

Please Read This Notice

Successful application of this module requires a reasonable working knowledge of the Rockwell Automation hardware, the MVI46-AFC Module and the application in which the combination is to be used. For this reason, it is important that those responsible for implementation satisfy themselves that the combination will meet the needs of the application without exposing personnel or equipment to unsafe or inappropriate working conditions.

This manual is provided to assist the user. Every attempt has been made to ensure that the information provided is accurate and a true reflection of the product's installation requirements. In order to ensure a complete understanding of the operation of the product, the user should read all applicable Rockwell Automation documentation on the operation of the Rockwell Automation hardware.

Under no conditions will ProSoft Technology be responsible or liable for indirect or consequential damages resulting from the use or application of the product.

Reproduction of the contents of this manual, in whole or in part, without written permission from ProSoft Technology is prohibited.

Information in this manual is subject to change without notice and does not represent a commitment on the part of ProSoft Technology Improvements and/or changes in this manual or the product may be made at any time. These changes will be made periodically to correct technical inaccuracies or typographical errors.

Battery Life Advisory

All modules in the MVI series use a rechargeable Lithium Vanadium Pentoxide battery to backup the 512K SRAM memory, real-time clock, and CMOS. The battery should last for the life of the module.

The module must be powered for approximately twenty hours before it becomes fully charged. After it is fully charged, the battery provides backup power for the CMOS setup and configuration data, the real-time clock, and the 512K SRAM memory for approximately 21 days.

Before you remove a module from its power source, ensure that the battery within the module is fully charged. A fully charged battery will hold the BIOS settings (after being removed from its power source) for a limited number of days. When the battery is fully discharged, the module will revert to the default BIOS settings.

Note: The battery is not user replaceable.

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments, compliments or complaints about the product, documentation or support, please write or call us.

ProSoft Technology 1675 Chester Avenue, Fourth Floor Bakersfield, CA 93301 +1 (661) 716-5100 +1 (661) 716-5101 (Fax) http://www.prosoft-technology.com

Copyright © ProSoft Technology, Inc. 2000 - 2008. All Rights Reserved.

MVI46-AFC User Manual July 02, 2008 PSFT.AFC.MVI46.UM.08.07.02

ProSoft Technology ®, ProLinx ®, inRAx ®, ProTalk® and RadioLinx ® are Registered Trademarks of ProSoft Technology, Inc.

ProSoft® Product Documentation

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments. User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided on the enclosed CD and are available at no charge from our web site: http://www.prosoft-technology.com

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33.5.34.36.87.20

Latin America: +1.281.298.9109

North America: +1.661.716.5100

Contents

PL	EASE F	READ THIS NOTICE	2
	Battery	/ Life Advisory	2
	Your F	eedback Please	2
	ProSo	te Product Documentation	3
1	INTRO	DUCTION	9
	1.1	Update Notice	.10
	1.2	MVI46-AFC Module	.11
2	QUICK	(START	.13
	2.1	Install AFC Manager	.13
	2.2	Install the Module in the Rack	. 14
	2.3	Connect the AFC Module to the AFC Manager	. 15
	2.4	Starting AFC Manager	. 17
	2.5	Using AFC Manager	. 17
	2.6	Ladder Logic Implementation	.23
	2.7	Setting the Wallclock	.24
	2.8	Module Initialization	.25
3	METE	R CHANNEL FUNCTIONALITY	.27
	3.1	Meter Channels	.27
	3.2	Linear (Pulse) Meter Overview	.28
	3.3	Differential (Orifice) Meter Overview	.29
	3.4	Gas Product Overview	. 30
	3.5	Liquid Product Overview	
	3.6	General Features	. 32
4	MODB	US DATABASE	.35
	4.1	AFC Modbus Address Space	.35
5	MODB	US COMMUNICATION	.41
	5.1	Communication Parameters	.41
6	ACCU	MULATORS	.47
	6.1	Accumulator Totalizer and Residue	.47
7	ARCH	IVES	.53
	7.1	Archive Overview	. 53
8	EVEN	۲S	.69
	8.1	The Event Log	.69
	8.2	Event Log structures	
	8.3	Event Id Tag	

	8.4	Event-triggered archives and accumulator resets	72
	8.5	Period-end events	72
	8.6	Loggable events	73
	8.7	Special events	74
	8.8	Site Datum Point events	75
	8.9	Meter Datum Point events	75
	8.10	Stream Datum Point events	77
	8.11	"Rkv" notes	79
	8.12	Event numbers and Event Log Download	79
9	SECU	RITY (PASSWORDS)	83
	9.1	Hard Password	84
10	M٧	/I46-AFC BACKPLANE COMMUNICATIONS	87
	10.1	Backplane Communication and Supervisory Data	87
	10.2	Data Integrity	
	10.3	Data Validity and Module Initialization	99
	10.4	Module Scan	101
	10.5	Function Blocks	101
	10.6	Wallclock Function	102
	10.7	Meter Process Input Function	103
	10.8	Meter Analysis Function	109
	10.9	Meter Type and Product Group Summary	111
	10.10	Meter Archive Fetch	112
	10.11	Modbus Gateway Function	112
	10.12	Modbus Pass-Thru Function	113
	10.13	Modbus Master	115
11	M٧	/I46-AFC SAMPLE LADDER LOGIC	117
	11.1	Installing and Configuring the Module	117
	11.2	Sample Ladder and MVI46-AFC Version Compatibility	119
	11.3	Data Files	120
	11.4	Process Variables and Calculation Results Registers	121
	11.5	Sample Ladder	126
12	TR	OUBLESHOOTING	141
	12.1	User LEDs	141
	12.2	BBRAM LEDs	142
	12.3	Meter Alarms	142
	12.4	Checksum alarms	146
	12.5	Events	146
	12.6	Audit Scan	146
13	RE	FERENCE	151
	13.1	General Specifications	151

13.2	Measurement Standards	154
13.3	Wedge Meter Applications	159
13.4	Configurable Archive Registers	160
13.5	Archive Data Format	164
13.6	Modbus Addressing Common to Both Primary and Virtual Slaves	170
13.7	Modbus Port configuration	264
13.8	Startup Basics and Frequently Asked Questions	265
13.9	Cable Connections	270
14 SU	PPORT, SERVICE & WARRANTY	277
14.1	How to Contact Us: Technical Support	277
14.2	Return Material Authorization (RMA) Policies and Conditions	278
14.3	LIMITED WARRANTY	280
INDEX		285

1 Introduction

In This Chapter

*	Update Notice	1	0
---	---------------	---	---

The MVI46-AFC Flow Computer module performs measurement of Hydrocarbon Gases and Liquids using currently accepted industry measurement standards. The module consists of a single-slot solution for Rockwell Automation chassis. To obtain its process inputs for calculations, the module uses the process data collected by analog and pulse I/O modules. The processor transfers this data to the AFC module, which then calculates flow rates, accumulated volumes, and accumulated mass. The results of the calculations are transferred back to the processor for use in the application ladder logic, or for transfer to a SCADA host.

The module has two communication ports for Modbus communication allowing easy access to a remote Modbus device. The module works as a Modbus slave or master device.

As discussed later in this manual, the internal Modbus database can be accessed by a Modbus Master device and by the processor (using the Modbus Gateway Function).

The AFC Manager software can be used for easy meter configuration and application monitoring. Refer to the *AFC Manager User Manual* for complete information about this tool.

The following section provides a sample application where input data is transferred from the transmitters to analog input cards on the Rockwell Automation rack and the values are transferred from the processor to the module (the module supports floating-point, scaled integer, or 4 to 20 mA format).

For Pulse meter applications, the pulse count and pulse frequency values are typically transmitted through high-speed counter modules in the rack.

The module performs the flow calculation based on the values transferred through the backplane. The calculation results can be read to the processor or polled from a remote Modbus master unit connected to one of the communication ports.

The following diagrams show examples of an application with an orifice meter and gas product:

1.1 Update Notice

If your module measures liquids, please read this notice before upgrading from version 2.04 (or earlier) to 2.05 (or later).

For compliance with new measurement standards, the AFC version 2.05 has introduced several new liquid product groups. In particular, the two non-refined liquid product groups of version 2.04, which covered the entire density range of crudes and NGLs, have each been split into two separate product groups, one for the higher density range of crudes and the other for the lower density range of NGLs. If your module has meter channels configured for either "Crude, NGL" or "Oil-water emulsion", you should decide **before upgrading the firmware** the new product group (light or heavy) to which each such channel should be assigned. This assignment will be performed during the upgrade process and will preserve all other configuration and historical records including accumulator values and archives, in contrast to changing a product group after the upgrade which resets the meter configuration and erases all historical records. Meter channels configured for "Gas" or "Refined products" are not affected.

AFC Manager exhibits the same behavior when converting a project between versions 2.04 (or earlier) and 2.05 (or later).

The criterion for assigning the new product group depends on the density units and the Default Reference Density, as described in the following tables:

·		
Version 2.04 Product Group	Default Reference Density	Version 2.05 Product Group
Crude, NGL	= 0 OR ≥ 610.0	Crude oils, JP4
Crude, NGL	> 0 AND < 610.0	NGLs, LPGs
Oil Water Emulsion	= 0 OR ≥ 610.0	Oil-water emulsion (Crd)
Oil Water Emulsion	> 0 AND < 610.0	Oil-water emulsion (NGL)

Density Units = kg/m3

Density Units = Rd/60

Version 2.04 Product Group	Default Reference Density	Version 2.05 Product Group
Crude, NGL	= 0 OR ≥ 0.6100	Crude oils, JP4
Crude, NGL	> 0 AND < 0.6100	NGLs, LPGs
Oil Water Emulsion	= 0 OR ≥ 0.6100	Oil-water emulsion (Crd)
Oil Water Emulsion	> 0 AND < 0.6100	Oil-water emulsion (NGL)

Due to roundoff error of numeric conversions, a Relative Density very close to the cutoff value of 0.6100 may cause the module to assign the new product group opposite to the one that was intended. Before upgrading, change the Default Reference Density to a number significantly different from 0.6100, such as 0.6110 (to target Crude) or 0.6090 (to target NGLs). You may change it back to the correct value after the upgrade.

Density Units = API Gravity		
Version 2.04 Product Group	Default Reference Density	Version 2.05 Product Group
Crude, NGL	= 0 OR \le 100.0	Crude oils, JP4
Crude, NGL	> 0 AND > 100.0	NGLs, LPGs
Oil Water Emulsion	= 0 OR \le 100.0	Oil-water emulsion (Crd)
Oil Water Emulsion	> 0 AND > 100.0	Oil-water emulsion (NGL)

Density Units = API Gravity

1.2 MVI46-AFC Module

2 Quick Start

In This Chapter

*	Install AFC Manager13
*	Install the Module in the Rack14
*	Connect the AFC Module to the AFC Manager15
*	Starting AFC Manager17
*	Using AFC Manager17
*	Ladder Logic Implementation23
*	Setting the Wallclock24
*	Module Initialization25

This section provides a general overview of the steps required to install and configure the module. You should read the *AFC Manager User Manual* to obtain a clear understanding of the steps outlined in this section.

2.1 Install AFC Manager

The AFC Manager application is included on the CD-ROM shipped with your module. Before you can use the application, you must install it on your computer.

2.1.1 System Requirements

The following system requirements are the recommended minimum specifications to successfully install and run AFC Manager:

- Microsoft Windows compatible PC
- Windows 2000 with Service Pack 2 or higher, or Windows XP Professional with Service Pack 2 or higher, or Windows 2003.
- 300 mHz Pentium processor (or equivalent)
- 128 megabytes of RAM
- 20 megabytes of free disk space
- Available serial port (COM port) or USB to Serial adapter cable with necessary drivers, required for communication between AFC Manager software and the AFC module.
- DB9 adapter cable (included with module), required for connection between PC serial port and AFC module (PTQ-AFC module does not require an adapter).

To install the AFC Manager application:

- 1 Insert the ProSoft Solutions CD in your CD-ROM drive. On most computers, a menu screen will open automatically. If you do not see a menu within a few seconds, follow these steps:
 - **a** Click the Start button, and then choose Run.
 - **b** In the Run dialog box, click the Browse button.
 - **c** In the Browse dialog box, click "My Computer". In the list of drives, choose the CD-ROM drive where you inserted the ProSoft Solutions CD.
 - d Select the file **prosoft.exe**, and then click Open.
 - e On the Run dialog box, click OK.
- 2 On the CD-ROM menu, click Documentation and Tools. This action opens a Windows Explorer dialog box.
- 3 Open the Utilities folder, and then open the AFCManager folder.
- 4 Double-click the file Setup.exe. If you are prompted to restart your computer so that files can be updated, close all open applications, and then click OK. When your computer has finished restarting, begin again at Step 1.
- 5 Click OK or Yes to dismiss any confirmation dialog boxes.
- 6 It may take a few seconds for the installation wizard to start. Click OK on the AFC Manager Setup dialog box to begin installing AFC Manager.
- 7 Follow the instructions on the installation wizard to install the program with its default location and settings.
- 8 When the installation finishes, you may be prompted to restart your computer if certain files were in use during installation. The updated files will be installed during the restart process.

2.2 Install the Module in the Rack

If you have not already installed and configured your processor and power supply, please do so before installing the AFC module. Refer to the processor documentation for installation instructions.

Warning: You must follow all safety instructions when installing this or any other electronic devices. Failure to follow safety procedures could result in damage to hardware or data, or even serious injury or death to personnel. Refer to the documentation for each device you plan to connect to verify that suitable safety procedures are in place before installing or servicing the device.

After you have checked the placement of the jumpers, insert the AFC module into the rack. Use the same technique recommended by the processor manufacturer to remove and install AFC modules.

Warning: When you insert or remove the module while backplane power is on, an electrical arc can occur. This could cause an explosion in hazardous location installations. Verify that power is removed or the area is non-hazardous before proceeding. Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance that can affect module operation.

Note: If you insert the module improperly, the system may stop working, or may behave unpredictably.

After you have installed the AFC module in the rack with the processor, you should then download the sample program to the processor.

- Connect a null modem cable from the serial port on your computer to the 1 serial port on the processor.
- 2 Start the configuration tool for your processor (RS Logix for MVI-AFC modules; Concept, Unity or ProWorx for PTQ-AFC) and establish communication with the processor.
- Open the sample program in the configuration tool. Adjust the slot number 3 and processor type, if necessary, to match the physical configuration of the processor and the position of the AFC module in the rack.
- 4 Download the program to the processor. The sample program is located on the CD-ROM in the box with your module. Refer to the User Manual for your module for specific instructions on downloading the sample program.

The next step is to connect your PC to the module to begin configuration with AFC Manager.

2.3 Connect the AFC Module to the AFC Manager

8 pin mini DIN/DB9 adapter, supplied with

You will need the correct cables to connect the AFC module to the computer running AFC Manager. The null-modem cable as well as any required adapter cables are included in the box with the module.

require an adapter cable (RJ45/DB9 adapter or Connects Null-modem Cable to MVI46, 56, 69 and 71 AFC module configuration-debug port.

- Connect the DB-9 adapter to the CFG (configuration/debug) port of the AFC 1 module (refer to the port labels on the front of the module to find the correct port).
- 2 Connect the null-modem cable to the DB-9 adapter cable on the module, and to an available serial port on your computer.

module as needed).

Note: Some desktop and notebook computers are not equipped with a serial port. In this case, you may require a USB to Serial adapter cable, with drivers. Not all USB to Serial adapters will work correctly with this application. If you encounter problems, please contact ProSoft Technical Support for recommendations.

Note: The illustration above shows an MVI46-AFC. The connection process is similar for all MVI-AFC and PTQ-AFC models.

The null-modem cable that is supplied with the module uses the following cabling scheme:

3 Start AFC Manager, and then select the port settings at: **Communications / Local Port Settings**. The default communication settings are shown in the following illustration.

Local Port Settings
AFC Port [① [] ① 2 ① 3 <u>Copy to Local</u>
Primary Slave Address 244
Time Out (ms) 5000
-Local
COM 1 9600 •
Parity • None O Even O Odd
Data Stop
C 7 Bits C 1 Bit C RTU ⊙ 8 Bits C 2 Bits C ASCII
O 2 Bits O ASUI
Done

- 4 The AFC Manager will establish communication with the module. Open the Project menu and then select Site Configuration to open the Site Configuration dialog box.
- 5 On the Site Configuration dialog box, click the Read button. You should see the word "Success" in the Result area of the dialog box.

2.4 Starting AFC Manager

To start AFC Manager:

- 1 Click the Start button, and then choose Programs.
- 2 In the Programs menu, choose ProSoft Technology.
- 3 In the ProSoft Technology menu, choose AFC Manager.

2.5 Using AFC Manager

The AFC module is configured with configuration files that you create using AFC Manager. A configuration file is called a Project.

2.5.1 Starting a New Project

To start a new project:

1 Start AFC Manager, and then open the File Menu.

2 On the File Menu, choose New, and then select your module and firmware version number.

74		
🐉 AFC Manager - [AFC56-16(4):2.0	5] (new file)
File Project On-line	<u>C</u> ommunications	Help
<u>N</u> ew ►	None	
<u>L</u> oad	MVI46-AFC 🕨	
<u>S</u> ave	MVI56-AFC >	MVI56-AFC, 16 meters (v 2.05)
Save <u>A</u> s	MVI69-AFC 🕨	MVI56-AFC, 16 meters (v 2.04)
Print Report	MVI71-AFC 🕨	MVI56-AFC, 16 meters (v 2.03)
<u>R</u> eset	PTQ-AFC 🕨	MVI56-AFC, 16 meters (v 2.02)
Exit		MVI56-AFC, 16 meters (v 2.01)
	,	MVI56-AFC, 16 meters (v 2.00)
		MVI56-AFC, 16 meters (v 1.05)
		MVI56-AFC, 16 meters (v 1.04)
		MVI56-AFC, 16 meters (v 1.03)
		MVI56-AFC, 16 meters (v 1.02)

The version number refers to the firmware version of your module. If you do not know the firmware version number, follow these steps:

- a) Open the Project menu.
- b) Choose Site Configuration. This action opens the Site Configuration dialog box.
- c) Click the Read button. The firmware version is listed below the serial number, in the upper right part of the dialog box.

🚯 Site Conf	iguration				_ 🗆 X
Site name	MVI Flow	Station			
AFC		Pr	oject name	2209	Serial number
244	Primary M	odbus slave	address	2.05.000	Firmware version/revision number
0	Virtual Mo	dbus slave a	iddress	*Click Me*	Configuration changed Ack Chg
0	End-of-dag	y minute		1	PLC status
0	End-of-ho	ur minute		0070h	Site status
101.325	Barometric	: pressure (k	Paa)		
3022h	Site option	ns			
0] Pass-thru:	Max PLC wi	ndow size		
0	Pass-thru:	Word regior	n size	0	Pass-thru: Bit region size
0] Pass-thru:	Word regior	n address	0	Pass-thru: Bit region address
Port <u>1</u>	Port <u>2</u>	Port <u>3</u>	Re <u>m</u> apping	Pas <u>s</u> word	Result
<u>P</u> oll		<u>R</u> ead	<u>₩</u> rite		
Between 1	and 64 cl	haracters.			
Me <u>t</u> ers					Done

Important: You must be connected to the module and "online" to read data from the module.

3 Follow the steps in the remainder of this User Guide to configure your module and your AFC device.

4 Before closing the program, open the File menu and choose Save As, to save your project so you can open it again later.

AFC Manager - [AFC56-16(4):2.05] (new file)					
Eile	Project	<u>O</u> n-line	<u>C</u> ommunications	<u>H</u> elp	
N	ew	⊢ F			
Lo	oad ,,,				
<u>5</u> a	ave				
Sa	ave <u>A</u> s				
Pr	int Repor	t			
R	eset				
E	<u>k</u> it				

2.5.2 Loading an Existing project

You can open and edit a project you have previously saved. Do this if you have started, but not completed, the configuration of your project, or if you need to modify the settings for a project that has already been downloaded to the module.

To load an existing project:

- 1 Start AFC Manager, and then open the File menu.
- 2 On the File menu, choose Load. This action opens a dialog box that shows a list of AFC Manager project files (AFC files) in the current folder.
- 3 Choose the project to load, and then click Open.

2.5.3 Printing the Configuration Report

You can print a report of your configuration for future reference, or for archival purposes.

To print the configuration report:

1 Open the File menu, and then select Print Report. This action opens the Print Configuration dialog box.

🐉 Print	t Configu	ration	×	
□ <u>S</u> ite	configura	tion		
Meters	configurat	ion		
\Box 1	<u> </u>	<u> </u>	🗖 13	
□ 2	<u> </u>	l 10	🗖 14	
<u> </u>	ΠZ	🗌 11	🗖 15	
□ 4	<u> </u>	🗌 12	li 16	
🗌 🗌 Virte	ual slave n	e <u>m</u> apping		
Clea <u>r</u> All Select <u>A</u> ll				
<u>C</u> a	ncel	Ē	Print	

- **2** On the Print Configuration dialog box, select (check) the items to include in the printed report.
- **3** Click Print to send the report to your default printer.

Note: The size of the report depends on items you choose to include, and may require 75 pages or more. Take this into account before printing.

2.5.4 Converting a Project

You can convert an existing project (configuration file) to use it with a different module or firmware version. Do this if:

- You want to reuse an application created for a different AFC module, for example a project that was created for a PTQ-AFC that you want to use for an MVI69-AFC.
- You apply a firmware upgrade to a module.

To convert a project:

- 1 Open the File menu, and then choose Open.
- 2 Open the project (configuration file) to convert.
- 3 Open the Project menu, and then choose Change Module Type.

- 4 Choose the module type and firmware version from the menu.
- 5 Save your project.

Note: AFC Manager will save your updated configuration file with the same name as the file you loaded. If you need to keep your original configuration, change the file name of your updated configuration before saving.

2.5.5 Resetting Configuration Parameters

If you have modified your project (configuration file), or if you have loaded a configuration file from disk, but you want to start a new project, you can reset the configuration parameters back to their defaults without having to close and reopen the AFC Manager.

To reset configuration parameters

- 1 Close any dialog boxes that are open.
- 2 Save the configuration file you were working on, if you would like to load it again later.
- **3** On the File menu, choose Reset.

Note: This procedure has the same effect as choosing File / New / None.

If you have made changes to the configuration that have not yet been saved, a confirmation dialog box will open.

AFC Manager			×
Project has been (changed - sav	e it?	
Yes	No	Cancel	

Answer Yes to save your changes, or No to discard your changes and begin working on a new configuration. Click Cancel to abandon the attempted action that caused this message.

2.5.6 Downloading the Project to the Module

1 Click Project / Download Project.

AFC Manager 🔀				
?	About to download the current project to the module. Continue?			
	Yes			

2 The following window is displayed the first time you attempt communication with the module. Enter the port parameters to use, and then click Done.

🔅 Local Port	Settings	×
AFC Port I C 2	с з <u>С</u> ор	y to Local
Primary Slave Time Out (ms		244 5000
Local —		
COM 1	▼ 960	
Parity —	_ ,	
None Data	C Even	
C 7 Bits	 1 Bit 	RTU
8 Bits	O 2 Bits	O ASCII

3 During the download operation, the following progress window is displayed:

Download Module Configuration	×
Downloading meter 2 configuration	
Cancel	

4 When the file transfer is complete, the following window is displayed:

Note: The virtual slave remapping data (page 37) is not downloaded during the procedure because it requires a separate download operation.

Troubleshooting Tip: If the AFC Manager displays an "Illegal Data Value" message, it typically indicates an invalid meter type or product group configuration. The module does not accept a configuration file that attempts to change a meter type or product group for a meter that is currently enabled. Disable all meters, change the meter types and product groups, and then enable the meters again.

2.5.7 Verifying Correct Operation

When all of the configuration steps have been completed, the module should be ready to perform measurement calculations. To verify that the module is configured correctly, follow these steps:

- Enable all meters that will be used, as any meter will only perform calculations if it is enabled. Any meter can be enabled either with ladder logic (MVI modules), function blocks (PTQ modules) or with AFC Manager.
- 2 Make sure that the wallclock is running, and that it has valid date and time information. After power-up, the wallclock will be stopped, therefore the module will not perform any time-scheduled operations, such as writing period-end archives, and will not timestamp records written to the event log until it receives a wallclock command from the ladder logic.

The sample ladder logic programs the wallclock update command upon detecting "power-up" status from the AFC. The date/time information used is the same as the processor, therefore you should use the configuration tool for your processor to verify that the processor has valid date/time data. If the processor wallclock is not valid (for example if the year = 1900), the module will not accept the command. You may easily determine if the wallclock is running by performing two consecutive read operations in the Meter Monitor.

- 3 Make sure that the meter does not have any alarms. A meter alarm may affect flow calculation. Look at the Meter Monitor dialog box for alarms.
- 4 Make sure that the input parameters transferred from the processor are correct. You can look at these values in the Meter Monitor dialog box.
- 5 When using a pulse meter, make sure that the pulse input rollover parameter in Meter Configuration matches the actual input rollover value used in the high speed counter module.

2.6 Ladder Logic Implementation

The sample ladder logic performs tasks that are covered in the Ladder Logic sections of this manual. The most important task is to continuously write meter process input variables from the processor to the module, and read calculation results from the module to the processor.

Refer to the Ladder Logic sections for instructions on how to transfer the meter process variables from the processor to the module. Ladder logic is required to move the process variables to the correct data file or controller tag in the processor.

The **Meter Monitor** window (*Process Inputs* field) displays the values that are transferred from the processor.

The values calculated by the module are continuously transferred to the processor. You can refer to the **Meter Monitor** window to verify results calculated by the module.

Refer to the Ladder Logic section for more information regarding the data files and controller tags that store the calculation results transferred from the module (for example, accumulator, flow rate, and so on).

2.7 Setting the Wallclock

After power-up, the module must receive valid wallclock data from the ladder logic to perform time-scheduled operations and to properly timestamp historical records. The sample ladder logic automatically writes the wallclock during the processor's first scan (using the processor's date and time information). You should ensure that the processor contains valid date and time information. If it does not, the module may not accept the wallclock block.

You can verify the wallclock information using the Meter Monitor section as shown in the following example:

Refer to the Sample Ladder Logic section for more information on this topic.

2.8 Module Initialization

When the module is powered up for the first time, both the **OK** and **ERR** BBRAM LEDs are illuminated. This indicates that the module is in the *Cold Start* state and is not yet ready to perform calculations. The following steps initialize the module:

- Enable at least one meter
- Set the processor to RUN mode

After these two steps are accomplished, the state is changed from *Cold Start* to *Released*. This indicates that that module is ready to perform flow calculations. When in the *Released* state, the **OK** LED is ON and the **ERR** LED is off.

When the module is ready, you will use AFC Manager to monitor meter operation, archives, and events. The *AFC Manager User Manual* contains detailed information on these tasks.

