUPDAT.EXE, is a DOS-compatible program.

MVI Flash Update

System Requirements:

• Windows 95/98 or Windows NT 4.0

• Available serial port COM1 - COM4

• 2Mb free disk space

Installation

Before you install a new version of this software, uninstall any
previous version. Click on the Add/Remove Programs icon in the
Control Panel window and follow the prompts.

To install the MVI Flash Update tool, use the SETUP.EXE installation
program. After installation, click on the MVI Flash Update icon to run
the program.

Using the MVI Flash Update Utility

The MVI Flash Update tool downloads a disk image to the 1756-MVI
module. The disk image must be an uncompressed FAT-format
diskette image created with WinImage or a compatible utility (see the
earlier sections of this chapter).

More
Publication 1756-RM004B-EN-P - October 2000

Programming the MVI Module 6-9
To download a disk image to the 1756-MVI module, follow these
steps:

1. Install the Setup Jumper on the 1756-MVI module. See the
Installation Instructions for details.

2. Connect PRT1 of the 1756-MVI module to your selected port on
the computer using a null-modem serial cable.

3. Using HyperTerm, make sure the MVI module is at the A:/
prompt.

4. Close HyperTerm.

5. Click on the MVI Flash Update icon to start the program.

6. Select the COM port which is connected to PRT1 of the
1756-MVI module. See figure 6.4.

Figure 6.4 MVI Flash Update Connection Dialog

Once a connection to the module has been established, the
Download File dialog shown in figure 6.5 is displayed.

Figure 6.5 MVI Flash Update Download File Dialog
Publication 1756-RM004B-EN-P - October 2000

6-10 Programming the MVI Module
7. Choose the diskette image file to download, then click on the
Download button.

The download progress is indicated by a progress bar. After the
download has completed, a “Download Successful” message
will appear.

MVIUPDAT

MVIUPDAT.EXE is a DOS-compatible utility for downloading a ROM
disk image from a host PC to the MVI module. MVIUPDAT.EXE uses a
serial port on the PC to communicate with the module.

Follow the steps below to download a ROM disk image:

1. Connect a null-modem serial cable between COM1 or COM2 on
the PC and PRT1 on the 1756-MVI module.

2. Turn off power to the 1756-MVI module. Install the Setup
Jumper as described in the Installation Instructions.

3. Run MVIUPDAT.EXE on the host PC. Specify the PC port to be
used on the command line as shown below (the default is
COM1):

MVIUPDAT /PORT=COM2

4. Turn on power to the 1756-MVI module. You should see the
menu shown in figure 6.6 on the host PC.

Figure 6.6 MVIUPDAT Main Menu

IMPORTANT Only one program at a time may access a serial port.
If you are using HyperTerm or a similar terminal
program for the MVI module console, exit or
disconnect from the serial port before running the
MVI Flash Update tool.

+----------------------------+
Main Menu
Verify Module Connection
Update Flash Disk Image
Reboot Module
+----------------------------+
Publication 1756-RM004B-EN-P - October 2000

Programming the MVI Module 6-11
5. Select Verify Module Connection to verify the connection to
the 1756-MVI module. If the connection is working properly, the
message “Module Responding” will be displayed. If an error
occurs, check your serial port assignments and cable
connections.

6. Select Update Flash Disk Image to download the ROM disk
image. Type the image file name when prompted. The
download progress is displayed as the file is being transmitted to
the module.

7. After the disk image has been transferred, reboot the MVI
module by selecting the Reboot Module menu item.

8. Exit the MVIUPDAT.EXE utility by pressing Esc.

Booting from the
C: (Compact Flash) Drive

The autoexec.bat file supplied with revisions B01 (and later) of the
MVI enables the end user to simply plug in the Compact Flash card,
and then power up the MVI module and run an application on the C:
drive. This affords a “turn-key” solution for end-users on a Compact
Flash.

To allow the MVI to boot off the C: drive, the user must provide a
batch file named “MVIEXEC.bat”. Previously, the end user was
required, at a minimum, to download a new ROMdisk (Drive A:)
image with an appropriate autoexec.bat file.

How to use MVIEXEC:

1. Revisions B01 (and later) of the MVI modules are shipped from
the factory with the updated autoexec.bat file on the MVI
ROMdisk. This autoexec.bat file sets the path (and runs any
other commands added by the user) and then looks for the
existence of the MVIEXEC.bat file on the C: drive. If it sees
MVIEXEC.bat, it runs it. Otherwise, it simply jumps to
completion.