3 Meter Channel Functionality

In This Chapter

*	Meter Channels	27
*	Linear (Pulse) Meter Overview	28
*	Differential (Orifice) Meter Overview	29
*	Gas Product Overview	30
*	Liquid Product Overview	31
*	General Features	32

3.1 Meter Channels

The number of available meter channels depends on the platform as follows:

- MVI46-AFC = 8 meters
- MVI56-AFC = 16 meters
- MVI69-AFC = 8 meters
- MVI71-AFC = 8 meters
- PTQ-AFC = 16 meters

Each meter channel can be assigned as a linear meter (*pulse meter*) input or as a differential meter (*orifice meter*) input for flow measurement using either SI or US units. Selecting the differential meter causes the module to use the AGA 3 standards for flow calculation. Selecting the linear meter causes the module to use the AGA 7 standard for gas flow calculation.

Each meter channel can be configured for gas or liquid (*crude* or *refined*) product. The Product Group essentially selects the API/AGA Standards to be used in calculating flow rates/increments.

Selecting "Gas" causes use of AGA8 and either AGA3 or AGA7 Standards.

Selecting any liquid group causes use of the API2540 Standards. "Crude/LPG" and "Oil-Water Emulsion" use the base, "A", and "E" tables 23/24/53/54, and "Refined Products" uses the "B" tables 23/24/53/54. "Crude/LPG" is used for propane, butane, NGLs (natural gas liquids), and crude oils which are relatively water-free (less than 5 per cent. "Oil-Water Emulsion" is used for crude and NGL/LPG that might have a high concentration of water for which API MPMS Chapter 20.1 is applicable. "Refined Products" is used for gasoline, jet fuels, and fuel oils.

the meter Type and Floddet Gloup.				
Meter Type	Product Group	Standards		
Differential	Gas	AGA8, AGA3		
Differential	Liquid	API2540, AGA3		
Linear	Gas	AGA8, AGA7		
Linear	Liquid	API2540, MPMS ch12.2		

The following table provides a brief overview of the standards used according to the Meter Type and Product Group:

Note: The meter channel must be disabled in order to change its meter type and product group.

3.2 Linear (Pulse) Meter Overview

The module typically receives the pulse count and pulse frequency values from a high-speed counter module. The module uses these values to perform calculations.

You can configure the primary input to be used for volume calculation. You can configure it as Pulse Count or Pulse Frequency.

3.2.1 Primary Input = Pulse Count

If you select Pulse Count as the primary input, the module uses the pulse count value transferred through the backplane as the primary input for volume calculation. In this case, the pulse frequency will be used for flow rate calculation only.

3.2.2 Primary Input = Pulse Frequency

If you select Pulse Frequency as the primary input, the module uses the pulse frequency value transferred through the backplane as the primary input for both flow accumulation and flow rate calculation. The pulse count value is ignored by the module.

3.3 Differential (Orifice) Meter Overview

The static pressure of the gas stream can be measured either upstream of the meter (before the differential pressure drop), or downstream of the meter (after the pressure drop). Both AGA3 and AGA8 require the upstream static pressure for their calculations, where:

upstream pressure = downstream pressure + differential pressure

If the pressure is measured from a downstream tap (typical), the *Downstream Static Pressure* option should be set through the AFC Manager.

The module also supports the V-Cone device. You can configure V-Cone meters and downstream selections in AFC Manager, on the **Meter Configuration / Calculation Options** dialog box.

3.3.1 Primary Input = Differential Pressure

The primary input parameter configures the value used as source for the accumulator calculation. If the parameter is set to Differential Pressure, the module uses the differential pressure value transferred through the backplane for accumulator calculation.

3.3.2 Primary Input = Flow Rate

You can configure the primary input parameter as flow rate in order to use this value for the accumulator calculation.

Note: The flow rate can be converted to a different unit.

The AFC Manager software supports the following parameters:

- Orifice Plate and Meter Tube Measured Diameter
- Orifice Plate and Meter Tube Measurement Temperature
- Orifice Plate and Meter Tube, Coefficient of Thermal Expansion
- DP Flow Threshold (kPa)
- DP Alarm Threshold (kPa)

3.4 Gas Product Overview

The gas compressibility calculations are based on molar analysis concentrations of up to 21 components, using the Detail Characterization Method of AGA8 (1992). The module automatically generates alarms if the sum of the molar concentrations is not 100%

Configure the analysis settings using the AFC Manager (**Meter Configuration / Analysis Config**) as follows. This window allows the selection of the components(Component Selection Map) and stream precision (Precision and Stream Assignment – version 2.06.000 or higher). The sample ladder logic assumes that all components are selected so check all components at the Component Selection Map window.

Component Selection	n Map Pr	ecision and Stream Assignment
1 ✓ C1 methane 2 ✓ N2 nitrogen 3 ✓ C02 carbon dioxide ④ ✓ C2 ethane 5 C3 propane 6 H20 water 7 H2S hydrogen sulphide 8 H2 hydrogen	9 C0 carbon monoxide 10 02 oxygen 11 iC4 iso-butane 12 nC4 normal butane 13 iC5 iso-pentane 14 nC5 normal pentane 15 C6 hexane 16 C7 heptane	17 □ C8 octane 18 □ C9 nonane 19 □ C10 decane 20 □ He helium 21 □ Ar argon 22 □ neoC5 neopentane 23 □ Ux user1 24 □ Uy user2
neck to include "C2 ethane" i	Normalization total error tolerance [n the set of selected component	

Enter the gas analysis concentrations by clicking at the Analysis button. You can also update the concentrations through the backplane as it will be later shown at this User Manual.

8	Component	Analysis, Stream 1 (S	lot	1)		×
1	0.2	C1 methane	13	0	iC5 iso-pentane	Copy Analysis From
2	0.1	N2 nitrogen	14	0	nC5 normal pentane	Meter number 1 🚔
3	0.3	CO2 carbon dioxide	15	0	C6 hexane	Stream number 🛛 📥
4	0.1	C2 ethane	16	0	C7 heptane	Сору
5	0	C3 propane	17	0	C8 octane	сору
6	0	H2O water	18	0	C9 nonane	
- 7	0	H2S hydrogen sulphide	19	0	C10 decane	
8	0	H2 hydrogen	20	0	He helium	<u>R</u> ead <u>W</u> rite
9	0	CO carbon monoxide	21	0	Ar argon	Result
10	0	02 oxygen	22	0	neoC5 neopentane	
11	0	iC4 iso-butane	23	0	Ux user1	
12	0	nC4 normal butane	24	0	Uy user2	
		ration in the fluid of "C een 0 and 1.	C1 n	nethane" a	s a molar fraction; a	Done

The module records events every time a molar concentration value changes. For applications that involve gas chromatograph devices, this feature might not be desirable because it is expected that the values should frequently change. You can disable this feature using AFC Manager (Meter Configuration / Control Options / Treat Analysis as Process Input).

3.5 Liquid Product Overview

The module supports applications involving crude or refined oil such as crude oil, oil/water emulsion, propane, butane, NGLs, LPGs, gasoline, jet fuels and lubricating oils.

When measuring liquids with density correction, density at flowing conditions is required. This value may be provided directly as a process input, or the module can calculate a density from the frequency provided by a densitometer device.

3.5.1 To use a densitometer

Follow the steps below to use a densitometer.

- 1 Configure it, entering all configuration parameters directly from the calibration data sheet supplied by the densitometer manufacturer.
- 2 Supply the frequency output from the densitometer in Hz as a floating-point value in the "Flowing density" process-input location over the backplane (refer to the Backplane Communication section for your platform in the MVI46-AFC manual to determine the correct location). The AFC then calculates a flowing density value, which is then validated by the range check mandated by the "Density" values of "Process Input Scaling" of the meter configuration. The "Scaling" sub-selection is not used against the frequency input, however; the frequency is always input as floating-point.

Note: If using the Densitometer feature, select the Density Process Input Scaling for 4 to 20mA and enter the densitometer frequency as a floating-point value.

3.5.2 Density Units

The liquid density units can be expressed as:

- Density is in kg/m³;
- Relative density 60°F/60°F;
- API gravity;

3.5.3 Measuring Water Diluent

For liquid measurement applications, the optional automatic calculation of Net Oil Volume and mass based on the Sediment and Water (S&W) percent input is supported. Only provide the S&W percent value in the specified controller register. The module puts the gross standard (or gross clean oil), net oil and water accumulations in separate accumulators. Refer to Net Accumulator Calculation (page 51).

3.6 General Features

3.6.1 Process Variable Interface

Process variables for each of the meter runs must be produced by the controller for consumption by the AFC module. A versatile architecture for backplane transfer of process variables and other data and signals allow you to easily implement the data transfer. The sample ladder logic automatically transfers the process variables to the module and reads the calculation results to the processor.

3.6.2 Meter Scan Time

For good measurement, the process I/O must be sampled, and the flow calculations completed quickly in order to avoid losing process information and measurement accuracy. The process I/O scan time for the module is under one second for all meter runs.

Note: This is time-dependent on design of the ladder logic implemented to support the two-way data transfer between the AFC module and the controller. The meter calculation scan independent of the process I/O scan may take longer.

3.6.3 Multiple Meter Accumulators

Each meter channel supports the following set of full 32-bit accumulators that may be configured in binary or split decimal format with user-defined rollover values:

- Gross Volume
- Gross Standard Volume (liquid only)
- Net Volume
- Mass
- Water (liquid only)
- Energy (gas only)

Access to the above accumulators is available directly from the two Modbus Slave communications ports.

3.6.4 Product Batching

Any or all of the available meter runs may be configured for field installation that requires shipping and/or receiving product batches of predetermined size. The configuration utility option of selecting resettable accumulators provides a simple way to use the power of ladder logic to design product batching, monitoring, and control tailored to suit specific field requirements.

The Meter Signals feature can be used to create an archive or reset an accumulator after the batch is concluded. Refer to the Ladder Logic section for your platform for more information on using this feature.

3.6.5 Data Archiving

The module supports the archiving of data for each meter channel. Each time, one record consisting of all the associated data is date and time stamped and archived. This option allows for archiving each hour for 2 days (48 records per meter run) and every day for 35 days (35 daily records per meter run) for each meter channel. Each record consists of up to 40 process and other variables. Archives are mapped to the local Modbus Table. Refer to Archives (page 53) for more information about this topic.

3.6.6 Event Log Function

The module can log up to 1999 critical events in an Event Log File stored as a set of easily accessible Modbus registers in non-volatile RAM. Changing critical parameters, such as orifice plate size, Meter Base K factors, and Meter Correction Factors, are time stamped and logged. Refer to Events for more information about this topic.

3.6.7 Measurement Units

This option is provided for each meter channel to be configured with SI or US units of measurement. Units for flow totalization (*volumetric* and *mass*) and flow rate monitoring are configurable for each meter channel separately if the default configuration is not applicable. Each meter channel may be configured to use any of the standard units from liters/gallons to thousand cubic meters/barrels. The flow rate period of each meter channel may be selected from flow rate per second, per minute, per hour, or per day.

3.6.8 Process Input Scaling

The module allows you to either pre-scale the process inputs via ladder logic for use in the measurement calculations, or provide unscaled values from the analog input modules directly. In the second case, the scaling is done internally. You can directly enter the zero-scale, the full-scale, and the default values for each of the process variable inputs through the configuration window.

Scaled Integer		
Variable	Format	Example
Temperature	Two decimal places implied	A value of 1342 would be equivalent to 13.42°C
Pressure	No decimal places implied for SI units (kPa) and one decimal place implied for U.S. units (psi).	A value of 200 would be equivalent to 200kPag
Differential Pressure	Two decimal places implied for inches of H2O and 3 places for kPa	A value of 35142 would be equivalent to 35.142kPa
Density (kg/m3)	One implied decimal place	A value of 5137 would be equivalent to 513.7 kg/m3
Density (Relative Density)	Four implied decimal places	A value of 10023 would be equivalent to 1.0023 60F/60F.
Density (API)	Two implied decimal places	A value of 8045 would be equivalent to 80.45 °API.

In the **Meter Monitor** window, the raw value is shown at the "Last Raw" column and the converted values are shown at the "Scaled Avg" column.

When selecting the 4 to 20mA process input scaling, the module uses the following ranges:

4 to 20mA				
Processor	Module	0%	100%	
SLC	MVI46-AFC	3277	16384	
ControlLogix	MVI56-AFC	13107	65535	
CompactLogix	MVI69-AFC	6241	31206	
PLC	MVI71-AFC	819	4095	
Quantum/Unity	PTQ-AFC	4000	20000	

The module uses the configured values for zero and full scale to interpret the process input scaling.

4 Modbus Database

In This Chapter

The module supports two individual Modbus slaves (Primary and Virtual) to optimize the polling of data from the remote SCADA system, or from the processor (through the backplane). Refer to the Modbus Dictionary dialog box in AFC Manager for information about Modbus addressing.

4.1 AFC Modbus Address Space

Addressable Modbus registers are divided into four banks as shown in the following figure:

MODBUS Address Space Allocation: Total MB Registers: 131,072					
Primary Slave Banks Virtual Slave Banks					
(131072 registers)		(20,000 registers)			
Holding Registers	Input Registers	Holding Registers	Input Registers		
From: 0	From: 0	From: 0	From: 0		
To: 65535	To: 65535	To: 9999	То: 9999		

The first 100 registers of the virtual slave (registers 0 through 99) are predefined to map to the first 100 registers of the primary slave. This mapping cannot be changed. Also, the Virtual Slave Input Registers can be accessed as Virtual Slave Holding Registers by adding 10000 to the Modbus register address; for example, Input Register 2386 is the same as Holding Register 12386.

4.1.1 Primary Slave

The Primary Slave contains the main AFC database that consists of 131,072 Modbus registers. The Site and Meter configuration, as well as all live process data and ongoing calculations are kept in the Primary Slave address space. This address space is divided equally between the Input Register Bank (65,536 registers) and the Holding Register Bank (65,536).

The register addressing is shown in the Modbus Dictionary dialog box in AFC Manager.

Modbus Address References

In these documents (the AFC Manager User's Guide and the User's Guide for your platform) you will occasionally see Modbus address references like *Ph00018* or *Mh00162*. The first two characters of such references indicate how to convert the following number into an absolute Modbus address in the module.

This table shows the possible values for the first identification character:

Address Translation ID	Description
Р	Absolute Modbus address, Primary Slave
Μ	Meter-relative Modbus address, Primary Slave
V	Absolute Modbus address, Virtual Slave
This table shows the p	ossible values for the second identification character:
Register Bank ID	Description
h	Holding register
i	Input register
•	

Modbus Address Examples

Ph02000 = holding register located at address 2000 in the primary slave

Pi02000 = input register located at address 2000 in the primary slave

Mh00100 = Meter-relative holding register located at offset 100 in the block of the primary slave that contains the data for the meter

Meter-relative Data

Meter-relative data starts at absolute holding register address 8000 and occupies 2000 words of data for each meter channel.

The meter-relative addresses are offsets within each meter data area. The correct absolute address is calculated by the following formula:

[absolute address] = [meter-relative address] + (8000)*[meter number-1]

In the Modbus Dictionary dialog box, addresses listed for the selected meter are absolute addresses, so you should subtract the appropriate multiple of 8000 to calculate the meter-relative address.

Example: Find the orifice diameter address for the first 5 meter channels.

The meter 1 orifice diameter registers are located at the holding register address 8162 and 8163 as follows:

8160	8161	Float	Parameter: orifice plate: measurement temperature
8162	8163	Float	Parameter: orifice plate: measured diameter
8164	8165	Float	Parameter: orifice plate: coef of thermal expansion
8166	8167	Float	Parameter: meter tube: measurement temperature
8168	8169	Float	Parameter: meter tube: measured diameter
8170	8171	Float	Parameter: meter tube: coef of thermal expansion
8172	8173	Float	Parameter: differential pressure flow threshold

The meter-relative addresses are Mh00162 and Mh00163

Meter	Registers
1	8162 and 8163
2	10162 and 10163
3	12162 and 12163
4	14162 and 14163
5	16162 and 16163

The addresses for meters 1 to 5 are listed on the following table:

Scratchpad

The Primary Modbus Slave contains a scratchpad area that can be used to store any data required by each application. This area is "empty" by default and contains 6000 words of data starting at holding register 2000 in the Primary Modbus Slave.

Virtual Slave

The module also provides a Virtual Address Space of 20,000 Modbus registers. This address space is divided equally between the Input Register Bank (10,000 registers) and the Holding Register Bank Holding Register Bank (10,000). This is where you can create a virtual re-map by cross-referencing any of the 130,072 Primary Slave Modbus registers to the 20,000 Modbus registers in the Virtual Slave Banks, thereby making it easy for a SCADA Master to poll only the necessary Modbus addresses in contiguous blocks. The virtual slave can also be used for data polling from the processor through the backplane.

Modbus access to the Virtual Modbus Slave is disabled by default since its Modbus address is originally set as 0. To use the Virtual Modbus Slave, you must initially configure a Modbus address greater than zero in order to enable it. Refer to Site Configuration for more information about enabling the Virtual Slave and using the remapping feature. The PLC may always access the Virtual Slave, whether or not it has a non-zero slave address and thus is available via Modbus.

A download operation will not transfer the Virtual Slave Remapping configuration. You must click on the **Write** button on the **Indirect Address Remapping** dialog box to transfer the data.

Note: The first 100 registers in the Virtual Slave Holding Register Bank have been pre-assigned and cannot be remapped. They map directly to the first 100 holding registers of the Primary Slave.

Virtual Slave Example Application

Assume that an application requires a remote Modbus master to poll the orifice diameters for the first 5 channels. Continuing the previous example, the holding register addresses are listed again the following table.

Meter	Registers	
1	8162 and 8163	
2	10162 and 10163	
3	12162 and 12163	
4	14162 and 14163	
5	16162 and 16163	

Because these addresses are not contiguous, the Modbus master would have to use five commands to poll all the data directly from the Primary Modbus Slave as follows:

However, using the Virtual Modbus Slave optimizes the polling of data because the registers can be remapped in any order using the AFC Manager (Site Configuration window). The following illustration shows how the orifice diameter registers could be remapped to the Virtual Slave starting at address Vh00100:

Holding C Input	Start Address 100	🚖 Se	arch <u>P</u> revious	<u>N</u> ext
Description	When addressing	Access	as Inpt Reg	with Wrt Ent
	H 0100	8162		
	H 0101	8163		
	H 0102	10162		
	H 0103	10163		
	H 0104	12162		
	H 0105	12163		
	H 0106	14162		
	H 0107	14163		
	H 0108	16162		
	H 0109	16163		
Result				<u>R</u> ead
				Write

The following table shows how the addresses would be remapped between both slaves:

Primary Modbus Slave Addresses	Virtual Modbus Slave Addresses
8162 and 8163	100 and 101
10162 and 10163	102 and 103
12162 and 12163	104 and 105
14162 and 14163	106 and 107
16162 and 16163	108 and 109

Therefore, instead of sending five Modbus commands (2 words each) to the Primary Modbus Slave, the Modbus master device can now send one single Modbus command (10 words) to the Virtual Modbus Slave in order to poll the same data from the module:

This example demonstrates the benefits of using the Virtual Slave instead of accessing the data directly from the Primary Modbus Slave. The same procedure can be used when polling data from the processor (through the backplane) because the Modbus Gateway block also requires the data to be listed in a contiguous order.

4.1.2 Accessing the Data

The AFC Manager provides an easy way to read and write data from both slaves through the Modbus Master Interface.

Modbus Master		×
Set Port	Set Transaction	Action
Comm port is open	Slave Address 244	Send Cmd Close
COM 6 💌 9600 💌	Time Out (ms) 5000	Manual C Auto
Parity	Function Read C Write	Update Time (s) 2
ModeDataStop	Register	Result
RTU C 7 Bits I Bit	Holding Registers 💌	Attempts 1 Success
C ASCII C 8 Bits C 2 Bits	Offset 0 Count 2	Time (ms) 249
8-Bit Display	play 32	-Bit Display
O Binary O Byte O Octal	C Hex ⊙ Decimal 🔽	Long Integer Floating Point Disable Big-endian word order (check this for AFC)
- Holding Registers		
17973 18228		
11601.8		
		_

5 Modbus Communication

In This Chapter

A remote Modbus master device can be connected to any one of the communication ports for data polling. The module accepts the following Modbus command functions according to the Modbus protocol specification:

Modbus Function Code	Description	
3	Read Holding Registers	
4	Read Input Registers	
6	Preset Single Register	
16	Preset Multiple Registers	

Ports 2 and 3 support RS-232, RS-422, or RS-485 communications. The Configuration/Debug port (Port 1) supports RS-232 only.

Refer to Cable Connections (page 270) for wiring instructions.

The Modbus master command can be sent to either the Primary or Virtual Modbus Slaves in the module. Each slave has individual Modbus addresses that you can configure (**Project / Site Configuration**). The Primary Slave address is configured as 244 by default.

5.1 Communication Parameters

The module supports the following communication parameters for each communication port:

Parameter	Values
Baud Rate	300, 600, 1200, 2400, 4800, 9600 or 19200
Data Bits	7 or 8
Stop Bits	1 or 2 Bits
Mode	RTU or ASCII
Parity	None, Even or Odd

Page 41 of 294

Note: Do not configure a port for both RTU mode and 7 data bits as this combination is not supported by the Modbus protocol.

You must configure the communication parameters for each communication port using the AFC Manager software (Site Configuration):

5.1.1 Port Options

The following options can be configured:

Port Options	Description
Hide Primary Slave	Protects the Primary Slave from any read or write operation from a remote master. Only the virtual slave is visible on this port.
Swap Modbus Bytes	Swap the Modbus bytes transferred through this port (Not implemented)
Swap Modbus Words	Swap the Modbus words transferred through this port. This parameter is only applicable to those data points that hold 32-bit quantities (long integers, floats, totalizers),
Disable Pass-Thru	Disables the pass-thru feature on this port
Modbus Master	Enables the Modbus master for the port (Port 3 only)

Not all options are available on every port:

- Port 1 is restricted, so that AFC Manager can always communicate with the Primary Slave using this port.
- Modbus Master option is available only on Port 3.

Modbus Pass-Thru

The Modbus pass-thru feature allows you to configure a Modbus pass-thru region in the Virtual Slave (**Project / Site Configuration**). After the module receives a holding register write command (Modbus functions 6 or 16) or a bit write command (Modbus functions 5 or 15) to this region, it will generate a pass-thru block to be sent to the processor containing the Modbus command data. You may define a word pass-thru region (for Modbus functions 6 and 16) and a bit pass-thru region (for Modbus functions 5 and 15).

Important: You must enable the virtual slave by configuring a Modbus address greater than 0 (**Project / Site Configuration**).

You can control which communication ports will support the pass-thru (**Project / Site Configuration / Port X button**).

This feature requires ladder logic to read the pass-thru block from the module to the processor. Refer to the Ladder Logic section for more information about the pass-thru feature.

Modbus Master

Port 3 can be configured for Modbus master operation (**Project / Site Configuration / Port 3**).

The Modbus master command is generated from the processor using ladder logic (Modbus master block). After the Modbus master transaction is completed the module is ready to receive another Modbus master request from the ladder logic:

The following Modbus functions are supported for Modbus master operation:

Description
Read Coil Status
Read Input Status
Read Holding Registers
Read Input Registers
Force Multiple Coils
Preset Multiple Registers

The module offers considerable flexibility for Modbus master operation, allowing the ladder logic to select one of the following data types:

- Bit (packed 16 to a word)
- Word (16-bit register)
- Long (32-bit items as register pairs)
- Long Remote (32-bit items as single registers)

Note: Long data type implements each data unit as one pair of 16-bit registers (words). Each register contains two bytes. Long remote data type implements each data unit as one 32-bit register. Each register contains four bytes. The proper choice depends on the remote slave's Modbus implementation.

Example

The following table shows how the data types are implemented if a **write** function is selected and the item count is configured with a value of 10 (decimal):

Data Type	Register Type	Modbus Function	Number of Coils	Number of Bytes	Number of Registers	Number of words (16-bits) transferred
Bit	Coil	15	10	2	-	1
Word	Holding	16	-	20	10	10
Long	Holding	16	-	40	20	20
Long Remote	Holding	16	-	40	10	20

Note: The number of coils, bytes, and registers are part of the Modbus request (functions 15 and 16) according to the Modbus specification.

The following table shows how the data types are implemented if a **read** function is selected and the item count is configured with a value of 10 (decimal):

	0		()
Data Type	Register Type	Modbus Function	Number of Registers
Bit	Coil	1	10
Bit	Input	2	10
Word	Holding	3	10
Word	Input	4	10
Long	Holding	3	20
Long	Input	4	20
Long Remote	Holding	3	10
Long Remote	Input	4	10

Note: The number of registers is part of the Modbus request according to the Modbus specification.

Refer to the ladder logic section for your module for more information about the Modbus master block.

6 Accumulators

In This Chapter

The accumulators store the current amount of measured quantity for a meter channel. This section provides detailed information about the accumulators.

6.1 Accumulator Totalizer and Residue

The accumulators are expressed as the totalizer and residue parts. This implementation allows the accumulation of a wide range of increments, while keeping a high precision of fractional part with an approximately constant and small round off error.

The totalizer stores the integral part of an accumulator as a 32-bit (or split) integer. The residue is the fractional part (always less than 1.0) expressed as a 32-bit IEEE floating point.

The Total Accumulator is given by the formula:

ACCUMULATOR = TOTALIZER + RESIDUE

6.1.1 Example

If the meter monitor window shows the following values for the accumulators:

The total resettable accumulator 1 value (net) is 12.8031153.

The accumulator totalizer values can be configured to "split" with the low-order word rolling over from 9999 to 0000 at which time the high-order word is incremented. Refer to the AFC Manager (AFC Manager / Meter Configuration / Split Double Accumulators) to select this feature.

A 32-bit value is more suited to computation and has a greater range than a split value, whereas a split value is easier to read when it is represented as a pair of 16-bit numbers, as in a processor data file.

6.1.2 Accumulator Types

The module supports a total of 12 accumulators per meter channel divided into the following categories:

These 3 accumulator types are independent. For example, resetting a resettable accumulator does not affect the other accumulators.

For multiple-stream firmware (version 2.05 and later), each stream also has its own set of ten accumulators (six non-resettable and four resettable). Increments are applied both to the meter accumulators and to the accumulators for the active stream.

Non-Resettable Accumulators

The non-resettable accumulators are only reset when the accumulator rollover value is reached. The accumulator rollover value, and the accumulator unit must be configured using the AFC Manager. Refer to the AFC Manager User Manual for more information about this topic.

The module supports six non-resettable accumulators in order to show the measured quantity to be totalized:

- Non-resettable accumulator mass
- Non-resettable accumulator energy (Gas applications only)
- Non-resettable accumulator net
- Non-resettable accumulator gross
- Non-resettable accumulator gross standard (Liquid applications only). For Oil-Water Emulsion, this is non-resettable accumulator gross clean oil.
- Non-resettable accumulator water (Liquid applications only)

Refer to the Modbus Dictionary dialog box in AFC Manager for more information about the Modbus addresses for these registers.

Resettable Accumulators

The resettable accumulators are referred to as:

- Resettable Accumulator 1
- Resettable Accumulator 2
- Resettable Accumulator 3
- Resettable Accumulator 4

Configuring Resettable Accumulators

Resettable Accumulators are configured from the Resettable Accumulator Select dialog box. To open this dialog box, click the Resettable Accum button on the Meter Configuration dialog box.

Each Resettable Accumulator can be configured to represent a different quantity as follows:

Accumulator	Modbus address for accumulator select (Meter-relative)	Default Value
Resettable accumulator 1	136	Net (code 3)
Resettable accumulator 2	137	Gross (code 4)
Resettable accumulator 3	138	Gross Standard (code 5)
Resettable accumulator 4	139	Mass (code 1)

Valid Configuration Codes

The valid codes are:

Code	Quantity
0	None
1	Mass
2	Energy (Gas Only)
3	Net
4	Gross
5	Gross Standard (Liquid Only)
6	Water (Liquid Applications Only).

For example, moving a value of 4 to holding register 8136 will configure Meter 1's resettable accumulator 1 as "Gross Volume". Moving "0" to holding register 10138 configures Meter 2's Resettable Accumulator 3 to accumulate nothing (takes it out of service).

The resettable accumulators are reset when one of the following situations occur.

Reset from AFC Manager

You may reset any of the resettable accumulators using the AFC Manager (Meter Monitor):

Accumulators, Meter			×
⊙ <u>M</u> eter ○ <u>S</u> tream 1	🔶 Acti <u>v</u> e		
	Totalizer	Residue	Reset
Gross (MMCF)	0	0.3202758	
Net (MMCF)	12	0.8031153	
Energy (MBTU)	12848848	0.0742188	
Mass (Ib)	550099	0.1143188	
(1) Net (MMCF)	12	0.8031153	
(2) Gross (MMCF)	0	0.3202758	
(4) Mass (lb)	550099	0.1143188	
		<u>Apply</u>	<u>C</u> lose

Reset from Ladder Logic

The ladder logic may send a meter signals block to command one or more resettable accumulators to be reset. This feature is especially important for applications involving field installations that require shipping and/or receiving product batches of predetermined size. Refer to the Ladder Logic section for your module type for more information.

Reset Upon Archive Period End or Reset Upon Event

Use AFC Manager to configure the resettable accumulator to be reset when the archive period ends or when an event occurs. Refer to **Event Log** in the *AFC Manager User Guide* for more information on configuring and monitoring events.

🔁 An	chiv	e Options X
ũ		Period-select, hourly
1	\checkmark	Archive upon period end
2	$\overline{\checkmark}$	Archive upon event
3	Г	
4		Reset accumulator 1 upon period-end
5		Reset accumulator 2 upon period-end
6		Reset accumulator 3 upon period-end
7		Reset accumulator 4 upon period-end
8	\Box	Reset accumulator 1 upon event
9	\Box	Reset accumulator 2 upon event
10		Reset accumulator 3 upon event
11		Reset accumulator 4 upon event
12	Γ	
13	Γ	
14		
15	Γ	
		<u>C</u> ancel <u>O</u> k

Refer to Archives (page 53) for more information.

Reset When the Accumulator Rollover Value is Reached

The resettable accumulator is reset when the accumulator rollover value is reached. You must configure the accumulator rollover value using the AFC Manager software (Meter Configuration). Refer to the AFC Manager User Manual for more information about this subject.

For multiple-stream firmware (version 2.05 or later), resetting a resettable accumulator resets that accumulator for both the meter and for all its streams.

6.1.3 Archive Accumulators

The archive accumulators are part of the current archive (archive 0) data. These accumulators are automatically reset when a new archive is generated. The following Modbus holding registers are used:

	Daily Archive		Hourly Archive	
Meter	Accumulator: Totalizer	Accumulator: Residue	Accumulator: Totalizer	Accumulator: Residue
1	8890 to 8891	8892 to 8893	8894 to 8895	8896 to 8897
2	10890 to 10891	10892 to 10893	10894 to 10895	10896 to 10897
3	12890 to 12891	12892 to 12893	12894 to 12895	12896 to 12897
4	14890 to 14891	14892 to 14893	14894 to 14895	14896 to 14897
5	16890 to 16891	16892 to 16893	16894 to 16895	16896 to 16897
6	18890 to 18891	18892 to 18893	18894 to 18895	18896 to 18897
7	20890 to 20891	20892 to 20893	20894 to 20895	20896 to 20897
8	22890 to 22891	22892 to 22893	22894 to 22895	22896 to 22897

You can view the addresses, datum types and descriptions in the Modbus Dictionary dialog box.

You may configure the accumulator quantity to be used for each archive accumulator using the AFC Manager (Meter Configuration / Archive Config / Accumulator Select):

0	[none]
0	Mass
0	Energy
œ	Net volume
0	Gross volume
O	Gross standard volume
О	Water volume

6.1.4 Net Accumulator Calculation

The Net Accumulator Calculation depends on the product group (gas or liquid). For gas applications, the Net Accumulator is calculated as follows:

For liquid applications (all except Emulsion), the Net Accumulator is calculated as follows:

For liquid applications (Oil-Water Emulsion), the net accumulator is calculated as follows, using API ch 20.1:

6.1.5 Frequently Asked Questions

I need the accumulators to be reset upon period end. Which accumulator should my application use? Resettable Accumulator or Archive Accumulator?

You can use either one. The Archive Accumulators are reset every time a new archive is created and you configure whether or not the archive should be created upon period end and/or upon events.

There are some applications that may require the archives to be generated upon period end and upon event while the accumulators should be reset only upon period end. For these applications, you should consider the Resettable Accumulator (configured to be reset upon period end only) because the Archive Accumulators will also be reset when an event occurs.

7 Archives

In This Chapter

7.1 Archive Overview

An archive is a set of data that records relevant process values that occurred during a certain period of time (per meter channel). The archives are automatically generated by the module and no further action is required. The process values can include:

- Net flow rate (average)
- Total accumulator
- Temperature (average)
- Alarms occurred during the period

The process values will depend on the meter type and product group as listed later in this section.

Each archive contains two values that informs the period of time about that archive:

- opening timestamp = starting date and time for archive
- closing timestamp = ending date and time for archive

The example described in this chapter is of the default archive configuration as is present for a newly allocated meter. Version 2.01 of the firmware and AFC Manager allows the default configuration to be changed. Refer to Editing the Archive Structure.

7.1.1 Archive Generation

The archives can be generated during one of the following situations:

- Upon period end
- Upon event
- Upon processor command

Archives

You can configure if the archives should be generated upon period end and/or event using the AFC Manager (**Meter Configuration / Archive Config / Options**)

Refer to the AFC Manager User Manual for more information about this topic. By default the archives are generated upon period end and event.

If the archive is configured to be created upon period end, it will be periodically (daily or hourly) generated at the time configured by the End-of-day minute and End-of-hour minute parameters (**Project / Site Configuration**).

If the archive is configured to be created upon event, it will be generated every time an event occurs. For example, if an operator changes the orifice diameter for Meter 1, the module would automatically generate a new archive to save the relevant data to this point. Refer to this User Manual for the Events section for more information about events.

Note: Changing a meter type, product group, system of units, or primary input parameter will erase all archives for that meter.

7.1.2 Archive Types

The module supports two types of archives: hourly archives and daily archives:

Archive Type	Period	Period End	Number of 30-Word Archives Stored Locally
Hourly	60 minutes (1 hour)	Set by End-of-Hour Minute parameter	48
Daily	1440 minutes (1 day)	Set by End-of-Day Minute parameter	35

The Period End parameters must be set using the AFC Manager (Site Configuration). The default value is zero for both archive types which means that:

- Daily Archives are generated every day at midnight (00:00)
- Hourly Archives are generated every hour on the hour (1:00, 2:00, 3:00, 4:00)

For example, if the parameters are configured as follows:

End-of-day minute = 480

The daily archives would be created every day at 08:00.

End-of-hour minute = 30

The hourly archives would be created every hour at 1:30, 2:30, 3:30, 4:30, and so on.

7.1.3 Archive Order

An important concept regarding this topic is the archive order. Understanding this simple concept is essential when reading archive data (through the backplane or Modbus master). Each archive has a number (its "age") that labels its position in the archive queue. The following table shows the archive numbering scheme (both daily and hourly archives):

Archive Age	Register Types	Description
0	Holding Register	Current archive.
1	Input Register	Most recent archive
2	Input Register	Second most recent archive
3	Input Register	Third most recent archive
4	Input Register	Fourth most recent archive

The archive 0 is the current archive. Because its period has not been concluded its closing timestamp and values (such as accumulator, average temperature, etc...) will be continuously updated. After the period is over (or an event occurs depending on the archive configuration) the data in archive 0 will be saved as the "new" archive 1. The data in the "old" archive 1 will be saved as the new archive 2 and so forth.

The current archive is stored in the primary slave's holding register bank. The past archives are stored in the primary slave's input register bank.

The following illustration shows an example for hourly archives:

Where:

OT = Opening Time Stamp

CT = Closing Time Stamp

The previous figure shows an example where the hourly archives are configured to be generated upon period-end at the minute "0" (1:00, 2:00, 3:00, etc...). Therefore, at 09:59:59 the archive 0 (current archive) is just about to be saved as the "new" archive 1.

When the clock changes to 10:00:00 the following illustration shows how the latest four archives are modified:

Where:

OT = Opening Time Stamp

CT = Closing Time Stamp

7.1.4 Archive Options

The module also allows you to configure whether or not the resettable accumulator should be reset upon period end and/or event. Most applications will require the resettable accumulators to be reset just after the archive is generated. The AFC Manager (version 2.01.000 or later) supports this feature through the archive options window as shown in the following example:

🐉 Ar	chiv	re Options X
	Г	Period-select, hourly
1	☑	Archive upon period end
2	☑	Archive upon event
3	Γ	
4	Γ	Reset accumulator 1 upon period-end
5		Reset accumulator 2 upon period-end
6		Reset accumulator 3 upon period-end
7		Reset accumulator 4 upon period-end
8		Reset accumulator 1 upon event
9		Reset accumulator 2 upon event
10		Reset accumulator 3 upon event
11		Reset accumulator 4 upon event
12	-	
13	<u> </u>	
14		
15		
		<u>C</u> ancel <u>O</u> k

By default, the module is configured to generate archives upon period end and event. The module is not configured by default to reset the resettable accumulators upon period end.

7.1.5 Archive Locations

Click the Modbus Addresses button on the Archive Configuration dialog box to learn how to fetch an archive record of a specific age (procedure and Modbus location), and even the actual Modbus address of a specific file archived datum point (if you have highlighted the item in the archive record template).

The following table shows the current archive (Archive 0) location in the Primary Modbus Slave for each of the first 8 meters. These addresses refer to the holding register bank.

Meter	Start Daily Archive	End Daily Archive	Start Hourly Archive	End Hourly Archive
1	9900	9939	9950	9989
2	11900	11939	11950	11989
3	13900	13939	13950	13989
4	15900	15939	15950	15989
5	17900	17939	17950	17989

Archive 0 - Current Archives

Meter	Start Daily Archive	End Daily Archive	Start Hourly Archive	End Hourly Archive
6	19900	19939	19950	19989
7	21900	21939	21950	21989
8	23900	23939	23950	23989

Refer to the Modbus Dictionary dialog box for the current archive addressing.

The following table shows the past archives location in the Primary Modbus Slave for each of the first 8 meters. These addresses refer to the input register bank.

Archives 1 to n - Past Archives

Meter	Start Daily Archive	End Daily Archive	Start Hourly Archive	End Hourly Archive
1	0	1059	1060	2499
2	2500	3559	3560	4999
3	5000	6059	6060	7499
4	7500	8559	8560	9999
5	10000	11059	11060	12499
6	12500	13559	13560	14999
7	15000	16059	16060	17499
8	17500	18559	18560	19999

The default configuration sets 30 words per meter archive. For example, the Meter 1 daily archives are addressed as follows:

Daily Archive Number	Start Address	End Address	
1	0	29	
2	30	59	
3	60	89	
4	90	119	
35	1020	1049	

The Meter 1 hourly archives are addressed as follows:

Hourly Archive Number	Start Address	End Address	
1	1060	1089	
2	1090	1119	
3	1120	1149	
4	1150	1179	
48	2470	2499	

7.1.6 Editing the Archive Structure

Note: The features presented on this section are only available for AFC firmware version 2.01.000 or later. Please contact the tech support team for more information about the module upgrade.

For advanced applications, you can edit the archive contents, the record size, the order of the registers in the archive, and the archive accumulator quantity.

The Archive Configuration window (**Meter Configuration / Archive Config**) allows you to fully configure the meter archive (daily or hourly). The data to be inserted in the archive must be copied from the Dictionary Section on the right half of the window.

	Daily Hourly	C Select Dictionary Section
	······································	All
Record Size	Modbus Addresses	Reg Description <pre></pre>
Ofs Reg	Description	721 Stream 1: Analysis molar fraction, component 2
0+	Closing timestamp	722 Stream 1: Analysis molar fraction, component 3
2	Flowing period, fraction e-4	723 Stream 1: Analysis molar fraction, component 4
3	Cumulative meter alarms	724 Stream 1: Analysis molar fraction, component 5
4	Cumulative meter status	725 Stream 1: Analysis molar fraction, component 6
5	Event Number of last-written event	726 Stream 1: Analysis molar fraction, component 7
6+	Flowing period, seconds	727 Stream 1: Analysis molar fraction, component 8
8+	Opening timestamp	728 Stream 1: Analysis molar fraction, component 9
	Accumulator, archive period, daily, totalizer (net) (m3)	729 Stream 1: Analysis molar fraction, component 10
	Accumulator, archive period, daily, residue (net) (m3)	730 Stream 1: Analysis molar fraction, component 11
	Flow rate, net (m3/h)	731 Stream 1: Analysis molar fraction, component 12
	Process input, scaled float, temperature (°C)	732 Stream 1: Analysis molar fraction, component 13
	Process input, scaled float, pressure (kPag)	733 Stream 1: Analysis molar fraction, component 14
	Process input, scaled float, differential pressure (kPa) AGA 8, Relative density at reference	734 Stream 1: Analysis molar fraction, component 15
	AGA 8, Relative density at reference	735 Stream 1: Analysis molar fraction, component 16
	AGA 8, Compressibility, flowing	736 Stream 1: Analysis molar fraction, component 17
	AGA 8, Supercompressibility, Fpv	737 Stream 1: Analysis molar fraction. component 18
		<pre></pre>

Refer to the AFC Manager User Manual for more information about this topic.

The module reserves 1060 words for daily archives and 1440 words for hourly archives. Because the default configuration sets the record size for 30 words, it means that the maximum (default) number of archives per meter channel is 35 daily archives and 48 hourly archives. However, because you can change the number of words per archive, the actual maximum number of archives per meter channel will depend on the configured number of words per archive as follows:

Number of Words per Archive	Number of Daily Archives	Number of Hourly Archives
10	106 daily archives	144 hourly archives
20	53 daily archives	72 hourly archives
30	35 daily archives	48 hourly archives
40	26 daily archives	36 hourly archives

You may also configure the accumulator type for each archive. You must configure one of the following options:

- Mass
- Energy (Gas product only)
- Net Volume
- Gross Volume
- Gross Standard
- Water Volume (Liquid product only)

The following topics show the default archive structure when you configure a new meter. You can edit this structure according to your own requirements.

7.1.7 Extended Archives

This feature is only supported on firmware versions 2.01.000 or newer, and requires a Compact Flash card to be installed.

The module supports the extended archive feature that allows you to configure more archives than the regular 35 daily archives and 48 hourly archives. The module supports the following number of extended archives:

	Daily Archives	Hourly Archives
Max Number of Archives	350 (version 2.04 and earlier)	1260 (version 2.04 and earlier)
	1440 (version 2.05 and newer)	1440 (version 2.05 and newer)

Refer to Extended File Size entry on the **Archive Configuration** window for more information.

Note: The maximum number of extended archives is not dependent on the number of words per archive. Extended archives are stored on a Compact Flash card which must be installed for Extended Archive configuration to be effective.

Retrieving Extended Archives

The module implements an easy way to retrieve extended archives from the Modbus database. To learn how to retrieve extended archives, click Archive Config on the Meter Configuration dialog box, and then click Modbus Addresses.

For each archive file the module reserves a block of 50 Input registers to hold the "selected Archive", as listed in the following table.

Meter	Daily Archive Start (Input Register)	Daily Archive End (Input Register)	Hourly Archive Start (Input Register)	Hourly Archive End (Input Register)
1	60000	60049	60050	60099
2	60100	60149	60150	60199
3	60200	60249	60250	60299
4	60300	60349	60350	60399
5	60400	60449	60450	60499
6	60500	60549	60550	60599
7	60600	60649	60650	6069 9
8	60700	60749	60750	60799

Meter	Daily Archive Start (Input Register)	Daily Archive End (Input Register)	Hourly Archive Start (Input Register)	Hourly Archive End (Input Register)
9	60800	60849	60850	60899
10	60900	60949	60950	60999
11	61000	61049	61050	61099
12	61100	61149	61150	61199
13	61200	61249	61250	61299
14	61300	61349	61350	61399
15	61400	61449	61450	61499
16	61500	61549	61550	61599

Note: Meters 9 through 16 are only available for the PTQ-AFC and MVI56-AFC modules.

The Selected Archive start address can be calculated as:

Daily Archive Start Address = 60000 + (Meter Number -1) * 100

Hourly Archive Start Address = 60000 + (Meter Number -1) * 100 + 50

The Selected Archive is continuously maintained to be a copy of the archive record having the age given in the corresponding "Archive Select" holding register, as listed in the following table. This means that the Selected Archive changes whenever either (a) the age in the Open Archive Select register is changed or (b) when the posting of a new archive causes the ages of all archives to be increased by 1.

Meter	Open Daily Archive	Open Hourly Archive
	Select Address	Select Address
1	8300	8301
2	10300	10301
3	12300	12301
4	14300	14301
5	16300	16301
6	18300	18301
7	20300	20301
8	22300	22301
9	24300	24301
10	26300	26301
11	28300	28301
12	30300	30301
13	32300	32301
14	34300	34301
15	36300	36301
16	38300	38301

Note: Meters 9 through 16 are only available for the PTQ-AFC and MVI56-AFC modules.

Use the following procedure to retrieve extended archives:

- 1 Copy the archive age to the correct Open Archive Select register.
- 2 Read the archive data from the 60000-range input addresses.

Example

To read Meter 2 Hourly Archive Number 277:

- 1 Write a value of 277 to Modbus Holding Register 10301.
- 2 Read the archive record data starting at input register 60150.

Note: This procedure can also be used to retrieve regular archives.

7.1.8 Archive Reports

Use the Archive Monitor in AFC Manager to generate an archive report or print it to a local printer. You can also save the archive report in two formats:

- Text
- Comma Separated

A report saved in **text format** (.log) contains a complete archive description. The following illustration shows an example of a text format report.

AFC-56(16) [2.02] Daily Archive Site Name: MVI Flow Station Project: AFC File: _\$\AFC-56(16) Date: 4/15/2004 9:23:52 AM Meter 16: Tag Archive M01 33 Archive Closing timestamp Flowing period, fraction e-4 Cumulative meter alarms Cumulative site status Event Number of last-written event Flowing period, seconds Opening timestamp Accumulator, archive period, daily, totalizer (m3) Accumulator, archive period, daily, residue (m3) Flow rate, net (m3/h) Flow rate, net (m3/h) Process input, scaled float, temperature (°C) Process input, scaled float, dif prs / flow rate / freq (kPa) AGA 8, Relative density at reference AGA 8, Compressibility at reference AGA 8, Compressibility, Flowing AGA 8, Supercompressibility, Fpv AGA 3, Velocity of approach factor AGA 3, Coefficient of discharge <not used> 2004-04-17.01:49:42 ōoooh 00h 160 16 2004-04-17.01:49:26 0 0.4645103 101.4091 50 0.5548 0.998 0.9959 1.001 0.9017 Alarm Bits rm Bits
0 Temperature input out of range
1 Pressure input out of range
2 Differential pressure input out of range
4 Water content input out of range
5 Differential pressure low
7 Accumulator overflow
8 Orifice Characterization error
9 Analysis total zero
10 Analysis total not normalized
11 Compressibility calculation error
12 API calc error - density correction
13 API calc error - vapour pressure
15 API calc error - Cpl bit bit bit bit bit bit bit bit bit Status Bits bit 11 Meter was enabled bit 12 Backplane communication fault bit 13 Measurement configuration changed bit 14 Power up bit 15 Cold start

Saving the archive report in **comma-separated** (.csv) format allows it to be imported to an Excel® spreadsheet. The following example shows a portion of the .CSV report imported into Excel:

	A	В	C	D
1	AFC-71(8) [2.02] Daily Archive			
2	Date:	3/30/2004 11:21		
3	Site Name:	MVI Flow Station		
4	Project:	AFC		
5	Meter 2:			
6	Tag	M01		
7				
8	Archive	Current	1	2
9				
10	Closing timestamp	2004-03-30.08:36:54	2004-03-30.00:00:00	2004-03-29.00:00:00
11	Flowing period, fraction e-4	1	1	1
12	Cumulative meter alarms	0002h	0002h	0002h
13	Cumulative site status	00h	00h	00h
14	Event Number of last-written event	474	474	474
15	Flowing period, seconds	31014	86400	86400
16	Opening timestamp	2004-03-30.00:00:00	2004-03-29.00:00:00	2004-03-28.00:00:00
17	Accumulator, archive period, daily, totalizer (m3)	7	20	20
18	Accumulator, archive period, daily, residue (m3)	0.3965147	0.6051551	0.6052574
19	Flow rate, net (m3/h)	0.8572201	0.8571935	0.8571963
20	Process input, scaled float, temperature (°C)	49.99487	50.03679	50.03685
21	Process input, scaled float, pressure (kPag)	1	1	1
22	Process input, scaled float, dif prs / flow rate / freq (kPa)	11.00041	11.00247	11.00249
23	Process input, scaled float, flowing density (kg/m3)	700.3123	700.6372	700.6348
24	API 2540, Density at reference (kg/m3)	730.3	730.7	730.7
25	API 2540, Temperature correction factor, CTL	0.9592	0.9596	0.9596
26	API 2540, Pressure correction factor, CPL	0.9999	1.0001	1.0001
27	AGA 3, Velocity of approach factor	1	1.0003	1.0003
28	AGA 3, Expansion factor	0.9999	1.0001	1.0001
29	AGA 3, Coefficient of discharge	0.5964	0.5966	0.5966
30			1	

7.1.9 Archive Monitor

The Archive Monitor dialog box opens when you open the Monitor menu, and then choose Archive.

The module can archive data for each meter channel. The archives are periodically generated according to the period end defined in the Site Configuration.

There are hourly archives (48 archives) and daily archives (35 archives).

For example the daily archives will be stored as:

- Archive 0 = current archive
- Archive 1 = Archive created yesterday
- Archive 2 = Archive created 2 days ago
- Archive 3 = Archive created 3 days ago

And so on.

Select Meter Select Archives Meter 1 Image: Organized Descent Archives	to 4		emove Resul	t
Description \ Age	Current	1	2	3
Closing timestamp	2007-07-16.14:36:46	<clock not="" set=""></clock>	<clock not="" set=""></clock>	<clock not="" set=""></clock>
Flowing period, fraction e-4	0	0	0	0
Cumulative meter alarms	0020h	0000h	0000h	0000h
Cumulative meter status	01h	00h	00h	00h
Event Number of last-written event	0	0	0	0
Flowing period, seconds	0	0	0	0
Opening timestamp	<clock not="" set=""></clock>	<clock not="" set=""></clock>	<clock not="" set=""></clock>	<clock not="" set=""></clock>
Accumulator, archive period, daily, totalizer (net) (MMCF)	0	0	0	0
Accumulator, archive period, daily, residue (net) (MMCF)	0	0	0	0
Flow rate, net (MMCF/d)	0	0	0	0
Process input, scaled float, temperature (*F)	0	0	0	0
Process input, scaled float, pressure (psig)	0	0	0	0
K-factor (pul/CF)	24	0	0	0
Meter factor	1	0	0	0
AGA 8, Relative density at reference	0.5614	0	0	0
AGA 8, Compressibility at reference	0.998	0	0	0
AGA 8, Compressibility, flowing	0.997	0	0	0
AGA 8, Supercompressibility, Fpv	1.0005	0	0	0
<not used=""></not>		0	0	0
				•
Add the selected archives to the grid. After the reading	is completed, scrol	the grid to view t	hem.	