The MVI user is responsible for creating and downloading the
MVIEXEC.bat file to the C: drive. For example, to run an
application called “test.exe” from the C: drive, the user would
create an MVIEXEC.bat file with the following line:

c:\test
Publication 1756-RM004B-EN-P - October 2000

6-12 Programming the MVI Module
2. MVI users who do not currently have the updated autoexec.bat
file, yet wish to take advantage of an MVIEXEC.bat file, should
create a new ROMdisk image with the updated autoexec.bat
listed below and download the new image to the ROMdisk.
Then they must create their MVIEXEC.bat file and download it to
the C: drive.

The following is the autoexec.bat file that looks for MVIEXEC.bat on
the C: drive

path a:\;a:\dos

REM ***
REM * The following line checks the C: drive for
REM * the file MVIEXEC.BAT. If the file exists,
REM * control is passed to the MVIEXEC.BAT file.
REM **

if exist c:\mviexec.bat goto mviexec
goto end

REM **
REM * Note: If the C: drive or the file MVIEXEC.BAT
REM * is not present, the command has no effect. Any
REM * lines in this batch file following the call to
REM * MVIEXEC.BAT will not be executed.
REM **

:mviexec
c:
mviexec.bat
goto end

:end
Publication 1756-RM004B-EN-P - October 2000

Index

A
about this reference manual P-1 to P-4

audience P-1
common techniques used P-1
contents P-2
definitions of terms P-3
introduction P-1
reference publications P-2

API component relationship 3-3
application development overview 2-1 to 2-3

API libraries 2-2 to 2-3
calling convention 2-2
header files 2-3
multithreading 2-3
sample application codes 2-3

development tools 2-3
audience P-1

B
baud rates 5-4
BIOS 1-5
BIOS console services 1-5
BIOS setup 1-5 to 1-8
BIOS setup main menu 1-6
block diagram

1756-MVI module 1-2
booting from the C drive 6-11 to 6-12

C
CIP API system data flow diagram 4-3
CIP messaging API 4-1 to 4-35

architecture 4-1 to 4-2
backplane device driver 4-2 to 4-3

CIP messaging API functions 4-4 to 4-35
connected data transfer 4-10 to 4-12

MVIcip_ReadConnected 4-11
MVIcip_WriteConnected 4-10

initialization 4-5 to 4-6
MVIcip_Close 4-6
MVIcip_Open 4-5

miscellaneous 4-28 to 4-35
MVIcip_ErrorString 4-32
MVIcip_GetConsoleMode 4-34
MVIcip_GetIdObject 4-28
MVIcip_GetSetupMode 4-33
MVIcip_GetVersionInfo 4-29
MVIcip_SetModuleStatus 4-31
MVIcip_SetUserLED 4-30

MVIcip_Sleep 4-35
MVICALLBACK 4-13 to 4-35

connect_proc 4-14
fatalfault_proc 4-22
flashupdate_proc 4-23
resetrequest_proc 4-24
rxdata_proc 4-20
service_proc 4-18

object registration 4-7 to 4-9
MVIcip_RegisterAssemblyObj 4-7
MVIcip_UnregisterAssemblyObj 4-9

special callback 4-25 to 4-27
MVIcip_RegisterFatalFaultRtn 4-25
MVIcip_RegisterFlashUpdateRtn 4-27
MVIcip_RegisterResetReqRtn 4-26

common techniques used in this manual P-1
configuration jumpers 1-4
connect_proc 4-14

D
definitions P-3
DISKIMAG: DOS disk image builder 6-4 to 6-5

F
falatfault_proc 4-22
flash update 6-8 to 6-10
flashupdate_proc 4-23

H
help

Rockwell Automation support P-3

L
LED indicators 1-3

M
MVI backplane API 3-1 to 3-29

API component relationship 3-3
architecture 3-2 to 3-3
MVI API assembly object implementation 3-3

MVI backplane API functions 3-5 to 3-29
configuration 3-8 to 3-11

MVIbp_GetIOConfig 3-8
MVIbp_SetIOConfig 3-10

direct I/O access 3-12 to 3-13
MVIbp_ReadOutputImage 3-12
MVIbp_WriteInputImage 3-13
Publication 1756-RM004B-EN-P - October 2000