Control	Description
Select Meter	Select the meter number
Select Archives	Select the archive type
Ages	Select the first archive to be added or removed
То	Select the last archive to be added or removed
Add	Add the selected archives to the grid, fetching as necessary
Remove	Remove the selected archives from the grid
Connect	Connect to the module, if necessary
Upd Current	Update the current archive
Update All	Update all archives in the grid
Clear	Clear the grid
Log	Create a log file containing the archived data
Print	Print the archives to the local printer
Plot	Display a plot of two datum points from archives in the grid

-56(16) Daily Archive Site Name: MVI Flow Station Project: AFC	Date: 16-09-2002 16:26:41
Meter 1:	
Tag	M01
Archive	0
Closing timestamp of archive	2002-04-27.23:59:08
Opening timestamp of archive	2002-04-27.00:00:02
Status bitmap (details below)	00h
Alarms bitmap (details below)	0000h
Flowing period	86346
Event counter	53
Net accumulator (x f3)	604
Net accumulator residue (x f3)	0,6703186
Net flow rate (x f3/h)	40247,93
Temperature (°F)	14,99997
Pressure (psig)	999,9995
Differential pressure (hw)	21,99997
Relative density (60°F/60°F)	0,7404
Reference compressibility	0,9989
Flowing compressibility	0,9051
Fpv	1,0505
Velocity of approach factor Ev	1,0328
Expansion factor Y	0,9997
Discharge coefficient	0,6043
Alarm Bits	
bit 0 Temperature input out of range	-
bit 1 Pressure input out of range	-
bit 2 Diff. pressure input out of range	-
bit 3 Flowing density input out of range	-
bit 4 Water content input out of range	-
bit 5 Diff. pressure low	-
bit 8 Orifice characterization error	-
bit 9 Analysis total zero	-
bit 10 Analysis total not normalized	-
bit 11 AGA8 calculation error bit 12 API calculation error, density correc	-
bit 13 API calculation error, density correct bit 13 API calculation error, Ctl	
bit 14 API calculation error, vapor pressure	
bit 15 API calculation error, Cpl	-
Status Bits	
bit 11 Meter was enabled	_
bit 12 Backplane communication fault	_
bit 13 Measurement configuration changed	_
bit 14 Power up	_
bit 15 Cold start	_

The following shows an example of an archive report generated by the AFC Manager:

AFC-56(16) Daily Archive Site Name: MVI Flow Station Project: AFC	Date: 16-09-2002 16:26:41		
Meter 1:			
Tag	M01		
Archive	1		
5 1	2002-04-27.00:00:02		
	2002-04-26.23:59:42		
)0h		
	0000h		
Flowing period	20		
Event counter	53		
	234		
	0,1092186		
	40248,01		
	15		
	1000		
	22		
	0,7404		
	0,9989		
	0,9051		
	1,0505		
	1,0328		
*	0,9997 0,6043		
Discharge coefficient	0,0043		
Alarm Bits			
bit 0 Temperature input out of range	-		
bit 1 Pressure input out of range	-		
bit 2 Diff. pressure input out of range	-		
bit 3 Flowing density input out of range	-		
bit 4 Water content input out of range	-		
bit 5 Diff. pressure low	-		
bit 8 Orifice characterization error	-		
bit 9 Analysis total zero	-		
bit 10 Analysis total not normalized	-		
bit 11 AGA8 calculation error	-		
bit 12 API calculation error, density correction) –		
bit 13 API calculation error, Ctl	-		
bit 14 API calculation error, vapor pressure	-		
bit 15 API calculation error, Cpl	-		
Status Bits			
bit 11 Meter was enabled	-		
bit 12 Backplane communication fault	-		
bit 13 Measurement configuration changed	-		
bit 14 Power up	-		
bit 15 Cold start	-		

AFC-56(16) Daily Archive Date: 16-09-2002 16:26:44 Site Name: MVI Flow Station Project: AFC Meter 1: Taq M01 Archive 2 Closing timestamp of archive 2002-04-26.23:59:42 2002-04-26.06:16:34 Opening timestamp of archive Status bitmap (details below) 60h Alarms bitmap (details below) 0000h Flowing period 1019877652 Event counter 53 174811 Net accumulator (x f3) Net accumulator residue (x f3) 0,9399567 Net flow rate (x f3/h) 40247,88 Temperature (°F) 15,00736 Pressure (psig) 1000,416 Differential pressure (hw) 22,00479 Relative density (60°F/60°F) 0,7404 Reference compressibility 0,9989 Flowing compressibility 0,9053 Fpv 1,0506 Velocity of approach factor Ev 1,0331 Expansion factor Y 1,0001 Discharge coefficient 0,6045 Alarm Bits bit 0 Temperature input out of range bit 1 Pressure input out of range bit 2 Diff. pressure input out of range bit 3 Flowing density input out of range bit 4 Water content input out of range _ bit 5 Diff. pressure low _ bit 8 Orifice characterization error bit 9 Analysis total zero bit 10 Analysis total not normalized bit 11 AGA8 calculation error bit 12 API calculation error, density correctio bit 13 API calculation error, Ctl bit 14 API calculation error, vapor pressure bit 15 API calculation error, Cpl Status Bits bit 11 Meter was enabled _ bit 12 Backplane communication fault _ bit 13 Measurement configuration changed yes bit 14 Power up yes bit 15 Cold start

AFC-56(16) Daily Archive Date: 16-09-2002 16:26:51 Site Name: MVI Flow Station Project: AFC Meter 1: Taq M01 Archive 3 2002-04-26.06:16:34 Closing timestamp of archive 2002-04-26.06:14:08 Opening timestamp of archive Status bitmap (details below) 20h Alarms bitmap (details below) 0000h Flowing period 146 50 Event counter Net accumulator (x f3) 1633 Net accumulator residue (x f3) 6,271362E-02 Net flow rate (x f3/h) 40248,02 14,99999 Temperature (°F) Pressure (psig) 1000,002 Differential pressure (hw) 22,00003 Relative density (60°F/60°F) 0,7404 Reference compressibility 0,9989 Flowing compressibility 0,9051 Fpv 1,0505 Velocity of approach factor Ev 1,0328 Expansion factor Y 0,9997 Discharge coefficient 0,6043 Alarm Bits bit 0 Temperature input out of range bit 1 Pressure input out of range bit 2 Diff. pressure input out of range bit 3 Flowing density input out of range bit 4 Water content input out of range _ bit 5 Diff. pressure low bit 8 Orifice characterization error bit 9 Analysis total zero bit 10 Analysis total not normalized bit 11 AGA8 calculation error bit 12 API calculation error, density correctio bit 13 API calculation error, Ctl bit 14 API calculation error, vapor pressure bit 15 API calculation error, Cpl Status Bits bit 11 Meter was enabled _ bit 12 Backplane communication fault _ bit 13 Measurement configuration changed ves bit 14 Power up _ bit 15 Cold start

8 Events

In This Chapter

*	The Event Log
*	Event Log structures70
*	Event ld Tag71
*	Event-triggered archives and accumulator resets72
*	Period-end events72
*	Loggable events
*	Special events
*	Site Datum Point events
*	Meter Datum Point events75
*	Stream Datum Point events77
*	"Rkv" notes
*	Event numbers and Event Log Download79

8.1 The Event Log

An "event" is any occurrence that may affect the manner in which, or whether, measurement is performed. Events include, for example:

- Any change to a sealable parameter.
- Power-up (product may have been lost during the power-down period).
- A change in PLC operating mode (programming changes may alter measurement).
- A download of the event log (for audit trail purposes).

The Event Log occupies a block of 16000 Input registers in the Modbus table starting at address 40000 and proceeding through address 55999. It consists of a 5-register "header" at address 40000 followed by 1999 8-register "event" records starting at address 40008. As they are Input registers (read with Modbus function code 4), no part of the Event Log can be written from outside the module, but it is maintained exclusively by the AFC firmware.

As events occur they are recorded in the Log, which acts as a circular file. Each new event record overwrites the oldest one, hence the log stores up to 1999 of the most recent events. As each record is written the values in the header are updated to reflect the new status of the log.

Auditors may require the Log to be "downloaded" from time to time; events are read from the module and stored in a more permanent database, and the events so copied and archived are marked in the module as "downloaded".

If all record positions contain events that have not yet been downloaded, the log is full. In this case, the handling of a new event depends on the value of the "Event log unlocked" site option:

- If the option is set, then the log-full condition is ignored and the new event overwrites the oldest one. Since the overwritten event was never downloaded, it is permanently lost.
- If the option is clear, then the Event Log is "locked", and the new event is rejected if possible and otherwise ignored. Controllable events, that is, changes to sealable parameters, are not allowed to occur; such datum points remain unchanged retaining their current values and a Modbus command that attempts such a change receives an "illegal data" exception response. Uncontrollable events, such as PLC mode change, are simply not recorded. The Log must be downloaded in order to unlock it for further events.

8.2 Event Log structures

The Event Log header contains housekeeping information for maintaining the Log. Its layout is:

Address	Description			
40000	Number of records maximum (== 1999)			
40001	Next new record position (0 thru maximum-1)			
40002	Next new event number (0 thru 65535, wrapping to 0)			
40003	Oldest event number on file			
40004	Oldest event number on file not yet downloaded			
40005-40007	[reserved]			
Each event record is an 8-register quantity laid out as four 32-bit items (big- endian):				
Registers	Contents			
0 to 1	Event Id Tag (page 71)			
2 to 3	Timestamp of event			
	In our standard "packed bit-field" format.			
4 to 5	Old item value			
	For a Datum Point event, format depends on the "datum type" field of the Event Id Tag.			
6 to 7	New item value			
	For a Datum Point event, format depends on the "datum type" field of the Event Id Tag.			

Each value is right-justified in its field and sign-extended if necessary.

8.3 Event Id Tag

This 32-bit field has the following structure:

Bits	Ν	Meaning			
31	1	0 Special,	1 Datum Point (e.g. sealable parameter)	
		If this bit is clear, then bits 19-00 contain a value from the Special tag list below; if the bit is set, then bits 19-00 have the interpretati given here.			
30	1	PLC offline	e; timestamp ma	y not be accurate	
		This bit may also be set for a Special event.			
29	1	[reserved]			
28 to 24	5	Meter num	nber, or 0 for Site	9	
		This field may also be set for a Special event.			
23 to 20	4	[Meter] Stream number or 0; [Site] 0 This field may also be set for a Special event.			
19 to 16	4	Datum typ	e:		
		Value	Mnemonic	Format	
		0	Ubyt	Unsigned byte	
		1	Usht	Unsigned short integer	
		2		[reserved]	
		3	Ulng	Unsigned long integer	
		4	Sbyt	Signed byte	
		5	Ssht	Signed short integer	
		6		[reserved]	
		7	SIng	Signed long integer	
		8	Bbyt	Bitmap (up to 8 bits)	
		9	Bsht	Bitmap (up to 16 bits)	
		10	Bm24	Bitmap (up to 24 bits)	
		11	Blng	Bitmap (up to 32 bits)	
		12	Bool	Boolean (value 0 or 1)	
		13	DiBy	Dibyte (both high and low)	
		14	B448	Bitfield nybble/nybble/byte	
		15	Flot	Floating point	
15 to 12	4	[reserved]			
11 to 08	4	Group code			
		This value numbers.	is one of the "m	easurement configuration changed" bit	
07 to 04	4	Subgroup	code		
		This value is the ordinal number (starting at 0) of the subgroup of parameters in the specified group.			
03 to 00	4	Subgroup	Subgroup item code		
		Since a parameter subgroup may contain more than one item, this value identifies the particular item; items are numbered from 0.			

8.4 Event-triggered archives and accumulator resets

Each archive file (two for each meter) contains an Archive Options bitmap whose configuration specifies the actions to be scheduled (write archive and/or reset resettable accumulator(s)) when an event occurs (daily or hourly period-end, or most loggable events). Archives and/or resets are scheduled only for enabled meters (with one important clarification; see "Rkv" notes (page 79)). The actions to be taken upon period-end and those to be taken upon loggable events are configured separately.

Several archive/reset-triggering events can occur simultaneously. In such cases the archive or reset occurs only once (an archive is written only when archivable data has been accumulated for at least one meter scan; additional resets of already-reset accumulators have no effect).

Scheduled accumulator resets are performed at the top of the meter scan. This permits their final values to be inspected/fetched/archived while the AFC rotates its scan among the other meters.

Scheduled archives are written at the top of the meter scan, at its bottom, or between successive scans, depending on the nature of the triggering event. Archives written at the top of the scan are written before any accumulator resets.

8.5 Period-end events

A "period-end" event is detected by the wallclock. There are two such:

- a) "End-of-hour" occurs when the minute of the hour steps into the "End-ofhour minute" of Site Configuration.
- b) "End-of-day" occurs when the minute of the day steps into the "End-of-day minute" of Site Configuration.

A wallclock change that skips forward over an end-of-period minute will cause that period-end to be missed, and a change that skips backward over that minute will cause that period-end to be repeated, so wallclock adjustments should be performed at times well-removed from either end-of-period minute.

Though a period-end event is not recorded in the event log, it does cause archives and resets to be scheduled for all enabled meters according to their configured "period-end" Archive Options. Archives and resets scheduled by period-end are delayed in their action until at least one meter scan has occurred after the event (the archive data accumulation that takes place at the end of the meter scan also records the latest timestamp, so the written archive then reflects the fact that the period-end has occurred).
8.6 Loggable events

The tables below give full details of all events that are recorded in the Event Log.

For the Special events (page 74), columns are:

Тад	Numeric value that identifies the event.				
Rkv	Effect on archives and accumulator resets (see next).				
Description	Lists:				
	The event name, identifying its triggering condition.				
	Contents and meaning of the old and new value fields.				
	Relevant additional information.				

For the Datum Point (page 75, page 75, page 77) events, columns are:

Grup	Group code.
Sbgp	Subgroup code.
Item	Item code.
Dtyp	Datum type code (mnemonic).
Rkv	Effect on archives and accumulator resets (see next).
Datum point	The corresponding writable Modbus point.

In these tables, the "Rkv" columns specify how archives and accumulator resets are scheduled upon occurrence of the corresponding loggable events.

Column values are:

Value	Meaning
*	Upon this event archives and resets are scheduled according to the configured "event" Archive Options, provided that the applicable meter(s) is(are) enabled. Applicable meters depend upon the event class:
	(a) Special (non-meter-specific) and Site Datum Point events:
	All meters.
	(b) Meter events (including meter-specific Specials):
	The addressed meter.
	(c) Stream events:
	The addressed meter, provided that the addressed stream is active.
	Scheduled archives are always written before completing any change to data or module state implied by the event; this ensures that the data contributing to an archive is limited to that which was available before the event.
-	This event has no effect on archives and resets.
(n)	Upon this event archives and resets are scheduled as for "*", modified by the conditions and actions given in "Note (n)" in "Rkv" notes (page 79).

8.7 Special events

Tag	Rkv	Description
0	-	Never Used
		Value: Always 0.
		Notes: This entry in the Event Log has never been written.
		The number of such entries starts at 1999 upon cold start and decreases as events are written until none remain, after which oldest events are overwritten with new ones.
1	-	Event Log Download
		Value: Number of last-downloaded event.
		Notes: Triggered by a purge of the Event Log, which marks older events as available to be overwritten by new ones.
2	-	Cold Start
		Value: Always 0.
		Notes: This event is obsolete and is never written.
3	(1)	Power-Up
		Value: "Old" value is the last-saved wallclock from the previous session; "new" value is always 0 (clock not yet set).
		Notes: The last event written upon restart of the application and before entering the meter scan. This event may be preceded by Checksum Alarm and/or PLC Mode Change events.
4	-	PLC Mode Change
		Value: PLC mode (0 on line, 1 off line).
		Notes: Logs changes to PLC connectivity as reported by the backplane procedures. Typically caused by switching the PLC between "run" and "program" modes.
5	-	Checksum Alarm
		Value: Checksum alarm word (datum type "Bsht").
		Notes: Logs changes to the checksum alarm bitmaps.
		Includes site/meter identification (bits 28-24).
		Upon power-up:
		Written automatically upon power up when a checksum failure is detected. In this case the event is written even if the bitmap does not change, such as when an affected bit is already set from a previous failure that was never cleared.
		Upon Modbus write to the bitmap:
		Records changes to the bitmap only, typically when clearing bits, though setting bits is also permitted.
6	(2)	Wallclock Change
		Value: Wallclock (packed bitfields).
		Notes: Triggered when the wallclock is set for the first time, or when it is reset to a value that differs from its current value by five minutes or more. These two cases can be distinguished by the "old value" in the event entry: for the initial setting this value is zero ("clock not set").
7	*	Stream Select
		Value: Stream number.
		Notes: Triggered by a "select active stream" meter signal.
		Includes meter identification (bits 28-24).

Grup	Sbgp	ltem	DТур	Rkv	Data point
0	0	0	Bsht	(3)	Site options
1					Site parameter value
	0	0	Flot	*	Barometric pressure
8	n	0	Usht	-	Arbitrary event-logged value "n" ("n" = 0 thru 9)
15					PLC image address (Quantum/Unity platform only)
	0	0	Usht	*	Supervisory, get
	1	0	Usht	*	Supervisory, put
	2	0	Usht	*	Wallclock, get & put
	3	0	Usht	*	Modbus gateway, get & put
	4	0	Usht	*	Modbus pass-thru, put
	5	0	Usht	*	Modbus master, get & put

8.8 Site Datum Point events

8.9 Meter Datum Point events

Grup	Sbgp	ltem	DTyp	Rkv	Data point
0	0				Process input calibration
		0	Flot	*	Temperature
		1	Flot	*	Pressure
		2	Flot	*	Primary input
		3	Flot	*	Flowing density
		4	Flot	*	Water content
0	1				Process input alarm
		0	Flot	-	Temperature range
		1	Flot	-	Pressure range
		2	Flot	-	Primary input range
		3	Flot	-	Flowing density range
		4	Flot	-	Water content range
1	0				Meter classification
		0	Bsht	*	Meter device and engineering units
		1	Usht	*	Product group
2					Reference conditions
	0	0	Flot	*	Temperature
	1	0	Flot	*	Pressure
3					Meter options
	0	0	Blng	*	Calculation options
	1	0	Blng	(4)	Control options
4					Input scaling
	0				Temperature
		0	Flot	*	Range low end
		1	Flot	*	Range high end
		2	Flot	*	Default
		3	Sbyt	*	Module id code
	1				Pressure

Grup	Sbgp	ltem	DTyp	Rkv	Data point
		0	Flot	*	Range low end
		1	Flot	*	Range high end
		2	Flot	*	Default
		3	Sbyt	*	Module id code
	2				Primary input
		0	Flot	*	Range low end
		1	Flot	*	Range high end
		2	Flot	*	Default
		3	Sbyt	*	Module id code
	3				Flowing density
		0	Flot	*	Range low end
		1	Flot	*	Range high end
		2	Flot	*	Default
		3	Sbyt	*	Module id code
	4				Water content
		0	Flot	*	Range low end
		1	Flot	*	Range high end
		2	Flot	*	Default
		3	Sbyt	*	Module id code
5	0	0	Bm24	*	Analysis component selection map
6	0	0	Ulng	*	Pulse input rollover
7			Units		
	0	0	B448	*	Primary input (period, quantity, units)
	1	0	Ubyt	*	Mass flow rate period
	2	0	Ubyt	*	Mass flow rate units
	3	0	Ubyt	*	Mass accumulator units
	4	0	Ubyt	*	Energy flow rate period
	5	0	Ubyt	*	Energy flow rate units
	6	0	Ubyt	*	Energy accumulator units
	7	0	Ubyt	*	Volume flow rates period
	8	0	Ubyt	*	Volume flow rates units
	9	0	Ubyt	*	Volume accumulators units
8			, ,		Accumulator rollovers
	0	0	Ulng	*	Mass
	1	0	Ulng	*	Energy
	2	0	Ulng	*	Volumes
9		-			Meter parameter value
	0	0	Flot	*	Orifice plate measurement temperature
	1	0	Flot	*	Orifice plate measured diameter
	2	0	Flot	*	Orifice plate coefficient of thermal expansion
	3	0	Flot	*	Meter tube measurement temperature
	4	0	Flot	*	Meter tube measured diameter
	5	0	Flot	*	Meter tube coefficient of thermal expansion
	6	0	Flot	*	Primary input flow threshold
	0	U	1 101		

Grup	Sbgp	ltem	DTyp	Rkv	Data point
	7	0	Flot	*	Primary input alarm threshold
	8	0	Flot	*	V-cone/Wedge coefficient of discharge
10					[reserved]
11	0				Densitometer
		0	Usht	*	Densitometer type
		1	Flot	*	Calibration temperature
		2	Flot	*	Calibration pressure
		3	Flot	*	Calibration constant K0
		4	Flot	*	Calibration constant K1
		5	Flot	*	Calibration constant K2
		6	Flot	*	Calibration constant 6
		7	Flot	*	Calibration constant 7
		8	Flot	*	Calibration constant 8
		9	Flot	*	Calibration constant 9
		10	Flot	*	Calibration constant 10
		11	Flot	*	Calibration constant 11
		12	Flot	*	Calibration constant 12
		13	Flot	*	Calibration constant 13
		14	Flot	*	Calibration constant 14
		15			PLC image address (Quantum/Unity platform only)
	0	0	Usht	*	Meter process input &c, get
	1	0	Usht	*	Meter results, put
	2	0	Usht	*	Meter archive fetch, put

8.10 Stream Datum Point events

Grup	Sbgp	ltem	DTyp	Rkv	Data point
0	0	0	Bsht	*	Stream options
1					Stream parameter value
	0	0	Flot	*	Default relative density (gas) at reference
	1	0	Flot	*	Viscosity
	2	0	Flot	*	Isentropic exponent
	3	0	Flot	*	Default Fpv
	4	0	Flot	*	K/meter factor
	5	0	Flot	*	Default energy content
	6	0	Flot	*	Default reference density (liquid)
	7	0	Flot	*	Default vapor pressure
	8	0	Flot	*	Water density at API reference
	9	0	Flot	*	Default Ctl
	10	0	Flot	*	Default Cpl
	11	0	Flot	*	Shrinkage factor
	12	0	Flot	*	Precalculated alpha
2	0				Meter factor curve

Grup	Sbgp	ltem	DТур	Rkv	Data point
		0	Flot	*	Datum point 1, meter factor
		1	Flot	*	Datum point 1, flow rate
		2	Flot	*	Datum point 2, meter factor
		3	Flot	*	Datum point 2, flow rate
		4	Flot	*	Datum point 3, meter factor
		5	Flot	*	Datum point 3, flow rate
		6	Flot	*	Datum point 4, meter factor
		7	Flot	*	Datum point 4, flow rate
		8	Flot	*	Datum point 5, meter factor
		9	Flot	*	Datum point 5, flow rate
3	0				Analysis mole fraction
					** Because the item code extends into the subgroup field, this can be the only subgroup of group 3 ! (Pending any future reformat of the Event Id Tag.)
		0	Usht	(5)	Component 1, scaled molar fraction
		1	Usht	(5)	Component 2, scaled molar fraction
		2	Usht	(5)	Component 3, scaled molar fraction
		3	Usht	(5)	Component 4, scaled molar fraction
		4	Usht	(5)	Component 5, scaled molar fraction
		5	Usht	(5)	Component 6, scaled molar fraction
		6	Usht	(5)	Component 7, scaled molar fraction
		7	Usht	(5)	Component 8, scaled molar fraction
		8	Usht	(5)	Component 9, scaled molar fraction
		9	Usht	(5)	Component 10, scaled molar fraction
		10	Usht	(5)	Component 11, scaled molar fraction
		11	Usht	(5)	Component 12, scaled molar fraction
		12	Usht	(5)	Component 13, scaled molar fraction
		13	Usht	(5)	Component 14, scaled molar fraction
		14	Usht	(5)	Component 15, scaled molar fraction
		15	Usht	(5)	Component 16, scaled molar fraction
		16	Usht	(5)	Component 17, scaled molar fraction
		17	Usht	(5)	Component 18, scaled molar fraction
		18	Usht	(5)	Component 19, scaled molar fraction
		19	Usht	(5)	Component 20, scaled molar fraction
		20	Usht	(5)	Component 21, scaled molar fraction
		21	Usht	(5)	Component 22, scaled molar fraction
		22	Usht	(5)	Component 23, scaled molar fraction
		23	Usht	(5)	Component 24, scaled molar fraction

8.11 "Rkv" notes

- 1 Archives (only, not resets) are forced regardless of configuration, capturing any unarchived data from the previous session.
- 2 Archives and resets are scheduled (immediately, without a "period-end" delay) only for the initial setting of the wallclock; a "five-minute" event causes no scheduling. This ensures capture of any flow that has occurred prior to the initial clock-set.
- **3** Event occurs only when one or more of the following bits are changed:
 - Bit 2, "Barometric pressure units"
 - Bit 5, "Process input out of range use last good"
 - Bit 12, "Analysis is packed in module"
 - Bit 13, "Analysis is packed over backplane" (1756 and 1769 platforms only)
- **4** A change to Meter Control Options bit 15, "Meter enable", imposes these adjustments to the normally-scheduled archives/resets:
 - Upon meter enable, cancel any scheduled archives (no data yet to be archived), but leave in place any scheduled resets.
 - Upon meter disable, cancel any resets (for inspection etc.; reset will be rescheduled upon subsequent enable), and force archiving of both files regardless of configuration (so that a disabled meter never has any pending unarchived data).
- **5** Events occur only if Meter Control Options bit 10, "Treat analysis as process input", is clear.

8.12 Event numbers and Event Log Download

For auditing purposes, each event has a "number" assigned sequentially, starting at 0 for the first event written and increasing up through 65535 then wrapping to 0 again.

An event record properly includes its event number along with the information listed in the preceding sections. To conserve space, and to make transmittal more efficient, the event number is not stored as part of the event record. Instead, the Event Log header contains sufficient information to calculate for any event its event number from the position of its record in the Log and vice versa.

Term	Meaning
my_record	Known record position.
	Input to procedures (A) and (C)
event_number	Desired event number.
	Output from procedure (A).
Modbus_address	Desired Modbus address.
	Output from procedure (C).
my_event	Known event number.
	Input to procedure (B).

The following procedures use these terms:

Term	Meaning
record_position	Desired record position.
	Output from procedure (B).
number_of_records	Maximum number of records.
	Contents of register 40000. In this version of the AFC "number_of_records" is 1999; however, to be compatible with future versions that may store a different number of events, an application should use the value from the header instead of a constant 1999.
next_record	Next new record position.
	Contents of register 40001.
next_event	Next new event number.
	Contents of register 40002.
oldest_event	Oldest event number on file.
	Contents of register 40003.
oldest_not_downloaded	Oldest event number not yet downloaded.
	Contents of register 40004.
events_on_file	Total number of events on file.
	Calculated. This value starts at 0 upon cold start, then, as events are logged, it rises to a maximum of "number_of_records" and stays there.
downloadable_event	Event number of event being downloaded.
	Calculated.
event_age	The age of the event in question.
	Calculated. The next event to be written (which of course is not yet on file) has age 0; the newest event already on file has age 1, the next older event has age 2, and so on up to age "number_of_records".

Also in these procedures:

- A The expression "AND 0x0000FFFF" means "take the low-order 16 bits of the result, discarding all other higher-order bits"; it is equivalent to "(non-negative) remainder upon dividing by 65536". (A traditionally negative remainder that would result from dividing a negative dividend by 65536 must be made positive by subtracting its absolute value from 65536.)
- **B** The operator ":=" means "assignment"; that is, "assign" the expression on the right to the object on the left by calculating the value of the expression on the right and making the object on the left assume that value. The operator "==" means "is equal to".
- **C** Words in all caps and the other arithmetic operators have their expected meanings.
- **D** Text enclosed in brackets ("[]") are comments only.

Procedure (A): Calculate event number from record position.

1 Calculate number of events on file.

```
events_on_file := ( next_event - oldest_event ) AND 0x0000FFFF
```

2 Determine whether desired record is on file.

```
IF ( my_record < 0 OR my_record ≥ events_on_file ) THEN
  [record is not on file]
  EXIT this procedure</pre>
```

3 Calculate age of desired record.

```
event_age := ( next_record - my_record )
IF ( event_age ≤ 0 ) THEN
    event_age := event_age + number_of_records
```

4 Calculate event number of desired record.

event_number := (next_event - event_age) AND 0x0000FFFF

Procedure (B): Calculate record position from event number.

```
1 Calculate number of events on file.
```

events_on_file := (next_event - oldest_event) AND 0x0000FFFF

2 Calculate age of desired event.

event_age := (next_event - my_event) AND 0x0000FFFF

3 Determine whether desired event is on file.

```
IF ( event_age == 0 OR event_age > events_on_file ) THEN
  [event is not on file]
  EXIT this procedure
```

4 Calculate record position of desired event.

```
record_position := ( next_position - event_age )
IF ( record_position < 0 ) THEN
    record_position := record_position + number_of_records</pre>
```

Procedure (C): Calculate Modbus address of record from record position.

1 Calculate number of events on file.

events_on_file := (next_event - oldest_event) AND 0x0000FFFF

2 Determine whether desired record is on file.

```
IF ( my_record < 0 OR my_record ≥ events_on_file ) THEN
  [record is not on file]
  EXIT this procedure</pre>
```

3 Calculate Modbus address.

Modbus_address := (my_record * 8) + 40008

Procedure (D): Download all events not yet downloaded.

The downloading application should download the entire Log, starting at the oldest event not yet downloaded and extending through all newer events.

1 Fetch event number of oldest event not yet downloaded.

downloadable_event := oldest_not_downloaded

2 Determine whether any more events remain to be downloaded.

```
IF ( downloadable_event == next_event ) THEN
  [all events have been downloaded]
  EXIT this procedure
```

3 Download this event.

a) Calculate record number.

my_event := downloadable_event
record_position := { via Procedure (B) }

b) Calculate Modbus address.

```
my_record := record_position
Modbus_address := { via Procedure (C) }
```

c) Download the event with Modbus.

```
Set Modbus Function Code := 4, Read Input Registers
Set Modbus Number of Registers := 8
Set Modbus Register Address := Modbus_address
Execute
Copy the returned data to permanent storage
```

4 Step to next event and loop.

```
downloadable_event := ( downloadable_event + 1 ) AND 0x0000FFFF
GOTO step 2.
```

When the download is complete, and the downloaded events have been logged to disk, the AFC should be told of this fact by issuing the "download complete" Site Signal. This signal updates the header to show that all records have been downloaded, unlocking the Log for further events, and (if "Event log unlocked" is clear) posts a "download" event. A download may be performed at any time; it is not necessary to wait for the log-full condition in order to download.

An application that downloads the event log should explicitly include the event number in any copy of the event that it stores in its own database.

9 Security (Passwords)

In This Chapter

The passwords are intended for interrogation by application software in order to verify an operator's authorization to make configuration changes and to view measurement results. The passwords are resident in the module so that different operators using different copies of the application software must use the same password. Passwords cannot be retrieved in "Hard Password" mode. The password protection is not used by default.

Passwords can be numbers between -32768 and 32767. For example, 1234. A password of 0 (zero) is interpreted as "No password present".

The module supports two passwords: Write-Enable and Read-Only. Each password is enabled when you write a non-zero value to the corresponding register.

Password	Holding Register Address	Description
Write-Enable	9	Protects the module from write operations from the AFC Manager
Read-Only	19	Protects the module from read or write operations from the AFC Manager

The following table shows how the passwords affect the AFC Manager operation
depending on the values that you configure:

Protection Level	Read-Only Password	Write-Enable Password	Read Operation: Requires Authorization?	Write Operation: Requires Authorization?
No protection	Zero	Zero	No	No
Write Protection	Zero	Non-zero	No	Yes (Use Write-Enable password)
Read and Write Protection	Non-zero	Zero	Yes (Use Read-Only password)	Yes (Use Read Only password)
Read and Write Protection	Non-zero	Non-zero	Yes (Use Read-Only or Write-Enable password)	Yes (Use Write-Enable password)

Each port can be assigned to different password protection levels. Refer to the AFC Manager User Manual for more information about this topic.

9.1 Hard Password

The hard password feature offers further protection against unauthorized access to the module.

If the Hard Password option is cleared, these registers can be read either from an external Modbus device, from the processor or using the Modbus master interface in the AFC Manager. This operation mode is called "Soft Password" mode. It is then the responsibility of a compatible application (such as AFC Manager) to verify the password given by the operator against those fetched from the module in order to determine the access granted.

If the Hard Password option is selected, a read of a password register will return zero regardless of the password's actual value. In this case, read or write access is obtained by writing a candidate password to the Password Test register (register 18), the module itself verifies the password, and the access granted is determined by reading back that same register 18 (called the Accessed Port and Authorization register when read) and examining its contents. The access is granted to the port over which the request was made; other ports remain unaffected. If the port remains idle with no Modbus activity for two minutes, then the granted access is removed and can be regained only by writing a new password to the test register. For highest security, you can explicitly revoke your own password-obtained authorization before it times out by writing zero to the Password Test register.

Access granted by password, whether Soft or Hard, is to the module as a whole, including the password registers themselves. That is, in order to change a stored Hard password you must first obtain write access to the module by giving the correct Write-Enable password. However, some registers are exempt from authorization. There are a very few registers that are exempt from write authorization and are always writable; the Password Test register 18 is one such for the obvious reason. Similarly, some registers are exempt from read authorization and are always readable; they include most of the first 20 holding registers, including the Firmware Product and Group codes in registers 0 and 1 (so an application like AFC Manager can learn whether it is talking to an AFC without being trapped in a catch-22), the Site Status in register 6 (so the

application can learn whether the password mode is Soft or Hard and verify the operator's password entry using the proper method), and the Accessed Port and Authorization register 18 (so the application can learn whether access was granted in Hard-password mode even if the wrong read password was entered).

The Accessed Port and Authorization register is a bit-mapped word defined as follows:

Bits	Description
0 to 3	The number of the accessing port (0 for Modbus Gateway)
4	Read Authorization Waived
5	Write Authorization Waived
6	Read Access Granted
7	Write Access Granted
8 to 15	Reserved

A waived authorization means that password entry is not required for this action even if a non-zero password has been configured. Authorization waivers are configured separately for each port, so, for example, a SCADA system connected to port 2 can be allowed to read measurement results without having to supply a password while an operator connecting AFC Manager to port 1 still must enter the correct password. The backplane is always given both waivers, so the PLC never has to supply a password.

To set a hard password in AFC Manager:

- **1** Open the Site Configuration Dialog box
- 2 Click in the Site Options field. This action opens the Site Options dialog box
- **3** Select (check) option 4, Hard Passwords

🐉 Sit	ie Oj	ptions
i 0		Read Unix timestamps in virtual slave
1	$\overline{\mathbf{v}}$	Event log unlocked
2	\Box	Barometric pressure in psia (else in kPaa)
3		Event-log process input range alarms
4		Hard passwords
5	◄	Process input out of range use last-good value
6	Γ	
- 7	Γ	
8	\square	
9	\square	
10	Γ	
11	Γ	
12	◄	Analyses are packed in the module
1	~	Analyses are packed over the backplane
14	Γ	
15	Γ	
		Done
		Done

When this option is selected, any authorization granted using Hard Passwords times out after two minutes of inactivity, and the user will be required to re-enter the password to continue.

10 MVI46-AFC Backplane Communications

In This Chapter

*	Backplane Communication and Supervisory Data8	7
*	Data Integrity	9
*	Data Validity and Module Initialization	9
*	Module Scan10	1
*	Function Blocks	1
*	Wallclock Function	2
*	Meter Process Input Function	3
*	Meter Analysis Function	9
*	Meter Type and Product Group Summary11	1
*	Meter Archive Fetch	2
*	Modbus Gateway Function11	2
*	Modbus Pass-Thru Function11	3
*	Modbus Master	5

10.1 Backplane Communication and Supervisory Data

The communication between the SLC and the MVI46-AFC module is performed using the rack backplane. You must consider the M-Files and the I/O Files to send/receive information to/from the SLC.

Files	Description
M0 Files	Data transferred from the SLC to the MVI46-AFC. Contains the supervisory block and function blocks.
M1 Files	Data transferred from the MVI46-AFC to the SLC. Contains the supervisory block and function blocks.
I/O Files	Contains status and handshaking information

Туре	Length
Input	2 words
Output	2 words
MO	1024 words
M1	1024 words

The MVI46-AFC has an I/O image width of 2 words. The first 22 words of the Mfiles is a "supervisory" block, which can be thought of as an extension to the I/O image.

M0/M1	Description	Description	
0 to 21	Supervisory block		
24 to 930	Function blocks		

10.1.1 Supervisory Data

The supervisory data is divided into the input and output files and the M-File supervisory block. The main objective of the Supervisory data (input/output image files and supervisory block) is to guarantee block integrity when using function blocks (described in the next section). It also performs other tasks such as resetting the resettable accumulators and enabling the meters as described later in this section.

10.1.2 Layout

In the tables in the following sections these codes are used in the "Type" column.

Description	
Signal	
Control	
Status (continuous)	
Status (return from latest signal/control)	
Notification	
[Input] Control/signal output reflected back as input	
[Output] Acknowledge notification	
Output bit matching status input, not used.	
Word Number	
Bit Number	
	Signal Control Status (continuous) Status (return from latest signal/control) Notification [Input] Control/signal output reflected back as input [Output] Acknowledge notification Output bit matching status input, not used. Word Number

Signal Bit - Upon 0-to-1 transition, the associated action is performed. The SLC may determine that the action has been performed (signal has been discharged) by watching for the echoed 0-to-1 transition of the input bit which constitutes the AFC's acknowledgement of the signal. In order to reissue the signal, both bits must be cleared (SLC clears output bit and waits for corresponding ack).

Control Bit - While set, the associated action is performed. The SLC may determine that the action is being performed by monitoring the input bit from the AFC.

Notifications - Each has both input and output bits -- the input bit is the notification and the output bit acknowledges (resets) the notification if necessary. The input bit is a "reverse signal"; the AFC is notifying the SLC about a change of state. When the event requiring notification occurs, the AFC latches this bit; the SLC may either acknowledge the notification or ignore it according to the requirements of the application; subsequent behavior of the AFC is not affected either way. If the SLC ignores it, then the bit remains high through all subsequent events. If each event requires action by the SLC, then for each the SLC must both retrieve associated data from the AFC and acknowledge the notification so that it can detect the next event, and also the AFC must ensure that no events are missed by the SLC; the following procedure accomplishes these tasks:

- 1 On detecting the notification, the SLC begins the acknowledgement by raising the corresponding "ack" output bit.
- 2 The AFC "freezes" M1-file data associated with the event then drops the input (notification) bit.
- **3** While the notification bit is low and the acknowledge bit is high, the AFC keeps the associated M1 data frozen, queuing up any additional events for later notification.
- 4 The SLC fetches the event's data from the M1 file.
- **5** The SLC then drops the acknowledge bit and the AFC unfreezes the M1 data, completing the cycle.
- 6 If the AFC has queued any events during this procedure, it updates the M1 data and issues a new notification.

Status Bit - Input bits only. Where input and output bits are paired, matching output bits have no function and are not used.

10.1.3 Input/Output Image Files

Address	Output Type	Description	Address	Input Type	Description
O:x/0	n/a		I:x/0	[S]	M-Files & Input Valid
O:x/1	[K]	Supervisory Block Active	I:x/1	[ack]	
O:x/2	[G]	Set Wallclock	I:x/2	[ack]	
O:x/3	[G]	Analysis Present	I:x/3	[ack]	
O:x/4	[G]	Gateway Transaction Pending	I:x/4	[ack]	
O:x/5	[G]	Pass-Thru Transaction Fetch	I:x/5	[ack]	
O:x/6	[G]	Master Transaction Pending	I:x/6	[ack]	
O:x/7	[K]	Read Wallclock	I:x/7	[ack]	
O:x/8	[n/a]		I:x/8	[E]	Wallclock Set Fail
O:x/9	[n/a]		l:x/9	[E]	Analysis Meter/Stream Number Range
O:x/10	[n/a]		I:x/10	[E]	Event Log Full Error
O:x/11	[n/a]		l:x/11	[E]	Master Transaction Logic Error
O:x/12	[n/a]		I:x/12	[E]	Archive Record Fetch Error
O:x/13	[spare]		I:x/13	[spare]	
O:x/14	[G]	Meter Archive Fetch	I:x/14	[ack]	
O:x/15	[ack]		I:x/15	[N]	Meter Type and Product Group
O:x/16	[n/a]		I:x/16	[S]	MVI46-AFC Released
O:x/17	[n/a]		I:x/17	[S]	[reserved]
O:x/18	[n/a]		I:x/18	[S]	[reserved]
O:x/19	[n/a]		I:x/19	[S]	[reserved]
O:x/20	[n/a]		I:x/20	[S]	SLC halted, offline, or missing
O:x/21	[n/a]		I:x/21	[S]	Configuration changed
O:x/22	[n/a]		I:x/22	[S]	Power Up
O:x/23	[n/a]		I:x/23	[S]	Cold Start
O:x/24	[n/a]		I:x/24	[S]	Some Meter in Alarm
O:x/25	[spare]		I:x/25	[spare]	
O:x/26	[spare]		I:x/26	[spare]	
O:x/27	[spare]		I:x/27	[spare]	
O:x/28	[n/a]		l:x/28	[S]	Pass-Thru Transaction Pending
O:x/29	[spare]		I:x/29	[spare]	
O:x/30	[spare]		I:x/30	[spare]	
O:x/31	[spare]		I:x/31	[spare]	

The following table shows how the input/output image files are structured:

X=slot number Example: If MVI is in Slot 1, use I:1/0, I:1/1, ...

10.1.4 M-File Supervisory Block

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.0/0	[n/a]		M1:x.0/0	[S]	Meter 1 enabled
M0:x.0/1	[n/a]		M1:x.0/1	[S]	Meter 2 enabled
M0:x.0/2	[n/a]		M1:x.0/2	[S]	Meter 3 enabled
M0:x.0/3	[n/a]		M1:x.0/3	[S]	Meter 4 enabled
M0:x.0/4	[n/a]		M1:x.0/4	[S]	Meter 5 enabled
M0:x.0/5	[n/a]		M1:x.0/5	[S]	Meter 6 enabled
M0:x.0/6	[n/a]		M1:x.0/6	[S]	Meter 7 enabled
M0:x.0/7	[n/a]		M1:x.0/7	[S]	Meter 8 enabled
M0:x.0/8		Reserved	M1:x.0/8		Reserved
M0:x.0/9		Reserved	M1:x.0/9		Reserved
M0:x.0/10		Reserved	M1:x.0/10		Reserved
M0:x.0/11		Reserved	M1:x.0/11		Reserved
M0:x.0/12		Reserved	M1:x.0/12		Reserved
M0:x.0/13		Reserved	M1:x.0/13		Reserved
M0:x.0/14		Reserved	M1:x.0/14		Reserved
M0:x.0/15		Reserved	M1:x.0/15		Reserved

Meter Enabled Summary

Meter Alarm Summary

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.1/0	[n/a]		M1:x.1/0	[S]	Meter 1 in alarm
M0:x.1/1	[n/a]		M1:x.1/1	[S]	Meter 2 in alarm
M0:x.1/2	[n/a]		M1:x.1/2	[S]	Meter 3 in alarm
M0:x.1/3	[n/a]		M1:x.1/3	[S]	Meter 4 in alarm
M0:x.1/4	[n/a]		M1:x.1/4	[S]	Meter 5 in alarm
M0:x.1/5	[n/a]		M1:x.1/5	[S]	Meter 6 in alarm
M0:x.1/6	[n/a]		M1:x.1/6	[S]	Meter 7 in alarm
M0:x.1/7	[n/a]		M1:x.1/7	[S]	Meter 8 in alarm
M0:x.1/8		Reserved	M1:x.1/8	[S]	Reserved
M0:x.1/9		Reserved	M1:x.1/9	[S]	Reserved
M0:x.1/10		Reserved	M1:x.1/10	[S]	Reserved
M0:x.1/11		Reserved	M1:x.1/11	[S]	Reserved
M0:x.1/12		Reserved	M1:x.1/12	[S]	Reserved
M0:x.1/13		Reserved	M1:x.1/13	[S]	Reserved
M0:x.1/14		Reserved	M1:x.1/14	[S]	Reserved
M0:x.1/15		Reserved	M1:x.1/15	[S]	Reserved

Output M0			Input M1		
-	Туре	Description		Туре	Description
M0:x.2/0	[K]	Meter 1 Process Input Valid	M1:x.2/0	[ack]	
M0:x.2/1	[K]	Meter 2 Process Input Valid	M1:x.2/1	[ack]	
M0:x.2/2	[K]	Meter 3 Process Input Valid	M1:x.2/2	[ack]	
M0:x.2/3	[K]	Meter 4 Process Input Valid	M1:x.2/3	[ack]	
M0:x.2/4	[K]	Meter 5 Process Input Valid	M1:x.2/4	[ack]	
M0:x.2/5	[K]	Meter 6 Process Input Valid	M1:x.2/5	[ack]	
M0:x.2/6	[K]	Meter 7 Process Input Valid	M1:x.2/6	[ack]	
M0:x.2/7	[K]	Meter 8 Process Input Valid	M1:x.2/7	[ack]	
M0:x.2/8		Reserved	M1:x.2/8		Reserved
M0:x.2/9		Reserved	M1:x.2/9		Reserved
M0:x.2/10		Reserved	M1:x.2/10		Reserved
M0:x.2/11		Reserved	M1:x.2/11		Reserved
M0:x.2/12		Reserved	M1:x.2/12		Reserved
M0:x.2/13		Reserved	M1:x.2/13		Reserved
M0:x.2/14		Reserved	M1:x.2/14		Reserved
M0:x.2/15		Reserved	M1:x.2/15		Reserved

Meter Process Input Controls

Disable Meters

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.3/0	[G]	Disable Meter 1	M1:x.3/0	[ack]	
M0:x.3/1	[G]	Disable Meter 2	M1:x.3/1	[ack]	
M0:x.3/2	[G]	Disable Meter 3	M1:x.3/2	[ack]	
M0:x.3/3	[G]	Disable Meter 4	M1:x.3/3	[ack]	
M0:x.3/4	[G]	Disable Meter 5	M1:x.3/4	[ack]	
M0:x.3/5	[G]	Disable Meter 6	M1:x.3/5	[ack]	
M0:x.3/6	[G]	Disable Meter 7	M1:x.3/6	[ack]	
M0:x.3/7	[G]	Disable Meter 8	M1:x.3/7	[ack]	
M0:x.3/8		Reserved	M1:x.3/8		Reserved
M0:x.3/9		Reserved	M1:x.3/9		Reserved
M0:x.3/10		Reserved	M1:x.3/10		Reserved
M0:x.3/11		Reserved	M1:x.3/11		Reserved
M0:x.3/12		Reserved	M1:x.3/12		Reserved
M0:x.3/13		Reserved	M1:x.3/13		Reserved
M0:x.3/14		Reserved	M1:x.3/14		Reserved
M0:x.3/15		Reserved	M1:x.3/15		Reserved

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.4/0	[G]	Enable Meter 1	M1:x.4/0	[ack]	
M0:x.4/1	[G]	Enable Meter 2	M1:x.4/1	[ack]	
M0:x.4/2	[G]	Enable Meter 3	M1:x.4/2	[ack]	
M0:x.4/3	[G]	Enable Meter 4	M1:x.4/3	[ack]	
M0:x.4/4	[G]	Enable Meter 5	M1:x.4/4	[ack]	
M0:x.4/5	[G]	Enable Meter 6	M1:x.4/5	[ack]	
M0:x.4/6	[G]	Enable Meter 7	M1:x.4/6	[ack]	
M0:x.4/7	[G]	Enable Meter 8	M1:x.4/7	[ack]	
M0:x.4/8		Reserved	M1:x.4/8		Reserved
M0:x.4/9		Reserved	M1:x.4/9		Reserved
M0:x.4/10		Reserved	M1:x.4/10		Reserved
M0:x.4/11		Reserved	M1:x.4/11		Reserved
M0:x.4/12		Reserved	M1:x.4/12		Reserved
M0:x.4/13		Reserved	M1:x.4/13		Reserved
M0:x.4/14		Reserved	M1:x.4/14		Reserved
MO 4/1E		December	M1:x.4/15		Reserved
M0:x.4/15 <u>Site Signa</u>	als	Reserved	1011.X.4/13		Reserved
			Input M1		
<u>Site Signa</u> Output M0	Туре	Description	Input M1	Туре	Description
<u>Site Signa</u> Output M0 M0:x.5/0	Type [G]	Description Purge Event Log	Input M1 M1:x.5/0	[ack]	
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1	Туре	Description Purge Event Log Clear Checksum Alarms	Input M1 M1:x.5/0 M1:x.5/1		Description
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2	Type [G]	Description Purge Event Log Clear Checksum Alarms Reserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2	[ack]	Description Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3	Type [G]	Description Purge Event Log Clear Checksum Alarms Reserved Reserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3	[ack]	Description Reserved Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4	Type [G]	Description Purge Event Log Clear Checksum Alarms Reserved Reserved Reserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4	[ack]	Description Reserved Reserved Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4 M0:x.5/5	Type [G]	Description Purge Event Log Clear Checksum Alarms Reserved Reserved Reserved Reserved Reserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5	[ack]	Description Reserved Reserved Reserved Reserved Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4 M0:x.5/5 M0:x.5/6	Type [G]	DescriptionPurge Event LogClear Checksum AlarmsReservedReservedReservedReservedReservedReservedReservedReservedReserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5 M1:x.5/6	[ack]	Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4 M0:x.5/5 M0:x.5/6 M0:x.5/7	Type [G]	Description Purge Event Log Clear Checksum Alarms Reserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5 M1:x.5/6 M1:x.5/7	[ack]	Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4 M0:x.5/5 M0:x.5/6 M0:x.5/7 M0:x.5/8	Type [G]	Description Purge Event Log Clear Checksum Alarms Reserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5 M1:x.5/6 M1:x.5/7 M1:x.5/8	[ack]	Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4 M0:x.5/5 M0:x.5/6 M0:x.5/7 M0:x.5/8 M0:x.5/9	Type [G]	Description Purge Event Log Clear Checksum Alarms Reserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5 M1:x.5/6 M1:x.5/7 M1:x.5/8 M1:x.5/9	[ack]	Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Site Signa Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4 M0:x.5/5 M0:x.5/6 M0:x.5/7 M0:x.5/8 M0:x.5/9 M0:x.5/10	Type [G]	Description Purge Event Log Clear Checksum Alarms Reserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5 M1:x.5/6 M1:x.5/7 M1:x.5/8 M1:x.5/9 M1:x.5/10	[ack]	Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4 M0:x.5/5 M0:x.5/6 M0:x.5/7 M0:x.5/7 M0:x.5/8 M0:x.5/9 M0:x.5/10 M0:x.5/11	Type [G]	DescriptionPurge Event LogClear Checksum AlarmsReserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5 M1:x.5/6 M1:x.5/6 M1:x.5/7 M1:x.5/8 M1:x.5/9 M1:x.5/10 M1:x.5/11	[ack]	Description Reserved
Site Signa Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/3 M0:x.5/4 M0:x.5/5 M0:x.5/6 M0:x.5/7 M0:x.5/7 M0:x.5/8 M0:x.5/9 M0:x.5/10 M0:x.5/11 M0:x.5/12	Type [G]	DescriptionPurge Event LogClear Checksum AlarmsReserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5 M1:x.5/6 M1:x.5/7 M1:x.5/7 M1:x.5/8 M1:x.5/9 M1:x.5/10 M1:x.5/11 M1:x.5/12	[ack]	Description Reserved
<u>Site Signa</u> Output M0 M0:x.5/0 M0:x.5/1 M0:x.5/2 M0:x.5/3 M0:x.5/4 M0:x.5/5 M0:x.5/6 M0:x.5/7 M0:x.5/7 M0:x.5/8 M0:x.5/9 M0:x.5/10 M0:x.5/11	Type [G]	DescriptionPurge Event LogClear Checksum AlarmsReserved	Input M1 M1:x.5/0 M1:x.5/1 M1:x.5/2 M1:x.5/3 M1:x.5/4 M1:x.5/5 M1:x.5/6 M1:x.5/6 M1:x.5/7 M1:x.5/8 M1:x.5/9 M1:x.5/10 M1:x.5/11	[ack]	Description Reserved

Enable Meters

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.6/0	[G]	Select Stream 1 (version 2.05 and newer)	M1:x.6/0	[ack]	
M0:x.6/1	[G]	Select Stream 2 (version 2.05 and newer)	M1:x.6/1	[ack]	
M0:x.6/2	[G]	Select Stream 3 (version 2.05 and newer)	M1:x.6/2	[ack]	
M0:x.6/3	[G]	Select Stream 4 (version 2.05 and newer)	M1:x.6/3	[ack]	
M0:x.6/4	[G]	Reset resettable accumulator 1	M1:x.6/4	[ack]	
M0:x.6/5	[G]	Reset resettable accumulator 2	M1:x.6/5	[ack]	
M0:x.6/6	[G]	Reset resettable accumulator 3	M1:x.6/6	[ack]	
M0:x.6/7	[G]	Reset resettable accumulator 4	M1:x.6/7	[ack]	
M0:x.6/8	[G]	Write daily archive	M1:x.6/8	[ack]	
M0:x.6/9	[G]	Write hourly archive	M1:x.6/9	[ack]	
M0:x.6/10		Reserved	M1:x.6/10		Reserved
M0:x.6/11		Reserved	M1:x.6/11		Reserved
M0:x.6/12		Reserved	M1:x.6/12		Reserved
M0:x.6/13		Reserved	M1:x.6/13		Reserved
M0:x.6/14		Reserved	M1:x.6/14		Reserved
M0:x.6/15		Reserved	M1:x.6/15		Reserved

Meter 1 signals and stream-select

Meter 2 signals and stream-select

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.7/0	[G]	Select Stream 1 (version 2.05 and newer)	M1:x.7/0	[ack]	
M0:x.7/1	[G]	Select Stream 2 (version 2.05 and newer)	M1:x.7/1	[ack]	
M0:x.7/2	[G]	Select Stream 3 (version 2.05 and newer)	M1:x.7/2	[ack]	
M0:x.7/3	[G]	Select Stream 4 (version 2.05 and newer)	M1:x.7/3	[ack]	
M0:x.7/4	[G]	Reset resettable accumulator 1	M1:x.7/4	[ack]	
M0:x.7/5	[G]	Reset resettable accumulator 2	M1:x.7/5	[ack]	
M0:x.7/6	[G]	Reset resettable accumulator 3	M1:x.7/6	[ack]	
M0:x.7/7	[G]	Reset resettable accumulator 4	M1:x.7/7	[ack]	
M0:x.7/8	[G]	Write daily archive	M1:x.7/8	[ack]	
M0:x.7/9	[G]	Write hourly archive	M1:x.7/9	[ack]	

Output M0			Input M1			
	Туре	Description		Туре	Description	
M0:x.7/10		Reserved	M1:x.7/10		Reserved	
M0:x.7/11		Reserved	M1:x.7/11		Reserved	
M0:x.7/12		Reserved	M1:x.7/12		Reserved	
M0:x.7/13		Reserved	M1:x.7/13		Reserved	
M0:x.7/14		Reserved	M1:x.7/14		Reserved	
M0:x.7/15		Reserved	M1:x.7/15		Reserved	

Meter 3 signals and stream-select

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.8/0	[G]	Select Stream 1 (version 2.05 and newer)	M1:x.8/0	[ack]	
M0:x.8/1	[G]	Select Stream 2 (version 2.05 and newer)	M1:x.8/1	[ack]	
M0:x.8/2	[G]	Select Stream 3 (version 2.05 and newer)	M1:x.8/2	[ack]	
M0:x.8/3	[G]	Select Stream 4 (version 2.05 and newer)	M1:x.8/3	[ack]	
M0:x.8/4	[G]	Reset resettable accumulator 1	M1:x.8/4	[ack]	
M0:x.8/5	[G]	Reset resettable accumulator 2	M1:x.8/5	[ack]	
M0:x.8/6	[G]	Reset resettable accumulator 3	M1:x.8/6	[ack]	
M0:x.8/7	[G]	Reset resettable accumulator 4	M1:x.8/7	[ack]	
M0:x.8/8	[G]	Write daily archive	M1:x.8/8	[ack]	
M0:x.8/9	[G]	Write hourly archive	M1:x.8/9	[ack]	
M0:x.8/10		Reserved	M1:x.8/10		Reserved
M0:x.8/11		Reserved	M1:x.8/11		Reserved
M0:x.8/12		Reserved	M1:x.8/12		Reserved
M0:x.8/13		Reserved	M1:x.8/13		Reserved
M0:x.8/14		Reserved	M1:x.8/14		Reserved
M0:x.8/15		Reserved	M1:x.8/15		Reserved