2 Index
initialization 3-6 to 3-7
MVIbp_Close 3-7
MVIbp_Open 3-6

messaging 3-14 to 3-17
MVIbp_ReceiveMessage 3-14
MVIbp_SendMessage 3-16

miscellaneous 3-20 to 3-29
MVIbp_ErrorString 3-28
MVIbp_GetConsoleMode 3-25
MVIbp_GetModuleInfo 3-21
MVIbp_GetProcessorStatus 3-22
MVIbp_GetSetupMode 3-24
MVIbp_GetVersionInfo 3-20
MVIbp_SetModuleStatus 3-26
MVIbp_SetUserLED 3-27
MVIbp_Sleep 3-29

synchronization 3-18 to 3-19
MVIbp_WaitForInputScan 3-18
MVIbp_WaitForOutputScan 3-19

MVI module configuration menu 1-7
MVI update 6-10 to 6-11
MVIbp_Close 3-7
MVIbp_ErrorString 3-28
MVIbp_GetConsoleMode 3-25
MVIbp_GetIOConfig 3-8
MVIbp_GetModuleInfo 3-21
MVIbp_GetProcessorStatus 3-22
MVIbp_GetSetupMode 3-24
MVIbp_GetVersionInfo 3-20
MVIbp_Open 3-6
MVIbp_ReadOutputImage 3-12
MVIbp_ReceiveMessage 3-14
MVIbp_SendMessage 3-16
MVIbp_SetIOConfig 3-10
MVIbp_SetModuleStatus 3-26
MVIbp_SetUserLED 3-27
MVIbp_Sleep 3-29
MVIbp_WaitForInputScan 3-18
MVIbp_WaitForOutputScan 3-19
MVIbp_WriteInputImage 3-13
MVIcip_Close 4-6
MVIcip_ErrorString 4-32
MVIcip_GetConsoleMode 4-34
MVIcip_GetIdObject 4-28
MVIcip_GetSetupMode 4-33
MVIcip_GetVersionInfo 4-29
MVIcip_Open 4-5
MVIcip_ReadConnected 4-11
MVIcip_RegisterAssemblyObj 4-7

MVIcip_RegisterFatalFaultRtn 4-25
MVIcip_RegisterFlashUpdateRtn 4-27
MVIcip_RegisterResetReqRtn 4-26
MVIcip_SetModuleStatus 4-31
MVIcip_SetUserLED 4-30
MVIcip_Sleep 4-35
MVIcip_UnregisterAssemblyObj 4-9
MVIcip_WriteConnected 4-10
MVIEXEC 6-11 to 6-12
MVIsp_Close 5-8
MVIsp_Config 5-9
MVIsp_Getch 5-22
MVIsp_GetCountUnread 5-32
MVIsp_GetCountUnsent 5-31
MVIsp_GetCTS 5-16
MVIsp_GetData 5-29
MVIsp_GetDCD 5-18
MVIsp_GetDSR 5-17
MVIsp_GetDTR 5-15
MVIsp_GetLineStatus 5-19
MVIsp_GetRTS 5-13
MVIsp_Gets 5-25
MVIsp_GetVersionInfo 5-35
MVIsp_Open 5-4
MVIsp_OpenAlt 5-6
MVIsp_PurgeDataUnread 5-34
MVIsp_PurgeDataUnsent 5-33
MVIsp_Putch 5-20
MVIsp_PutData 5-27
MVIsp_Puts 5-23
MVIsp_SetDTR 5-14
MVIsp_SetHandshaking 5-11
MVIsp_SetRTS 5-12

P
power-on boot messages 1-6
programming the MVI module 6-1 to 6-12

command interpreter 6-3
config.sys file 6-2
creating a ROM disk image 6-4 to 6-8
DISKIMAGE: DOS disk image builder 6-4 to 6-5
downloading a ROM disk image 6-8 to 6-11
MVI flash update 6-8 to 6-10
MVI update 6-10 to 6-11
ROM disk configuration 6-1 to 6-4
sample ROM disk image 6-3
WINIMAGE: windows disk image builder 6-6 to 6-8
Publication 1756-RM004B-EN-P - October 2000

Index 3
Q
questions or comments about manual P-4

R
reference publications P-2
resetrequest_proc 4-24
Rockwell Automation support P-3
ROM disk configuration 6-1 to 6-4
ROM disk image 6-3 to 6-11
rxdata_proc 4-20