Meter 4 signals and stream-select

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.9/0	[G]	Select Stream 1 (version 2.05 and newer)	M1:x.9/0	[ack]	
M0:x.9/1	[G]	Select Stream 2 (version 2.05 and newer)	M1:x.9/1	[ack]	
M0:x.9/2	[G]	Select Stream 3 (version 2.05 and newer)	M1:x.9/2	[ack]	
M0:x.9/3	[G]	Select Stream 4 (version 2.05 and newer)	M1:x.9/3	[ack]	

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.9/4	[G]	Reset resettable accumulator 1	M1:x.9/4	[ack]	
M0:x.9/5	[G]	Reset resettable accumulator 2	M1:x.9/5	[ack]	
M0:x.9/6	[G]	Reset resettable accumulator 3	M1:x.9/6	[ack]	
M0:x.9/7	[G]	Reset resettable accumulator 4	M1:x.9/7	[ack]	
M0:x.9/8	[G]	Write daily archive	M1:x.9/8	[ack]	
M0:x.9/9	[G]	Write hourly archive	M1:x.9/9	[ack]	
M0:x.9/10		Reserved	M1:x.9/10		Reserved
M0:x.9/11		Reserved	M1:x.9/11		Reserved
M0:x.9/12		Reserved	M1:x.9/12		Reserved
M0:x.9/13		Reserved	M1:x.9/13		Reserved
M0:x.9/14		Reserved	M1:x.9/14		Reserved
M0:x.9/15		Reserved	M1:x.9/15		Reserved

Meter 5 signals and stream-select

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.10/0	[G]	Select Stream 1 (version 2.05 and newer)	M1:x.10/0	[ack]	
M0:x.10/1	[G]	Select Stream 2 (version 2.05 and newer)	M1:x.10/1	[ack]	
M0:x.10/2	[G]	Select Stream 3 (version 2.05 and newer)	M1:x.10/2	[ack]	
M0:x.10/3	[G]	Select Stream 4 (version 2.05 and newer)	M1:x.10/3	[ack]	
M0:x.10/4	[G]	Reset resettable accumulator 1	M1:x.10/4	[ack]	
M0:x.10/5	[G]	Reset resettable accumulator 2	M1:x.10/5	[ack]	
M0:x.10/6	[G]	Reset resettable accumulator 3	M1:x.10/6	[ack]	
M0:x.10/7	[G]	Reset resettable accumulator 4	M1:x.10/7	[ack]	
M0:x.10/8	[G]	Write daily archive	M1:x.10/8	[ack]	
M0:x.10/9	[G]	Write hourly archive	M1:x.10/9	[ack]	
M0:x.10/10		Reserved	M1:x.10/10		Reserved
M0:x.10/11		Reserved	M1:x.10/11		Reserved
M0:x.10/12		Reserved	M1:x.10/12		Reserved
M0:x.10/13		Reserved	M1:x.10/13		Reserved
M0:x.10/14		Reserved	M1:x.10/14		Reserved
M0:x.10/15		Reserved	M1:x.10/15		Reserved

Output M0			Input M1		
	Туре	Description	•	Туре	Description
M0:x.11/0	[G]	Select Stream 1 (version 2.05 and newer)	M1:x.11/0	[ack]	
M0:x.11/1	[G]	Select Stream 2 (version 2.05 and newer)	M1:x.11/1	[ack]	
M0:x.11/2	[G]	Select Stream 3 (version 2.05 and newer)	M1:x.11/2	[ack]	
M0:x.11/3	[G]	Select Stream 4 (version 2.05 and newer)	M1:x.11/3	[ack]	
M0:x.11/4	[G]	Reset resettable accumulator 1	M1:x.11/4	[ack]	
M0:x.11/5	[G]	Reset resettable accumulator 2	M1:x.11/5	[ack]	
M0:x.11/6	[G]	Reset resettable accumulator 3	M1:x.11/6	[ack]	
M0:x.11/7	[G]	Reset resettable accumulator 4	M1:x.11/7	[ack]	
M0:x.11/8	[G]	Write daily archive	M1:x.11/8	[ack]	
M0:x.11/9	[G]	Write hourly archive	M1:x.11/9	[ack]	
M0:x.11/10		Reserved	M1:x.11/10		Reserved
M0:x.11/11		Reserved	M1:x.11/11		Reserved
M0:x.11/12		Reserved	M1:x.11/12		Reserved
M0:x.11/13		Reserved	M1:x.11/13		Reserved
M0:x.11/14		Reserved	M1:x.11/14		Reserved
M0:x.11/15		Reserved	M1:x.11/15		Reserved

Meter 6 signals and stream-select

Meter 7 signals and stream-select

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.12/0	[G]	Select Stream 1 (version 2.05 and newer)	M1:x.12/0	[ack]	
M0:x.12/1	[G]	Select Stream 2 (version 2.05 and newer)	M1:x.12/1	[ack]	
M0:x.12/2	[G]	Select Stream 3 (version 2.05 and newer)	M1:x.12/2	[ack]	
M0:x.12/3	[G]	Select Stream 4 (version 2.05 and newer)	M1:x.12/3	[ack]	
M0:x.12/4	[G]	Reset resettable accumulator 1	M1:x.12/4	[ack]	
M0:x.12/5	[G]	Reset resettable accumulator 2	M1:x.12/5	[ack]	
M0:x.12/6	[G]	Reset resettable accumulator 3	M1:x.12/6	[ack]	
M0:x.12/7	[G]	Reset resettable accumulator 4	M1:x.12/7	[ack]	
M0:x.12/8	[G]	Write daily archive	M1:x.12/8	[ack]	
M0:x.12/9	[G]	Write hourly archive	M1:x.12/9	[ack]	
M0:x.12/10		Reserved	M1:x.12/10		Reserved

		Input M1		
Туре	Description		Туре	Description
	Reserved	M1:x.12/11		Reserved
	Reserved	M1:x.12/12		Reserved
	Reserved	M1:x.12/13		Reserved
	Reserved	M1:x.12/14		Reserved
	Reserved	M1:x.12/15		Reserved
	Туре	Reserved Reserved Reserved Reserved	TypeDescriptionReservedM1:x.12/11ReservedM1:x.12/12ReservedM1:x.12/13ReservedM1:x.12/14	TypeDescriptionTypeReservedM1:x.12/11ReservedM1:x.12/12ReservedM1:x.12/13ReservedM1:x.12/14

Meter 8 signals and stream-select

Output M0			Input M1		
	Туре	Description		Туре	Description
M0:x.13/0	[G]	Select Stream 1 (version 2.05 and newer)	M1:x.13/0	[ack]	
M0:x.13/1	[G]	Select Stream 2 (version 2.05 and newer)	M1:x.13/1	[ack]	
M0:x.13/2	[G]	Select Stream 3 (version 2.05 and newer)	M1:x.13/2	[ack]	
M0:x.13/3	[G]	Select Stream 4 (version 2.05 and newer)	M1:x.13/3	[ack]	
M0:x.13/4	[G]	Reset resettable accumulator 1	M1:x.13/4	[ack]	
M0:x.13/5	[G]	Reset resettable accumulator 2	M1:x.13/5	[ack]	
M0:x.13/6	[G]	Reset resettable accumulator 3	M1:x.13/6	[ack]	
M0:x.13/7	[G]	Reset resettable accumulator 4	M1:x.13/7	[ack]	
M0:x.13/8	[G]	Write daily archive	M1:x.13/8	[ack]	
M0:x.13/9	[G]	Write hourly archive	M1:x.13/9	[ack]	
M0:x.13/10		Reserved	M1:x.13/10		Reserved
M0:x.13/11		Reserved	M1:x.13/11		Reserved
M0:x.13/12		Reserved	M1:x.13/12		Reserved
M0:x.13/13		Reserved	M1:x.13/13		Reserved
M0:x.13/14		Reserved	M1:x.13/14		Reserved
M0:x.13/15		Reserved	M1:x.13/15		Reserved
M0:x.14		Reserved	M1:x.14		Reserved
M0:x.15		Reserved	M1:x.15		Reserved
M0:x.16		Reserved	M1:x.16		Reserved
M0:x.17		Reserved	M1:x.17		Reserved
M0:x.18		Reserved	M1:x.18		Reserved
M0:x.19		Reserved	M1:x.19		Reserved
M0:x.20		Reserved	M1:x.20		Reserved
M0:x.21		Reserved	M1:x.21		Reserved

<u>Notes</u>

The "Meter Enable" and "Meter Disable" signals are equivalent to setting and clearing the "Meter Enable" option in the AFC Manager, causing changes to the meter configuration stored in the module and logging corresponding events. They are distinct from the "Meter Process Input Valid" control, which merely activates data transfer.

The "Meter Enable" and "Meter Disable" signals are implemented as separate signals instead of simple 0/1 controls so that "all zero" means "no change", making it difficult to inadvertently enable or disable a meter that should not undergo such a change.

The first two words of status in the Supervisory Input (M1) block are continuously maintained.

10.2 Data Integrity

M-File data integrity between the SLC and the MVI is automatically guaranteed for blocks of up to 64 words, if such a block is accessed by the SLC with a single COP instruction.

Hence continuous transfer of small blocks (such as meter process variables output to the MVI46-AFC, and meter calculations input from the MVI) need no special handling other than compliance with the above constraint.

For occasional, one-shot, multiplexed, and long-block transfers (for example, Modbus transactions, component analysis) the necessary housekeeping overhead is implemented using signal bits as described in the previous sections. In such cases, the SLC must complete any M0 file data before raising the signal, and wait until after the signal is acknowledged before making use of any M1 file data.

10.3 Data Validity and Module Initialization

Initialization of the MVI's backplane interface (such as occurs upon power up) causes the input image and the output image to be cleared to 0 but does not initialize the contents of the M files in any way.

To avoid acting on invalid data, these constraints have the following implications:

- All M0 file data must be activated by control or signal bits that reside in the image files, with value 0 meaning "inactive" or "idle" and value 1 meaning "active" or "pending".
- All M0 file data must be initialized to known (and presumably meaningful) values prior to their first activation by control or signal.
- M1 file data returned by the module must be deemed valid only while the acknowledgement of the corresponding M0 file's activation control or signal is energized.

During startup, the AFC zeros the M Files then sets the "M-files and Input Valid" input status bit (I:x/0) to tell the SLC that the module is ready for communication. Until this bit is set, the SLC must not expect that any data written to M0 will be seen by the module and must not rely on any M1 data or any other bits in the Input Image.

Normally, the SLC meanwhile has:

- Initialized a local copy of the Meter Process Input block for each active meter with values from the appropriate counter and analog input cards.
- Initialized a local copy of the Supervisory block with valid data, including setting of the Meter Process Input Valid control bit for each active meter.

Upon seeing status M-files & Input Valid, the SLC:

- Enables continuous copy of the Process Input blocks for all active meters and copies them for the first time to the module.
- Copies the Supervisory block to the module.
- Sets the Supervisory Block Active control (O:e.00/01).
- Enables setting of the wallclock for the first time.

It is important that the Process Input blocks appear in the module *before* the Supervisory block containing the Meter Process Input controls, and that the Supervisory block be written *before* its overseeing control is set in the output image. That is, don't set an activation control (or triggering signal) until the data subject to the control/signal is already present in the module.

After initialization, for continuous measurement it is necessary merely to refresh continuously the Process Input blocks for active meters. It is not necessary to refresh continuously the Supervisory block or to engage in any other handshaking. The Supervisory block must be refreshed only when its contents change, such as when making active a previously inactive meter or when issuing a meter signal, and such refresh may be accomplished either by copying the entire block or merely by altering the appropriate bit directly, depending on the nature of the change(s); that is, the Supervisory block need be copied from the module's M1 file only when verifying acknowledgement of such change(s), or, in the case of a pending pass-thru, reading extended status before reading the Modbus data.

After initialization, when the SLC must issue a signal or control that has associated parameter data (such as issuing a Modbus Gateway transaction), the SLC must place the parameter data into the M0 file before setting the output bit to tell the AFC that it is there, and the SLC must not expect that any data returned in the M1 file as a response to the signal or control will be present until the matching input acknowledge bit is set. To avoid unexpected consequences, while the output bit and its matching input bit are different the SLC must not alter any contents of the controlled portion of the M0 file and must not rely on any contents of the controlled portion of the M1 file.

10.4 Module Scan

After initialization, the MVI46-AFC scan loop is:

- 1 Read output image
- 2 Discharge any Set Wallclock signal
- 3 If Supervisory Block Active control is set, read Supervisory block, else assume Supervisory block is all zero
- 4 Discharge any Modbus Gateway Write transaction
- 5 Discharge any Meter Enable/Disable signals
- 6 Discharge any Site or Meter signals
- 7 Fetch Meter Process Inputs for all active meters and schedule their measurement
- 8 Discharge any Analysis Present signal by scheduling characterization of the selected meter
- 9 Perform measurement on one active meter (the next in a round-robin scan)
- **10** Write Meter Calculations for the just-measured meter (other meters have not yet been updated, hence writing them would be redundant)
- 11 Act upon any Read Wallclock control
- 12 Discharge any Modbus Gateway Read transaction
- **13** Discharge any Modbus Pass-thru transaction
- **14** Schedule any signaled Modbus Master transaction (will be acknowledged at a later scan upon completion/rejection of data transfer).
- 15 Write Supervisory block echo.
- **16** Write input image

10.5 Function Blocks

In order for the SLC ladder to perform the function blocks, it must use the M0 and M1 files. Each function block uses a fixed M-file offset. The ladder writes a function to the MVI46-AFC module through the M0 file and reads the response from the MVI46-AFC module through the M1 file. The following topics describe each function block.

The following table shows where each function block is located in the M-File area:

M-File Start	M-File End	Length	Function
24	29	6	Wallclock
30	125	96	Meter Process Inputs
222	247	26	Meter Analysis
250	265	16	Meter Type and Product Group Summary
300	313	44	Meter Archive Fetch
400	528	129	Modbus Gateway
600	728	129	Modbus Pass-Thru
800	930	131	Modbus Master

Note: The first 24 words are used for the Supervisory block.

10.6 Wallclock Function

10.6.1 Description

This function synchronizes the MVI46-AFC Wall Clock using the SLC date and time information. The wallclock is the time reference used by the module for all actions that require timestamp information (archives and events). This function uses 6 words starting at offset 24.

10.6.2 Output

Sets wallclock from SLC to the MVI46-AFC, triggered by O:x/02 (Set Wallclock signal) and acknowledged by I:x/02 (Set Wallclock signal ack).

Description	
Year (4 digits)	
Month	
Day	
Hours	
Minutes	
Seconds	
	Year (4 digits) Month Day Hours Minutes

The Wallclock Set Fail (I:x/8) bit can be used to verify if the function was not successful.

10.6.3 Input

Read wallclock from MVI46-AFC to the SLC, triggered by O:e00/07 (Read Wallclock Control) and acknowledged by I:x/07 (Read Wallclock Control ack). Uses the M1 file to read the data from the MVI46-AFC module:

Address	Description	
M1:x.24	Year (4 digits)	
M1:x.25	Month	
M1:x.26	Day	
M1:x.27	Hours	
M1:x.28	Minutes	
M1:x.29	Seconds	

Notes:

Status "Wallclock Set Fail" (I:x/8) results from the latest "Set wallclock" action. Status "Power Up" (I:x/22) remains raised until the wallclock is set successfully for the first time after power up; while it is asserted, the "Read Wallclock" control returns all zero for the clock.

10.7 Meter Process Input Function

10.7.1 Description

This block constantly provides values of the process inputs to and returns results from the latest meter calculation scan. The meter is scanned continuously; hence several calculations may occur between applications of this block. Process inputs in the output block are meaningful depending on configuration. For example, the fourth input is seen as dp or pulses depending on the meter type; the water content is meaningful only for liquids and is normally used only for NGLs and crudes and not for any of the refined products.

The Meter Process Variable Block must be set up for one of the following meter types:

- Orifice Gas Meter Orifice (Differential) Meter with Gas Product
- Pulse Gas Meter Pulse (Linear) Meter with Gas Product
- Orifice Liquid Meter Orifice (Differential) Meter with Liquid Product
- Pulse Liquid Meter Pulse (Linear) Meter with Liquid Product
- Flow Rate Integration with Gas Product
- Pulse Frequency Integration with Gas Product
- Flow Rate Integration with Liquid Product
- Pulse Frequency Integration with Liquid Product

The following table shows how the M-File is structured for each meter type. Note that each meter uses 12 registers:

Meter	MO		M1		
	Start	End	Start	End	
1	M0:x.30	M0:x.41	M1:x.30	M1:x.41	
2	M0:x.42	M0:x.53	M1:x.42	M1:x.53	
3	M0:x.54	M0:x.65	M1:x.54	M1:x.65	
4	M0:x.66	M0:x.77	M1:x.66	M1:x.77	
5	M0:x.78	M0:x.89	M1:x.78	M1:x.89	
6	M0:x.90	M0:x.101	M1:x.90	M1:x.101	
7	M0:x.102	M0:x.113	M1:x.102	M0:x.113	
8	M0:x.114	M0:x.125	M1:x.114	M1:x.125	
Reserved	M0:x.126	M0:x.221	M1:x.126	M1:x.221	

X=MVI46-AFC Slot number

The following topics show how the 12-register blocks are structured depending on the meter type and product group. Note that for double-word values ("MS", "LS"), the "MS" is always at the lower (even) offset and "LS" is always at the higher (odd) offset, in other words, Big-Endian:

Meter PV:	Output Function Block	Meter PV:	Input Function Block
Element	Attribute	Element	Attribute
0	Reserved	0	Reserved
1	Reserved	1	Meter Alarms (Bitmap)
2	Temperature MS (see Note)	2	Net Accumulator MS
3	Temperature LS	3	Net Accumulator LS
4	Pressure MS (see Note)	4	Net Flowrate MS (float)
5	Pressure LS	5	Net Flowrate LS (float)
6	Differential Pressure MS (see Note)	6	Gross Flowrate MS (float)
7	Differential Pressure LS	7	Gross Flowrate LS (float)
8	Reserved	8	Fpv MS (float)
9	Reserved	9	Fpv LS (float)
10	Reserved	10	Cprime MS (float)
11	Reserved	11	Cprime LS (float)

10.7.2 Orifice (Differential) Meter with Gas Product

10.7.3 Pulse (Linear) Meter with Gas Product

Meter PV:	Output Function Block	Meter PV:	Meter PV: Input Function Block	
Element	Attribute	Element	Attribute	
0	Reserved	0	Reserved	
1	Reserved	1	Meter Alarms (Bitmap)	
2	Temperature MS (see Note)	2	Net Accumulator MS	
3	Temperature LS	3	Net Accumulator LS	
4	Pressure MS (see Note)	4	Net Flowrate MS (float)	
5	Pressure LS	5	Net Flowrate LS (float)	
6	Meter Pulses MS (double integer)	6	Gross Flowrate MS (float)	
7	Meter Pulses LS (double integer)	7	Gross Flowrate LS (float)	
8	Reserved	8	Fpv MS (float)	
9	Reserved	9	Fpv LS (float)	
10	Meter Pulse Freq- Hz MS (float)	10	Cprime MS (float)	
11	Meter Pulse Freq- Hz LS (float)	11	Cprime LS (float)	

10.7.4 Orifice (Differential) Meter with Liquid Product

Meter PV:	Output Function Block	Meter PV:	Input Function Block
Element	Attribute	Element	Attribute
0	Reserved	0	Reserved
1	Water % (see Note)	1	Meter Alarms (Bitmap)
2	Temperature MS (see Note)	2	Net Accumulator MS
3	Temperature LS	3	Net Accumulator LS

Meter PV:	Output Function Block	Meter PV:	Input Function Block
Element	Attribute	Element	Attribute
4	Pressure MS (see Note)	4	Net Flowrate MS (float)
5	Pressure LS	5	Net Flowrate LS (float)
6	Differential Pressure MS (see Note)	6	Gross Accumulator MS
7	Differential Pressure LS	7	Gross Accumulator LS
8	Density MS (see Note)	8	Gross Standard Accumulator MS
9	Density LS	9	Gross Standard Accumulator LS
10	Reserved	10	Mass Accumulator MS
11	Reserved	11	Mass Accumulator LS

10.7.5 Pulse (Linear) Meter with Liquid Product

Meter PV: Output Function Block		Meter PV:	Meter PV: Input Function Block	
Element	Attribute	Element	Attribute	
0	Reserved	0	Reserved	
1	Water % (see Note)	1	Meter Alarms (Bitmap)	
2	Temperature MS (see Note)	2	Net Accumulator MS	
3	Temperature LS	3	Net Accumulator LS	
4	Pressure MS (see Note)	4	Net Flowrate MS (float)	
5	Pressure LS	5	Net Flowrate LS (float)	
6	Meter Pulses MS (double integer)	6	Gross Accumulator MS	
7	Meter Pulses LS (double integer)	7	Gross Accumulator LS	
8	Density MS (see Note)	8	Gross Standard Accumulator MS	
9	Density LS	9	Gross Standard Accumulator LS	
10	Meter Pulse Freq- Hz MS (float)	10	Mass Accumulator MS	
11	Meter Pulse Freq- Hz LS (float)	11	Mass Accumulator LS	

Note: You may select the data format (floating-point, scaled integer, or 4 to 20mA) for input variables using the AFC Manager.

10.7.6 Flow Rate Integration with Gas Product

Meter PV:	r PV: Output Function Block Meter PV: Input Function Block		Input Function Block
Element	Attribute	Element	Attribute
0	Reserved	0	Reserved
1	Reserved	1	Meter Alarms (Bitmap)
2	Temperature MS (see Note)	2	Net Accumulator MS
3	Temperature LS	3	Net Accumulator LS
4	Pressure MS (see Note)	4	Net Flowrate MS (float)
5	Pressure LS	5	Net Flowrate LS (float)
6	Flow Rate MS (see Note)	6	Gross Flowrate MS (float)

Meter PV: Output Function Block		Meter PV:	Meter PV: Input Function Block	
Element	Attribute	Element	Element Attribute	
7	Flow Rate LS	7	Gross Flowrate LS (float)	
8	Reserved	8	Fpv MS (float)	
9	Reserved	9	Fpv LS (float)	
10	Reserved	10	Cprime MS (float)	
11	Reserved	11	Cprime LS (float)	

10.7.7 Pulse Frequency Integration with Gas Product

Meter PV: Output Function Block		Meter PV:	Meter PV: Input Function Block	
Element	Attribute	Element	Attribute	
0	Reserved	0	Reserved	
1	Reserved	1	Meter Alarms (Bitmap)	
2	Temperature MS (see Note)	2	Net Accumulator MS	
3	Temperature LS	3	Net Accumulator LS	
4	Pressure MS (see Note)	4	Net Flowrate MS (float)	
5	Pressure LS	5	Net Flowrate LS (float)	
6	Reserved	6	Gross Flowrate MS (float)	
7	Reserved	7	Gross Flowrate LS (float)	
8	Reserved	8	Fpv MS (float)	
9	Reserved	9	Fpv LS (float)	
10	Meter Pulse Freq- Hz MS (float)	10	Cprime MS (float)	
11	Meter Pulse Freq- Hz LS (float)	11	Cprime LS (float)	

10.7.8 Flow Rate Integration with Liquid Product

Meter PV:	Output Function Block	ction Block Meter PV: Input Function Block	
Element	Attribute	Element	Attribute
0	Reserved	0	Reserved
1	Water % (see Note)	1	Meter Alarms (Bitmap)
2	Temperature MS (see Note)	2	Net Accumulator MS
3	Temperature LS	3	Net Accumulator LS
4	Pressure MS (see Note)	4	Net Flowrate MS (float)
5	Pressure LS	5	Net Flowrate LS (float)
6	Flow Rate MS (see Note)	6	Gross Accumulator MS
7	Flow Rate LS	7	Gross Accumulator LS
8	Density MS (see Note)	8	Gross Standard Accumulator MS
9	Density LS	9	Gross Standard Accumulator LS
10	Reserved	10	Mass Accumulator MS
11	Reserved	11	Mass Accumulator LS

Meter PV: Output Function Block		Meter PV: Input Function Block	
Element	Attribute	Element	Attribute
0	Reserved	0	Reserved
1	Water % (see Note)	1	Meter Alarms: Integer
2	Temperature MS (see Note)	2	Net Accumulator MS
3	Temperature LS	3	Net Accumulator LS
4	Pressure MS (see Note)	4	Net Flowrate MS (float)
5	Pressure LS	5	Net Flowrate LS (float)
6	Reserved	6	Gross Accumulator MS
7	Reserved	7	Gross Accumulator LS
8	Density MS (see Note)	8	Gross Standard Accumulator MS
9	Density LS	9	Gross Standard Accumulator LS
10	Meter Pulse Freq- Hz MS (float)	10	Mass Accumulator MS
11	Meter Pulse Freq- Hz LS (float)	11	Mass Accumulator LS

10.7.9 Pulse Frequency Integration with Liquid Product

Note: You may select the data format (floating-point, scaled integer, or 4 to 20mA) for input variables using the AFC Manager.

10.7.10 Returned Alarm Codes for Meter Data

The following table provides Alarm codes for meter data:

Alarm Code	Bit
Input out of range: Temperature	Bit 0
Input out of range: Pressure	Bit 1
Input out of range: Differential Pressure (or Flow Rate, or Frequency)	Bit 2
Input out of range: Flowing Density	Bit 3
Input out of range: Water Content	Bit 4
Differential pressure low (or Flow Rate, or Frequency)	Bit 5
Orifice Pressure Exception	Bit 6
Accumulation Overflow Error	Bit 7
Orifice Characterization Error	Bit 8
Analysis Total Zero (version 2.04 or earlier)	Bit 9
Reserved (version 2.05 or later)	
Analysis Total Not Normalized (version 2.04 or earlier	Bit 10
Analysis Characterization Error (version 2.05 or later)	
Compressibility Calculation Error (gas)	Bit 11
High Water Error (liquids)	
Reference Density Error	Bit 12
Temperature Correction Error	Bit 13
Vapor Pressure Error	Bit 14
Pressure Correction Error	Bit 15

Notes:

To see the alarm codes for your meter, search the Modbus Dictionary for "meter alarms" in the section "Meter Calculations".

The Meter Process Variable Block must provide all process variables in the format configured through the AFC Manager for each meter run that is implemented. This Output Function Block (OFB) can handle process variables in the following formats:

- Floating-Point
- Scaled Integer
- 4 to 20 ma (raw A/D)

Note 1: For water % (liquids only) floating point is not available. As a Scaled Integer it must be copied to element 1 with two decimal places implied. For example, water % value of 7.23 must be entered as 723. The module divides this value by 100.

Note 2: The floating point format takes up two elements (32 bits) for each process variable. For example, the Temperature must be copied from a floating point tag in the controller to elements 2 and 3 of the Output Function Block (OFB).

Note 3a: Temperature as a scaled integer must be copied to element 3 with 2 decimal places implied (1/100th of a degree). For example, a temperature of 24.97° F must be copied as 2497. Element 2 is ignored.

Note 3b: Flowing pressure as a scaled integer must be copied to element 5 with no decimal places implied for the SI units (kPa) and one decimal place implied for the U.S. units (psi). For example, a pressure of 5000 kPag must be copied as 5000 and a pressure of 259.7 psi must be copied as 2597. Element 4 is ignored.

Note 3c: Differential Pressure as a scaled integer must be copied to element 7 with 2 decimal places implied for inches of H2O and 3 places for kPa ($1/100^{th} \& 1/100^{th}$ of the selected unit). For example, a DP of 37.52 in H₂O must be copied as 3752. Element 6 is ignored.

Note 3d: Flow Rate as a scaled integer must be copied to element 5 with zero decimal places implied. Element 6 is ignored. To obtain a desired precision, choose an appropriate Flow Input Unit (Meter Configuration window, Primary Input Characteristics panel)

Note 3e: Pulse Frequency may be supplied in scaled integer or 4 to 20 mA formats only in version 2.05 or later; in version 2.04 or earlier only floating point format is available. As a scaled integer it must be copied to element 11 as an INT in units of Hz with zero decimal places implied. For example, a frequency of 2574 Hz must be copied as 2574.

Note 4: Note that three options for the product density for liquid meters are available, and if the Scaled Integer option is selected then density must be copied as follows to element 9 (element 8 is ignored):

- Kg/m3: One implied decimal place. (513.7 kg/m3 must be entered as 5137)
- Relative Density: Four implied decimal places. (1.0023 60F/60F must be entered as 10023)
- API: Two implied decimal places. (80.45°API must be entered as 8045).

Note 5: For the 4 to 20 mA format, the raw A/D count from the analog input module must be copied as an INT to the odd-numbered element of the OFB pair (or to element 1 for Water %). The even-numbered element is ignored.
10.8 Meter Analysis Function

10.8.1 Description

This block provides the analysis for AGA8 and GPA8173 calculations. Up to 24 analysis mole fractions, scaled (as a fraction of 1) to 4 decimal places may be configured. Upon change of analysis, the meter undergoes a "characterization" calculation. If the analysis has not changed, no characterization is performed. This function starts at offset 222 in the M0 and M1 files and uses 26 registers.

This block should only be used for applications that require an online gas chromatograph device. Refer to the AFC Manager User Manual to select the meter elements before using this function block.

10.8.2 Output

Word 0 = Stream number 1 through four (version 2.05 or later). 0 = active stream (all versions)

Word 1 meter number 1 thru 8, remainder up to 24 molar fractions scaled by 10000. Triggered by "Analysis present" signal (O:x/3).

Element	Attribute
M0:x.222	Stream number
M0:x.223	Meter Number
M0:x.224	Propane: C1
M0:x.225	Nitrogen: N2
M0:x.226	Carbon dioxide: CO2
M0:x.227	Methane: C2
M0:x.228	Propane: C3
M0:x.229	Water: H2O
M0:x.230	Hydrogen sulfide: H2S
M0:x.231	Hydrogen: H2
M0:x.232	Carbon Monoxide: CO
M0:x.233	Oxygen: O2
M0:x.234	iso Butane: iC4
M0:x.235	Butane -C4
M0:x.236	iso Pentane: iC5
M0:x.237	Pentane: C5
M0:x.238	Hexane: C6
M0:x.239	Heptane: C7
M0:x.240	Octane: C8
M0:x.241	Nonane: C9
M0:x.242	Decane: C10
M0:x.243	Helium: He

Meter Analysis: M0 file

Element	Attribute
M0:x.244	Argon: Ar
M0:x.245	neo Pentane: C5
M0:x.246	Ux User 1
M0:.247	Uy User 2

10.8.3 Special Notes

Note 1: The component mole fractions are entered as scaled integers. A component mole fraction of .0753 (7.53 mole percent) is entered as the integer value 753. This number is internally divided in the AFC module by 10,000.

10.8.4 Input

Word 0 = Active stream number echoed; 0 = output stream number out of range.

Word 1 = Meter number echoed; 0 = out of range.

Notes: Status "Analysis Meter Number Range" (1:x/9) results from the latest activation, and corresponds to M1:x.223 = 0.

Element	Attribute
M1:x.222	Active stream number echoed, or 0
M1:x.223	Meter Number echoed, or 0
M1:x.224	reserved
M1:x.225	reserved
M1:x.226	reserved
M1:x.227	reserved
M1:x.228	reserved
M1:x.229	reserved
M1:x.230	reserved
M1:x.231	reserved
M1:x.232	reserved
M1:x.233	reserved
M1:x.234	reserved
M1:x.235	reserved
M1:x.236	reserved
M1:x.237	reserved
M1:x.238	reserved
M1:x.239	reserved
M1:x.240	reserved
M1:x.241	reserved
M1:x.242	reserved
M1:x.243	reserved
M1:x.244	reserved

Meter analysis: M1 file

Element	Attribute	
M1:x.245	reserved	
M1:x246	reserved	
M1:x.247	reserved	

10.9 Meter Type and Product Group Summary

Note: This function is available only in versions 2.04 and later.

This block informs the SLC of the gross characterization of the meter channels, issuing notification signals for changes thereto. The SLC may then tailor the behavior of its ladder according to meter type. The block begins at M-file offset 250 and allocates 1 word per meter so that meter 8 is at offset 257.

The Output and Input details that follow describe how each such meter-specific word is used.

10.9.1 Output

Word 0: Not used.

10.9.2 Input

Word 0: Meter type and product group summary:

Bit	Description
0	[spare]
1	[spare]
2	[spare]
3	[spare]
4	metering device is linear (pulse)
5	product phase is liquid
6	primary input is flow rate / frequency
7	[spare]
8	stream 1 enabled
9:	stream 2 enabled
10	stream 3 enabled
11	stream 4 enabled
12 to 13:	number of active stream (0-based: 0 thru 3)
14	[spare]
15	[spare]

Changes are announced to the SLC by "Meter Type and Product Group" notification (I:e.00/15).

Notes: While "Meter Type and Product Group" acknowledgment (O:e.00/15) is high, changes to this block and corresponding notifications are held pending (queued for later discharge); otherwise its data is kept current continuously. During startup, the AFC initializes this block and sets the notification bit before beginning backplane communication, so that when status "M-files & Input Valid" appears (I:e.00/00) both the data and the notification are immediately available. For a multiple-stream AFC (version 2.05 or later), non-zero stream information is returned; for a single-stream AFC, the one stream is always enabled and active rendering stream information redundant, and returned stream information is all zero.

10.10 Meter Archive Fetch

Note: This function is available only in versions 2.04 and later.

This block allows the SLC to fetch archive records from the module. It begins at M-file offset 300 and occupies 44 words.

10.10.1	Output
---------	--------

Element	Attribute
300	Not used.
301	Meter number 1 thru 8.
302	Archive file select: 0 daily, 1 hourly.
303	Archive record age: =0 current, >0 age.
304 to 343	Not used.

Element	Attribute
300	Not used.
301	Meter number echoed; 0 => out of range.
302	Archive file select echo; -1 (hex FFFF) => undefined. 8000 hex => invalid select
303	Archive age echoed; -1 (hex FFFF) => too large.
304 to 343	Up to 40 words containing fetched archive record.

Notes: Status "Archive Record Fetch Error" (I:e.00/12) results from latest activation, and indicates one or more of the above conditions.

10.11 Modbus Gateway Function

10.11.1 Description

The Modbus Gateway function allows you to access the Primary and Virtual Slave data in the MVI46-AFC module. Read and Write operations can be issued to either holding or input registers in the module Modbus table. This function starts at offset 400 in the M0 and M1 files and has a length of 129 words.

10.11.2 Output

The output block sends a request to the MVI46-AFC Modbus database. This function is triggered by "Gateway Transaction Pending" signal (O:x/4).

Word Offset	Bit	Description
M0:x.400	0	Slave
		0: Primary
		1: Virtual
M0:x.400	1	Register Bank
		0: Holding
		1: Input
M0:x.400	2	Direction
		0: Read (from AFC)
		1: Write (to AFC)
M0:x.401		Register Address
M0:x.402		Number of Registers
M0:x.403		Transaction Number
M0:x.404 to 528		Data to be Written

X=MVI46-AFC slot number

10.11.3 Input

The MVI46-AFC responds with the following block:

Word Offset	Description			
M1:x.400 - 401	Not Used			
M1:x.402	Modbus Exception Code			
M1:x.403	Transaction Number Echo			
M1:x.404 - 528	Data Read			

Notes: The "Transaction Number" is provided as a resource for the SLC to use in implementing multiplexing when required. The AFC copies its value verbatim from output to input and does not use it in any other manner. During the AFC scan, a Gateway Write is discharged preceding meter measurement calculations and a Gateway Read is discharged following such calculations.

10.12 Modbus Pass-Thru Function

10.12.1 Description

This block fetches any pass-thru Modbus write command sent by an external Modbus host, which is returned to the SLC essentially verbatim. The AFC module buffers any such command until it is returned to the SLC via this input function block, at which time the buffer is made available for the next command.

The Modbus pass-thru area must be configured using the AFC Manager (Site Configuration) for bit and word writes. In this way, all write commands issued by master commands to the module in the Pass-Thru area are automatically used for Pass-Thru. The data region configured in the AFC Manager refers to the Virtual Slave. All Modbus Pass-Thru commands are written directly to the SLC (not the MVI46-AFC data table).

This function starts at M-file offset 600 and uses 129 words.

10.12.2 Output

Triggered by "Pass-Thru Transaction Fetch" signal (O:x/5).

Description	cription	
0 = Acknowledge Receipt		
1 = Swap Words		
-	0 = Acknowledge Receipt	

10.12.3 Input

Word	Description		
M1:x.600	0 = Transaction Not Pending		
	1 = Transaction Pending		
M1:x.601	0 = Word Command		
	1 = Bit Command		
M1:x.602	Register Address		
M1:x.603	Number of Registers		
M1:x.604 to 728	Data Read		

Notes: The first four M1 words are updated continuously by the AFC; while a pass-thru transaction is pending, they contain the values given above, and while no such transaction is pending they are all zero, independent of the triggering "Fetch" signal. Upon acknowledgement of the signal (when its reflection at 1:x/5 goes high) M1 words + 604 thru + 728 are populated with the transaction data, swapped or not according to the option bit in M0. The entire M1 block then retains its contents until the signal falls; at that time, if the acknowledge receipt option is set, then the M1 block is cleared to zero and made available for the next pass-thru, else the block remains unchanged and the current transaction remains pending. This is the only case in which the reset of a signal causes any action other than reflection of the reset.

10.13 Modbus Master

10.13.1 Description

The MVI46-AFC port 3 can be configured as a Modbus Master Port using the AFC Manager as shown in the following illustration:

Using the Modbus Master function allows the MVI46-AFC to issue Modbus Master Commands to any slave devices attached to Master Port 3. This function starts at offset 800 and uses 131 words.

10.13.2 Output

Triggered by "Master Transaction Pending" signal (O:x/6).

Word	Description			
M0:x.800	Slave address			
M0:x.801	0 = Read Input			
	1 = Read holding/output			
	2 = Write holding/output			
M0:x.802	(Register Size) See Note			
	0 = Bit (in the AFC, packed 16 to a word)			
	1 = Word (16-bit registers)			
	2 = Long (32-bit items as register pairs)			
	3 = Long Remote (32-bit items as single registers)			
M0:x.803	Register Address in Slave			
M0:x.804	Number of Data Items			
M0:x.805	Transaction Number			
M0:x.806 to 930	Data to be Written			

Note: To this, add 10 for byte swap (except size 0), and/or 20 for word swap (sizes 2 and 3 only)...

10.13.3	input	
Word	Description	
M1:x.800	Not Used	
M1:x.801	Not Used	
M1:x.802	Not Used	
M1:x.803	Not Used	
M1:x.804	Error Code	
	0 = No Error	
	>0 Modbus exception code or communication error.	
	Modbus exception codes are issued by the responding slave and listed in commonly available Modbus protocol manuals; they lie between 1 and 127 and include:	
	1 = Illegal Function	
	2 = Illegal Address	
	3 = Illegal Data Value	
	Communication errors are issued by the AFC:	
	500 - CTS Timeout	
	501 - Receive Timeout	
	502 - Bad Framing	
	503 - Buffer Overrun	
	504 - Bad Checksum/CRC	
	505 - Wrong Slave	
	506 - Wrong Function Code	
	507 - Wrong Length	
	<0 - Configuration, Parameter, or Logic Error:	
	-1 - Master port not configured	
	-2 - Master port never used	
	-3 - Bad slave address	
	-4 - Bad direction/target	
	-5 - Bad datum size / swap options	
	-6 - Bad number of data items	
M1:x.805	Transaction Number Echo	
M1:x.806 to 930	Data Read	

10.13.3 Input

Note: The "Transaction Number" is provided as a resource for the processor to use in implementing multiplexing when required; the AFC copies its value verbatim from output to input and does not use it in any other manner.

Note: When word-swap is applied to a data packet containing an odd number of words, the last word is swapped with a word of zero.

11 MVI46-AFC Sample Ladder Logic

In This Chapter

*	Installing and Configuring the Module117
*	Sample Ladder and MVI46-AFC Version Compatibility 119
*	Data Files
*	Process Variables and Calculation Results Registers121
*	Sample Ladder

This section describes how to use the sample ladder logic to work with the MVI46-AFC.

This example ladder shows you how to use all block functions.

- WallClock (LAD17)
- Meter Process Input (LAD5 to 12)
- Meter Analysis (LAD16)
- Modbus Gateway (LAD13)
- Modbus Pass-Thru (LAD14)
- Modbus Master (LAD15)

11.1 Installing and Configuring the Module

This chapter describes how to install and configure the module to work with your application. The configuration process consists of the following steps.

1 Use RSLogix to identify the module to the processor and add the module to a project.

Note: The RSLogix software must be in "offline" mode to add the module to a project.

- 2 Modify the module's configuration files to meet the needs of your application, and copy the updated configuration to the module. Example configuration files are provided on the CD-ROM. Refer to the Modifying the Example Configuration File section, later in this chapter, for more information on the configuration files.
- 3 Modify the example ladder logic to meet the needs of your application, and copy the ladder logic to the processor. Example ladder logic files are provided on the CD-ROM.

Note: If you are installing this module in an existing application, you can copy the necessary elements from the example ladder logic into your application.

This chapter describes these steps in more detail.

The first step in installing and configuring the module is to define the module to the system. Using RSLogix 500, go to the I/O Configuration menu and select the option "Other - Requires I/O Card Type ID"

Enter **12835** as the Card ID.

"Other" type IO card	×
Enter the IO card's ID number (decimal):	ОК
12835	Cancel

Double-click the Module field you just created.

I/O Configuration		_
Racks	Current Cards A	\vailable
1 1746-A7 7-Slot Rack		Filter All IO
2 1/0 Rack Not Installed Read 10 Config.	Part #	Description
3 1/0 Rack Not Installed	1746-0BP8 1746-0BP16	8-Output [2 A](TRANS-SRC) 24VDC 16-Output [1 A](TRANS-SRC) 24VDC
	1746-0616	16-Output (TTL-SINK) 5 VDC
PowerSupply	1746-0V8	8-Output (TRANS-SINK) 10/50 VDC
	1746-0V16	16-Output (TRANS-SINK) 10/50 VDC
# Part # Description	1746-0VP16	16-Output [1 A](TRANS-SINK) 24VDC
0 1747-L551B 5/05 CPU - 16K Mem. 0S501 Series C	1746-0V32	32-Output (TRANS-SINK) 10/50 VDC
1 OTHER I/O Module - ID Code = 12835	1746-0W4	4-Output (RLY) 240 VAC
2	1746-0W8	8-Output (RLY) 240 VAC
3	1746-0W16	16-Output (RLY) 240 VAC
4	1746-0×8	8-Output Isolated Relay
5	1746-QS	Synchronized Axes Module
5	1746-QV	Open Loop Velocity Control
	1747-RCIF	Robot Control Interface Module
	1747-SCNR	ControlNet SLC Scanner
	1747-SDN	DeviceNet Scanner Module
	1394-SJT	GMC Turbo System
	1203-SM1	SCANport Comm Module - Basic
	1203-SM1	SCANport Comm Module - Enhanced
	1747-SN	RIO Scanner
Adv Config Help Hide All Cards	L	Other Requires I/O Card Type ID 🔽

Fill in the Advanced I/O Configuration window as shown in the following example:

Advanced I/O Configuration	×
Slot #: 1 OTHER I/O Module - ID Code = 12835	ОК
Maximum Input Words : 2 Maximum Dutput Words : 2	Cancel Help
Setup Scanned Input Worde 2 Scanned Output Words 2 Interrupt Service Routine (ISR) # 0 M0 Length 1024 M1 Length 1024 G File Length 0	Edit G Data

The last step is to add the ladder logic. If you are using the example ladder logic, adjust the ladder to fit your application. Refer to the example Ladder Logic section in this manual.

The module is now set up and ready to use with your application. Insert the module in the rack and attach the Modbus serial communication cables. Download the new application to the controller and place the processor in run mode. If you encounter errors, refer to the **Diagnostics and Troubleshooting** section for information on how to connect to the module's Config/Debug port to use its troubleshooting features.

11.2 Sample Ladder and MVI46-AFC Version Compatibility

The sample ladder logic file MVI46AFC.RSS is completely compatible with firmware version 2.04.000 or later. For previous versions, it is required a simple change as described below.

The process input and calculation results data format will depend on the meter type and product group configured for each meter. The ladder logic requires this information in order to correctly update the process values between the module and the processor. The firmware version 2.04 or later supports the meter summary functionality that allows the ladder logic to read the meter settings (meter type and product group) from the module (starting at M1 file offset 250).

The sample ladder logic reserves the following bits to show the meter settings (configured through AFC Manager):

Bit	Meter	Value	Description
B3:10/0	1	0	Differential Meter
		1	Linear Meter
B3:10/1	2	0	Differential Meter
		1	Linear Meter
B3:10/2	3	0	Differential Meter
		1	Linear Meter
B3:10/3	4	0	Differential Meter
		1	Linear Meter
B3:10/4	5	0	Differential Meter
		1	Linear Meter
B3:10/5	6	0	Differential Meter
		1	Linear Meter
B3:10/6	7	0	Differential Meter
		1	Linear Meter
B3:10/7	8	0	Differential Meter
		1	Linear Meter
Meter Su	Meter Summary: Product Group (B3:11)		
Bit	Meter	Value	Description
B3:11/0	1	0	Gas Product
		1	Liquid Product
B3:11/1	2	0	Gas Product
		1	Liquid Product

Meter Summary: Meter Type (B3:10)

Bit	Meter	Value	Description
B3:11/2	3	0	Gas Product
		1	Liquid Product
B3:11/3	4	0	Gas Product
		1	Liquid Product
B3:11/4	5	0	Gas Product
		1	Liquid Product
B3:11/5	6	0	Gas Product
		1	Liquid Product
B3:11/6	7	0	Gas Product
		1	Liquid Product
B3:11/7	8	0	Gas Product
		1	Liquid Product

FOR MVI46-AFC firmware 2.04.000 or later:

These meter summary bits are automatically updated by the ladder logic and therefore no further action is required by the user.

FOR MVI46-AFC firmware older than version 2.04.000:

These meter summary bits will not be automatically updated by the ladder logic. Therefore the user must manually set these bits according to the previous tables.

Follows the steps below:

- 1 Delete routine LAD 18 (PROFILE) from the sample ladder logic
- 2 Delete the JSR call for LAD18 (PROFILE) located at LAD 3 (BACKPLANE) Rung 0001.
- **3** Force in ladder word/bits B3:10 and B3:11 according to the previous tables (following on how your meter was configured through AFC Manager).

11.3 Data Files

You must consider using a group of data files in its application ladder logic. The sample ladder logic has the following data files:

	0
Data File	Description
N9	Supervisory Block
N10	Spare
N11	Gateway Read
N12	Gateway Write
N13	Modbus Pass-thru
N14	Modbus Master
N15	Meter 1 - Integer Data
F16	Meter 1 - Float Data
N17	Meter 2 - Integer Data
F18	Meter 2 - Float Data
N19	Meter 3 - Integer Data

Data File	Description
F20	Meter 3 - Float Data
N21	Meter 4 - Integer Data
F22	Meter 4 - Float Data
N23	Meter 5 - Integer Data
F24	Meter 5 - Float Data
N25	Meter 6 - Integer Data
F26	Meter 6 - Float Data
N27	Meter 7 - Integer Data
F28	Meter 7 - Float Data
N29	Meter 8 - Integer Data
F30	Meter 8 - Float Data
N31	wallclock
N32	Analysis
N40	Modbus Master Write Data
N41	Modbus Master Read Data
F50	Modbus Gateway Float Read
F51	Modbus Gateway Float Write

11.4 Process Variables and Calculation Results Registers

The following tables show the registers that contain output variables to be transferred by the processor to the module and calculation results to be transferred from the module to the processor. The registers to be used will depend on the meter type and product group as follows.

Meter Type	Product Group	Temperature	Pressure	Differential Pressure	Pulse Count	Pulse Frequency	Water %	Density
Differential	Gas	F16:0	F16:1	F16:2	-	-	-	-
Differential	Liquid	F16:0	F16:1	F16:2	-	-	N15:1	F16:3
Linear	Gas	F16:0	F16:1	-	N15:6/ N15:7	F16:2	-	-
Linear	Liquid	F16:0	F16:1	-	N15:6/ N15:7	F16:3	N15:1	F16:2

11.4.2 Meter 1: Input Results

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Differential	Gas	N15:21	N15:22 / N15:23	F16:10	F16:11	F16:12	F16:13	-	-	-
Differential	Liquid	N15:21	N15:22 / N15:23	F16:10	-	-	-	N15:26/ N15:27	N15:28/ N15:29	N15:30/ N15:31

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Linear	Gas	N15:21	N15:22 / N15:23	F16:10	F16:11	F16:12	F16:13			
Linear	Liquid	N15:21	N15:22 / N15:23	F16:10	-	-	-	N15:26/ N15:27	N15:28/ N15:29	N15:30/ N15:31

11.4.3 Meter 2: Output Variables

Meter Type	Product Group	Temperature	Pressure	Differential Pressure	Pulse Count	Pulse Frequency	Water %	Density
Differential	Gas	F18:0	F18:1	F18:2	-	-	-	-
Differential	Liquid	F18:0	F18:1	F18:2	-	-	N17:1	F18:3
Linear	Gas	F18:0	F18:1	-	N17:6/ N17:7	F18:2	-	-
Linear	Liquid	F18:0	F18:1	-	N17:6/ N17:7	F18:3	N17:1	F18:2

11.4.4 Meter 2: Input Results

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Differential	Gas	N17:21	N17:22 / N17:23	F18:10	F18:11	F18:12	F18:13	-	-	-
Differential	Liquid	N17:21	N17:22 / N17:23	F18:10	-	-	-	N17:26/ N17:27	N17:28/ N17:29	N17:30/ N17:31
Linear	Gas	N17:21	N17:22 / N17:23	F18:10	F18:11	F18:12	F18:13			
Linear	Liquid	N17:21	N17:22 / N17:23	F18:10	-	-	-	N17:26/ N17:27	N17:28/ N17:29	N17:30/ N17:31

11.4.5 Meter 3: Output Variables

Meter Type	Product Group	Temperature	Pressure	Differential Pressure	Pulse Count	Pulse Frequency	Water %	Density
Differential	Gas	F20:0	F20:1	F20:2	-	-	-	-
Differential	Liquid	F20:0	F20:1	F20:2	-	-	N19:1	F20:3
Linear	Gas	F20:0	F20:1	-	N19:6/ N19:7	F20:2	-	-
Linear	Liquid	F20:0	F20:1	-	N19:6/ N19:7	F20:3	N19:1	F20:2

11.4.6 Meter 3: Input Results

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Differential	Gas	N19:21	N19:22 / N19:23	F20:10	F20:11	F20:12	F20:13	-	-	-
Differential	Liquid	N19:21	N19:22 / N19:23	F20:10	-	-	-	N19:26/ N19:27	N19:28/ N19:29	N19:30/ N19:31
Linear	Gas	N19:21	N19:22 / N19:23	F20:10	F20:11	F20:12	F20:13	-	-	-
Linear	Liquid	N19:21	N19:22 / N19:23	F20:10	-	-	-	N19:26/ N19:27	N19:28/ N19:29	N19:30/ N19:31

11.4.7 Meter 4: Output Variables

Meter Type	Product Group	Temperature	Pressure	Differential Pressure	Pulse Count	Pulse Frequency	Water %	Density
Differential	Gas	F22:0	F22:1	F22:2	-	-	-	-
Differential	Liquid	F22:0	F22:1	F22:2	-	-	N21:1	F22:3
Linear	Gas	F22:0	F22:1	-	N21:6/ N21:7	F22:2	-	-
Linear	Liquid	F22:0	F22:1	-	N21:6/ N21:7	F22:3	N21:1	F22:2

11.4.8 Meter 4: Input Results

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Differential	Gas	N21:21	N21:22 / N21:23	F22:10	F22:11	F22:12	F22:13	-	-	-
Differential	Liquid	N21:21	N21:22 / N21:23	F22:10	-	-	-	N21:26/ N21:27	N21:28/ N21:29	N21:30/ N21:31
Linear	Gas	N21:21	N21:22 / N21:23	F22:10	F22:11	F22:12	F22:13	-	-	-
Linear	Liquid	N21:21	N21:22 / N21:23	F22:10	-	-	-	N21:26/ N21:27	N21:28/ N21:29	N21:30/ N21:31

11.4.9 Meter 5: Output Variables

Meter Type	Product Group	Temperature	Pressure	Differential Pressure	Pulse Count	Pulse Frequency	Water %	Density
Differential	Gas	F24:0	F24:1	F24:2	-	-	-	-
Differential	Liquid	F24:0	F24:1	F24:2	-	-	N23:1	F24:3
Linear	Gas	F24:0	F24:1	-	N23:6/ N23:7	F24:2	-	-
Linear	Liquid	F24:0	F24:1	-	N23:6/ N23:7	F24:3	N23:1	F24:2