S
serial port API 5-1 to 5-35

serial API files 3-1, 4-1, 5-1
serial data transfer 5-2

serial port API functions 5-2 to 5-35
communications 5-20 to 5-34

MVIsp_Getch 5-22
MVIsp_GetCountUnread 5-32
MVIsp_GetCountUnsent 5-31
MVIsp_GetData 5-29
MVIsp_Gets 5-25
MVIsp_PurgeDataUnread 5-34
MVIsp_PurgeDataUnsent 5-33
MVIsp_Putch 5-20
MVIsp_PutData 5-27
MVIsp_Puts 5-23

configuration 5-9 to 5-11
MVIsp_Config 5-9
MVIsp_SetHandshaking 5-11

initialization 5-4 to 5-8
MVIsp_Close 5-8
MVIsp_Open 5-4
MVIsp_OpenAlt 5-6

miscellaneous 5-35
MVIsp_GetVersionInfo 5-35

port status 5-12 to 5-19
MVIsp_GetCTS 5-16
MVIsp_GetDCD 5-18
MVIsp_GetDTR 5-15
MVIsp_GetLineStatus 5-19
MVIsp_GetRTS 5-13
MVIsp_SetDTR 5-14
MVIsp_SetRTS 5-12

service_proc 4-18
1756-MVI module overview 1-1 to 1-8

features 1-1 to 1-4
configuration jumpers 1-4
LED indicators 1-3

system firmware 1-5 to 1-8
operating system 1-8

support and technical assistance P-3
system firmware 1-5 to 1-8

BIOS 1-5
BIOS console services 1-5
BIOS setup 1-5 to 1-8
operating system 1-8

W
WINIMAG: windows disk image builder 6-6 to 6-8
Publication 1756-RM004B-EN-P - October 2000

4 Index
Publication 1756-RM004B-EN-P - October 2000

Allen-Bradley
Publication Problem Report
If you find a problem with our documentation, please complete and return this form.
Pub. Name ControlLogix Multi-Vendor Interface Module Programming Reference Manual

Cat. No. 1756-MVI Pub. No. 1756-RM004B-EN-P Pub. Date October 2000 Part No. 957445-24

Check Problem(s) Type: Describe Problem(s) Internal Use Only

Technical Accuracy text illustration

Completeness procedure/step illustration definition info in manual

What information is missing? example guideline feature (accessibility)

explanation other info not in

Clarity

What is unclear?

 Sequence

What is not in the right order?

Other Comments

Use back for more comments.

Your Name Location/Phone

Return to: Marketing Communications, Allen-Bradley., 1 Allen-Bradley Drive, Mayfield Hts., OH 44124-6118Phone: (440) 646-3176
FAX: (440) 646-4320
Publication 1756-RM004B-EN-P - October 2000 957445-24

Other Comments

PLEASE FOLD HERE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

1 ALLEN BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

()

PL
EA

SE
 R

EM
OV

E

Publication 1756-RM004B-EN-P - October 2000 2 PN 957445-24
© Year Rockwell International Corporation. Printed in the U.S.A.

Back Cover

ControlLogix M
ulti-Vendor Interface M

odule
 Program

m
ing Reference M

anual

	1756-RM004B-EN-P, ControlLogix Multi-Vendor Interface Module Programming Reference Manual
	Important User Information
	European Communities (EC) Directive Compliance
	About This Reference Manual
	Introduction
	Audience
	Common Techniques Used in this Manual
	Contents
	References
	Definitions of Terms Used in this Manual
	Rockwell Automation Support

	Table of Contents
	1756-MVI Module Overview
	What This Chapter Contains
	Features
	System Firmware

	Application Development Overview
	What This Chapter Contains
	API Libraries
	Development Tools

	MVI Backplane API
	What This Chapter Contains
	MVI API Files
	MVI Backplane API Architecture
	MVI Backplane API Functions

	CIP Messaging API
	What This Chapter Contains
	CIP Messaging API Files
	CIP API Architecture
	Backplane Device Driver
	CIP API Functions

	Serial Port API
	What This Chapter Contains
	Serial API Files
	Serial Data Transfer
	Serial Port API Functions

	Programming the MVI Module
	What This Chapter Contains
	ROM Disk Configuration
	Creating a ROM Disk Image
	Downloading a ROM Disk Image
	Booting from the C:�(Compact Flash) Drive

	Index
	Back Cover