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Differential	Gas	N23:21	N23:22 / N23:23	F24:10	F24:11	F24:12	F24:13	-	-	-
Differential	Liquid	N23:21	N23:22 / N23:23	F24:10	-	-	-	N23:26/ N23:27	N23:28/ N23:29	N23:30/ N23:31
Linear	Gas	N23:21	N23:22 / N23:23	F24:10	F24:11	F24:12	F24:13	-	-	-
Linear	Liquid	N23:21	N23:22 / N23:23	F24:10	-	-	-	N23:26/ N23:27	N23:28/ N23:29	N23:30/ N23:31

11.4.10 Meter 5: Input Results

11.4.11 Meter 6: Output Variables

Meter Type	Product Group	Temperature	Pressure	Differential Pressure	Pulse Count	Pulse Frequency	Water %	Density
Differential	Gas	F26:0	F26:1	F26:2	-	-	-	-
Differential	Liquid	F26:0	F26:1	F26:2	-	-	N25:1	F26:3
Linear	Gas	F26:0	F26:1	-	N25:6/ N25:7	F26:2	-	-
Linear	Liquid	F26:0	F26:1	-	N25:6/ N25:7	F26:3	N25:1	F26:2

11.4.12 Meter 6: Input Results

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Differential	Gas	N25:21	N25:22 / N25:23	F26:10	F26:11	F26:12	F26:13	-	-	-
Differential	Liquid	N25:21	N25:22 / N25:23	F26:10	-	-	-	N25:26/ N25:27	N25:28/ N25:29	N25:30/ N25:31
Linear	Gas	N25:21	N25:22 / N25:23	F26:10	F26:11	F26:12	F26:13	-	-	-
Linear	Liquid	N25:21	N25:22 / N25:23	F26:10	-	-	-	N25:26/ N25:27	N25:28/ N25:29	N25:30/ N25:31

11.4.13 Meter 7: Output Variables

Meter Type	Product Group	Temperature	Pressure	Differential Pressure	Pulse Count	Pulse Frequency	Water %	Density
Differential	Gas	F28:0	F28:1	F28:2	-	-	-	-
Differential	Liquid	F28:0	F28:1	F28:2	-	-	N27:1	F28:3
Linear	Gas	F28:0	F28:1	-	N27:6/ N27:7	F28:2	-	-
Linear	Liquid	F28:0	F28:1	-	N27:6/ N27:7	F28:3	N27:1	F28:2

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Differential	Gas	N27:21	N27:22 / N27:23	F28:10	F28:11	F28:12	F28:13	-	-	-
Differential	Liquid	N27:21	N27:22 / N27:23	F28:10	-	-	-	N27:26/ N27:27	N27:28/ N27:29	N27:30/ N27:31
Linear	Gas	N27:21	N27:22 / N27:23	F28:10	F28:11	F28:12	F28:13	-	-	-
Linear	Liquid	N27:21	N27:22 / N27:23	F28:10	-	-	-	N27:26/ N27:27	N27:28/ N27:29	N27:30/ N27:31

11.4.14 Meter 7: Input Results

11.4.15 Meter 8: Output Variables

Meter Type	Product Group	Temperature	Pressure	Differential Pressure	Pulse Count	Pulse Frequency	Water %	Density
Differential	Gas	F30:0	F30:1	F30:2	-	-	-	-
Differential	Liquid	F30:0	F30:1	F30:2	-	-	N29:1	F30:3
Linear	Gas	F30:0	F30:1	-	N29:6/ N29:7	F30:2	-	-
Linear	Liquid	F30:0	F30:1	-	N29:6/ N29:7	F30:3	N29:1	F30:2

11.4.16 Meter 8: Input Results

Meter Type	Product Group	Alarms	Net Acc	Net Flow Rate	Gross Flow Rate	Fpv	Cprim	Gross Acc	Gross Stand Acc	Mass Acc
Differential	Gas	N29:21	N29:22 / N29:23	F30:10	F30:11	F30:12	F30:13	-	-	-
Differential	Liquid	N29:21	N29:22 / N29:23	F30:10	-	-	-	N29:26/ N29:27	N29:28/ N29:29	N29:30/ N29:31
Linear	Gas	N29:21	N29:22 / N29:23	F30:10	F30:11	F30:12	F30:13	-	-	-
Linear	Liquid	N29:21	N29:22 / N29:23	F30:10	-	-	-	N29:26/ N29:27	N29:28/ N29:29	N29:30/ N29:31

11.5 Sample Ladder

11.5.1 LAD2: MAIN

The first rung sets the wallclock when the module is powered up. This is required because the wallclock will not be running at that time and, until the ladder logic sets the wallclock, there will be no flow calculation.

	SETS MVI46-AFC WALLCLOCK
First Pass	WALLCLOCKSET
5.1	D.0
	0
	I I

The next rung starts the scan of the entire ladder logic. The Input Image bit I:1/0 (M-Files & Input Valid) indicates that the module is initialized and ready for communication.

0001	M-FILES & INPUT VALID I:1 0 OTHER	JER Jump To Subroutine SBR File Number U.3]
------	---	--	---

11.5.2 LAD3: BACKPLANE

This ladder file basically updates the supervisory block and calls the other ladder routines.

The following rung copies the Supervisory Block Input (from the M1 file) to the SLC memory (N9:30), and it also copies the meter status (if enabled or disabled) to N9:2 to be used later in the ladder logic.

When bit B3:0/3 is toggled, the wallclock function (sets the module's wallclock) is activated. Bit B3:0/1 reads the wallclock information from the module to the SLC.

The following rung jumps to the ENABL_MTRS routine where the enable and disable operations for each meter are handled.

The following eight rungs jump to each meter routine. Each routine will copy the output variables to the module and read the input results to the SLC processor. The routine will only be scanned if the meter is enabled.

After all meters are handled, this rung initiates a Modbus Gateway Read or Write (depending on which bit is toggled). This function block allows the SLC ladder logic to access the data in the Modbus Internal Database. LAD9 routine contains all ladder logic to handle Modbus Gateway function.

The following rung calls the pass-thru routine where Modbus commands sent by an external Modbus master device will be handled (if the destination address is within the configured pass-thru range).

This rung issues a Modbus Master function block to be issued to any Modbus slave devices connected to Port 3. LAD11 contains all ladder logic to handle Modbus Master commands.

After the molar analysis command bit is toggled, the ladder logic will initialize the meter index register (N32:0) and will jump to the ANALYSIS routine. This routine will move the molar concentrations dynamically from ladder logic to the module for all meters. Remember that if the concentration values are transferred from ladder logic you will not be able to enter the values using the AFC Manager software, because the values would be overwritten.

The next rung updates the Supervisory Block using the N9:0 data file as the source. The bit O:1.0 informs the MVI46-AFC that there is new Supervisory Data available.

11.5.3 LAD 4: ENABL_MTRS

This routine will handle the logic to enable and disable any meter. A meter will only perform flow calculation if it is enabled; however you have to disable the meter in order to change its meter type or product group.

If bit B3:5/0 is toggled, it enables Meter 1 using the Supervisory Block. If bit B3:5/1 is toggled, it disables Meter 1. The Supervisory Block Input bit (M1:30/0) is set to ON if the meter is enabled.

METER 1 In this example Meter 1 is Orifice (Gas) type. ENABLE METER 1 Meter Enabled B3:5 N9:4 0002 Œ` 'n n DISABLE METER 1 Meter Disable B3:5 N9:3 0003 đD) 0 Meter Enabled Status Meter Enabled for 16 meters N9:30 N9:4 0004 ťŬ Ő 0 ENABLE METER 1 B3:5 Ú) 0 Meter Enabled Status for 16 meters Meter Disable N9:30 N9:3 0005 Ú, H 'n 0 DISABLE METER 1 B3:5 ťľ

Important: DO NOT latch bits B3:5/0 and B3:5/1.

11.5.4 LAD 5 to LAD12: Meters 1 to 8

This file shows how to update the input variables for meter 1 and then read the calculation results back to the module.

Each routine will contain four rungs for transfer of process variable and calculation results values. Each rung will handle at one of the four possible combinations depending on how the meter was configured through AFC Manager (type = differential or linear, product group = gas or liquid)

For example, a differential meter with gas product has three floating point input parameters, so the ladder logic moves the process variables from registers F16:0, F16:1 and F16:2 to N15:0 in order to convert the floating point data into pairs of integers (as expected by the module).

After the buffer is ready (from N15:0 to N15:11), all data is moved to the module (M0 file). For meter 1, the M0 file offset starts at address M0:1.30. Each meter occupies 12 words, so meter 2 starts at address M0:1.42, meter 3 starts at address M0:1.54, etc.

After the calculation result data is available, the Meter 1 process input valid bit is set and the input data (such as the flow rate) can be copied into the SLC memory. Lastly, the ladder logic converts the value from integer format to floating point when necessary.

Follows the rungs for all 4 possible combinations for meter 1. All other meters will implement the same combinations in a similar fashion.

1 METER TYPE = DIFFERENTIAL, PRODUCT GROUP = GAS

2 METER TYPE = DIFFERENTIAL, PRODUCT GROUP = LIQUID

3 METER TYPE = LINEAR, PRODUCT GROUP = GAS

4 METER TYPE = LINEAR, PRODUCT GROUP=LIQUID

The routine also handles the meter signals commands that allows the processor to request the following tasks from the module:

- Select Stream 1 to 4 (only for MVI46-AFC firmware version 2.05.000) or later
- Write Daily/Hourly Archive
- Reset resettable accumulator 1 to 4

11.5.5 LAD 13: GATEWAY

This file shows how to use the Modbus Gateway function block in order to allow the SLC access the MVI46-AFC internal Modbus database.

The following rung shows how to send a Modbus Gateway Read function block to the MVI46-AFC. The Modbus Gateway function block starts at register N11:0 according to the specification presented in this manual. The data read from the module is copied starting at register N11:10.

You can configure the read or write gateway commands using data file N11 or N12. Refer to the Function Block section for more information.

11.5.6 LAD14: Modbus Pass-Thru

This file shows how to use the Modbus Pass-Thru function block. In order to use this function block, the pass-thru region must be configured using the AFC Manager Software (Site Configuration window). All write commands addressed to the Virtual Slave inside the Pass-Thru region will activate bit I:1/28. This flags a new Modbus pass-thru command to be processed. The data written is copied to SLC memory starting at address N13:10.

11.5.7 LAD15: Modbus Master

This file shows how to use the Modbus Master function block. This function block has a Transaction Number that is copied back with the block response so the ladder logic may send sequential commands.

11.5.8 LAD 16: ANALYSIS

This routine shows how to transfer the molar concentration data from ladder logic to the SLC processor. Register N32:0 is the meter index (increments from 1 to 8) that allows the logic to move the molar analysis for all meters.

The following rung guarantees that the index is valid (between 1 and 8):

11.5.9 LAD17: WALLCLOCK

This ladder file shows how to use the wallclock function block.

This rung shows how to write the new wallclock using the current SLC date and time information (S:37). After the wallclockset bit is toggled, the data is copied. When the ladder receives the acknowledgment the bit is cleared.

Important: Because the sample ladder logic uses the SLC date and time information to update the MVI46-AFC wallclock, you should verify that the processor has valid clock data before using the module.

The next rung shows how to read the current wallclock to the SLC. When WallClockREAD bit is toggled, the data is copied.

12 Troubleshooting

In This Chapter

*	User LEDs	141
*	BBRAM LEDs	142
*	Meter Alarms	142
*	Checksum alarms	146
*	Events	146
*	Audit Scan	

MVI46-AFC modules have the following communication connections on the module:

- Two RS-232/422/485 Application ports
- One RS-232 Configuration/Debug port

This section provides information that will assist you during the module operation on troubleshooting issues. This section describes the following topics:

- LEDs
- Meter Alarms
- Events
- Audit Scan

12.1 User LEDs

There are two "user" LEDs used to indicate overall module status; App Status and BP Act (with P1, P2, or P3).

12.1.1 App Status LED

State	Description
Rapid Blinking	The processor is offline (probably in program mode).
Steady On	Some meter is indicating an alarm or no meters are enabled.
Off	The module is functioning properly.

12.1.2 BP Act and P1, P2, or P3

These LEDs indicate current Modbus traffic on any port.

State	Description
On	A Modbus command for the module is recognized. On Port 3, this LED may also indicate that a Modbus Master command was sent.
Off	No Activity

12.2 BBRAM LEDs

The BBRAM (Battery Backed RAM) LEDs inform you about the condition of the BBRAM hardware used for data storage. The following table lists the possible situations that might occur during normal operation.

OK (Green)	ERR (Red)	Description
ON	ON	The module is in a Cold Start condition that typically occurs when you power up the module for the first time. After at least one meter is enabled and the processor is in RUN mode the module starts operating.
ON	OFF	Normal Operation
Blinking	OFF	This condition is warning that a checksum flag was raised after a power cycle. If this alarm issue occurs, refer to the AFC Manager (On-line Monitor / Checksum Alarms) in order to determine the data section in which the alarm issue has occurred. After verifying that the checksum error has not affected the referred memory area you may clear the checksum alarm using the same AFC Manager interface.
		After the alarm is cleared the OK LED will be ON

12.3 Meter Alarms

If the module is generating unexpected data, you should verify if the meter has any alarms. Some alarms may be caused by an issue that could potentially affect the calculation results. Each archive also keeps track of the alarms that have occurred during the period (refer to the Archive section). The Meter Monitor dialog box allows you to monitor the meter alarms.

The above image shows the Meter Alarms bitmap, which gives you a quick overview of active alarms. Associated with many of these bits are Alarm Code registers which supply specific reasons for the alarms, most of which appear in the lower right corner of the main Meter Monitor window. For complete information, including which Code registers are associated with which alarm bits, use the Modbus Dictionary feature of AFC Manager.

The possible alarms are listed in the following table. Of the Alarm Codes listed, the values that can actually appear depend on both the selected Product Group and the firmware version.

Alarm Message	Description	Solution		
Accumulation Overflow	The module ignores an accumulator increment of less than zero or greater than 1.000.000.000 occurring in a single meter scan.	Check your meter configuration to verify if your project is generating reasonable values.		
Analysis Total Not Normalized (v 2.04)	Absolute difference between analysis total and 1.0000 (100%) is greater than the error tolerance	Make sure that the sum of all molar concentrations is within the error tolerance of 1.0000 (100%).		
Analysis Total Zero (v 2.04)	The molar concentration sum is zero.	Make sure that the sum of all molar concentrations is within the error tolerance of 1.0000 (100%).		
Analysis Characterization error (v 2.05)	Absolute difference between analysis total and 1.0000 (100%) is greater than the error tolerance, OR the molar concentration sum is	Make sure that the sum of all molar concentrations is within the error tolerance of 1.0000 (100%).		
	zero.	Alarm Code values:		
		0 = No alarm		
		1 = Analysis total not normalized		
		2 = Analysis total zero		
Compressibility calculation error	The compressibility calculation resulted in error based on the input values and	Check the input values and meter configuration parameters.		
	configuration parameters used.	Alarm Code values:		
		0 = No alarm		
		1 = Density exceeded reasonable maximum (warning only)		
		2 = Pressure maximum found		
		3 = Non-convergence of procedure "braket"		
		4 = Non-convergence of procedure "ddetail"		
Differential Pressure Low	The differential pressure value transferred to the module is below the DP Alarm Threshold parameter configured in the Meter Configuration.	Check the input differential pressure value transferred to the module. If the value is correct, change the DP Alarm Threshold parameter for your project.		
Flow Rate Low	The flow rate value transferred to the module is below the FR Alarm Threshold parameter configured in the Meter Configuration.	Check the input flow rate value transferred to the module. If the value is correct, change the FR Alarm Threshold parameter for your project.		
Pulse Frequency Low	The pulse frequency value transferred to the module is below the Frequency Alarm Threshold parameter configured in the Meter Configuration.	Check the input pulse frequency value transferred to the module. If the value is correct, change the Frequency Alarm Threshold parameter for your project.		

Alarm Message	Description	Solution
High Water error	Set if input water content is greater than 99% (less than 1% oil). For this condition, the emulsion is deemed to be all water. Both volume and mass fractions are set to zero. The module does not perform any density correction calculation, so the "default standard density" value is assumed. This alarm is applied for emulsion liquids only.	Check that the value of process input "Water %" is reasonable Alarm Code values: 0 = No alarm 1 = Emulsion is more than 99% water
Input Out of Range	The input value is not within the range specified in the meter configuration window. Applies to temperature, pressure, differential pressure, flowing density, water content, pulse frequency (v 2.05).	Check that the input variable's ranges (Meter Configuration / Process Input button) and the process input itself have reasonable values.
Orifice Characterization error	The orifice parameters (Meter Configuration / Orifice button) are invalid.	 Check the orifice and meter parameters. The following conditions should be true: Orifice diameter > 0 Tube diameter > 0 Orifice diameter < Tube diameter The beta ratio between the orifice and tube diameters should follow the AGA Standard. Alarm Code values: 0 = No alarm 1 = Orifice diameter non-positive 2 = Orifice not narrower than pipe 3 = Beta ratio less than 0.10 (adjusted by tolerance) 4 = Beta ratio greater than 0.75 (adjusted by tolerance) 5 = Pipe diameter less than 2.0 inches (adjusted by tolerance) 6 = Orifice diameter less than 0.45 inches (adjusted by tolerance) The "tolerance", fixed by the AFC firmware, allows the AGA limits to be exceeded by up to 75% towards the physical limit. For example, while AGA restricts pipe diameter to 2.0 inches or greater, the AFC allows it to be as small as 0.5 inch.
Orifice Pressure Exception	Configuration and process input for an Orifice Meter are such that the effective downstream pressure is less than vacuum. For calculation, upstream pressure is raised by the amount necessary to raise absolute downstream pressure to zero.	Check the process inputs for Gauge Pressure and Differential Pressure, and the configured Barometric Pressure and Static Pressure Tap Location. Also check any performed vapor pressure calculations to ensure that all are reasonable.
Alarm Message	Description	Solution
--	--	--
Pressure correction error	The pressure correction calculation resulted in an error according to the standard.	Alarm Code values:
		0 = No alarm
		1 = Density outside range of API Chapter 11.2
		2 = Temperature above near critical limit
		3 = Temperature outside range of API Chapter 11.2.1
		4 = Temperature outside range of API Chapte 11.2.2
		5 = Non-convergence of Cpl-density iteration
Reference density error	The density correction calculation resulted in	Alarm Code values::
5	an error according to the standard.	0 = No alarm
		1 = Low density (NGLs), input outside API range
		2 = High density (crudes & refined), input outside API range
		3 = Non-convergence
		4 = Zero VCF
		5 = Temperature above critical point
		6 = Input density outside reference fluid adjusted range
		7 = Corrected density out of range
		8 = Standard density input outside API range
		9 = Alpha input outside API range
		Also check the input values and calculation parameters for your project.
Temperature Correction	The temperature correction calculation OR the	Alarm Code values:
error	water temperature correction calculation resulted in an error according to the standard.	0 = No alarm
		1 = Low density (NGLs), input outside API range
		2 = High density (crudes & refined), input outside API range
		5 = Temperature above critical point
		9 = Alpha input outside API range
		Also see the Alarm Code for Water Temperature Correction error.
Vapor pressure error	The vapor pressure calculation resulted in an error according to the standard.	Alarm Code values:
		0 = No alarm
		1 = Expected vapor pressure above range of TP-15 (stream's "Default Vapor Pressure" is substituted)
		2 = Vapor pressure > measured static absolute pressure (vapor pressure assumed to equal static pressure)
		3 = Both 1 and 2
Water Temperature error	ror The water temperature correction calculation	Alarm Code values:
Water Temperature error	resulted in an error according to the standard.	
Water Temperature error (Alarm Code only)		0 = No alarm

12.4 Checksum alarms

A checksum alarm indicates a checksum verification failure during power-up. Non-volatile information is kept in battery-backed RAM. It is partitioned into several blocks, each of which contains a checksum, and when the information is changed the checksum is updated also. During power-up, the checksum is verified, and upon failure the alarm bit is latched and the checksum corrected.

The alarm bit remains latched, even through subsequent power cycles, until it is explicitly cleared from an external source such as the AFC Manager. Refer to the AFC Manager User Manual for more information about this feature.

12.5 Events

The module records up to 1999 events that have occurred during the module operation.

Important Note: Events are occurrences that may affect the results calculated by the module. This is an essential tool for troubleshooting the module.

Refer to the Events section for more information about event monitor.

12.6 Audit Scan

An Audit Scan captures a "snapshot" of input values, intermediate calculated values, and output results for each of a short series of calculation scans for a single meter. This allows an auditor to rigorously verify the calculations performed by the AFC on live in-service production meters. The module supports eight consecutive audit scans at a time.

heter Audit Scan	×
Site Name DUIMEX	Project AFC_DUIMEX
Meter Tag DIE_AFC_M1	2007/07/16.16:02:35 Wallclock at audit start
Select Meter 1 Up-counter Meter number 1 0 Down-counter Select Audit 14.696 Barometric pressure (psia) Number of scans 1 0 Down-counter Barometric pressure (psia) 0 Down-counter Down-counter	Meter Factor Linearization No. Meter factor Flow rate 1 0 1 2 0 0 3 0 0 4 0 0
Result Temperature base factor Success Pressure base factor Log Audit the selected meter. Close Print Log Atter the reading is completed, select and selected meter.	audit to view.

- **1** Select the Meter Number for the audit
- 2 Select the number of scans for the audit
- **3** Click the Read Button to begin the audit
- 4 Look at the operation result. Success = audit has been successfully completed

5 When the Audit Scan is complete, click the Details Button to view the calculation and the input variables.

Meter Tag	DIE_AFC_M1	Scan 🚺 ◀ 🕨	<u>C</u> lose
0	Temperature Floating point	0	Net accum: totalizer (MMCF)
0	Pressure Floating point	0	Net accum: residue (MMCF)
0	Temperature (*F)	0	Net increment (MMCF)
0	Pressure (psig)	0	Net flow rate (MMCF/d)
0	Pulse frequency (Hz)	0	Energy accum: totalizer (MBTU)
24	K factor	0	Energy accum: residue (MBTU)
1	Meter factor	0	Energy increment (MBTU)
0.561434	Specific gravity	0	Energy flow rate (MBTU/h)
1.00051	Fpv	0	Mass accum: totalizer (Ib)
0.9970248	Compressibility, flowing	0	Mass accum: residue (lb)
0.9980413	Compressibility, reference	0	Mass increment (lb)
1.130528	Temperature factor	0	Mass flow rate (lb/h)
0.9976918	Pressure factor	Click Me	Analysis
1.129069	C prime, C'		
0	Analysis characterization error		
0	Compressibility calculation error		
0	Gross accum: totalizer (MMCF)		
0	Gross accum: residue (MMCF)		
0	Gross increment (MMCF)		
0	Gross flow rate (MMCF/d)		

Date: 16-09-2002 16:18:07

The following shows an example of an audit scan file report generated by the AFC Manager for 2 scans:

AFC-56(16) Audit Site Name: MVI Flow Station Project: AFC

Meter 1:		
Tag		M01
Wallclock	. –	0000/00/00.00:00:00 101,325
Barometric press	surekPaa	
Viscosity		0,010268
Orifice/pipe geo	ometric parameters	
	Orifice plate	Meter tube
Temperature	68	68
Diameter	1	2
Coefficient	9,25E-06	0,000062
Scan		1
Temperature (Floa		15
Pressure (Floatin	5	1000
Dif. pressure (F	loating point)	22
Temperature (°F)		15
Pressure (psig)		1000
Dif. pressure (h		22
Scan period (sec	ond)	0,48
Specific gravity		0,7404104
Fpv		0
Compressibility :		0,9051347
Compressibility :	reference	0,9989105
Diameter at T tul	De	1,999343
Diameter at T or:	ifice	0,9995098
Velocity of appro	oach factor ev	1,032773
Pressure extension	on xt	149,4683
Coefficient of d	ischarge cd	0,6042569
Expansion factor	У	0,9997441
Composition facto	or	0,2728558
Mass flow Qh		2280,571
Orifice characte:	rization error	0
Analysis characte	erization error	0
AGA8 calculation	error	0
Gross accu to	calizer (x f3)	3408
Gross accu residue (x f3)		0,2047686
Gross increment (x f3)		6,442598E-02
Gross flow rate (x f3/h)		483,1948
Net accu totalizer (x f3)		390113
Net accu residue (x f3)		0,8464546
Net increment (x f3)		5,3664
Net flow rate (x f3/h)		40248
Mass accu totalizer (x lb)		22094
Mass accu residue (x lb)		0,5677222
Mass increment (x lb)		0,3040761
Mass flow rate (:		2280,571
Analysis compone		-
C1 methane		0,55
N2 nitrogen		0,45
CO2 carbon dioxid	le	0
148 of 294		ProSoft Te

Page 148 of 294

C2 ethane	0
C3 propane	0
H2O water	0
H2S hydrogen sulphide	0
H2 hydrogen	0
CO carbon monoxide	0
02 oxygen	0
iC4 iso-butane	0
nC4 normal butane	0
iC5 iso-pentane	0
nC5 normal pentane	0
C6 hexane	0
C7 heptane	0
C8 octane	0
C9 nonane	0
C10 decane	0
He helium	0
Ar argon	0
neoC5 neopentane	0
Ux user1	0
Uy user2	0

AFC-56(16) Audit Site Name: MVI Flow Station Project: AFC Date: 16-09-2002 16:18:08

Meter 1:		
Tag		MOl
Wallclock		0000/00/00.00:00:00 101,325
Barometric pres	surekPaa	
Viscosity		0,010268
Orifice/pipe ge	ometric parameters	
	Orifice plate	Meter tube
Temperature	68	68
Diameter	1	2
Coefficient	9,25E-06	0,000062
Scan		2
Temperature (Floating point)		15
Pressure (Floating point)		1000
Dif. pressure (Floating point)	22
Temperature (°F)		15
Pressure (psig)		1000
Dif. pressure ()	hw)	22
Scan period (se	cond)	0,495
Specific gravity		0,7404104

Temperature (Floating point)	15
Pressure (Floating point)	1000
Dif. pressure (Floating point)	22
Temperature (°F)	15
Pressure (psig)	1000
Dif. pressure (hw)	22
Scan period (second)	0,495
Specific gravity	0,7404104
Fpv	0
Compressibility flowing	0,9051347
Compressibility reference	0,9989105
Diameter at T tube	1,999343
Diameter at T orifice	0,9995098
Velocity of approach factor ev	1,032773
Pressure extension xt	149,4683
Coefficient of discharge cd	0,6042569
Expansion factor y	0,9997441

Composition factor Mass flow Qh Orifice characterization error Analysis characterization error AGA8 calculation error Gross accu.- totalizer (x f3) Gross accu. - residue (x f3) Gross increment (x f3) Gross flow rate (x f3/h) Net accu. - totalizer (x f3) Net accu. - residue (x f3) Net increment (x f3) Net flow rate (x f3/h) Mass accu. - totalizer (x lb) Mass accu. - residue (x lb) Mass increment (x lb) Mass flow rate (x lb/h) Analysis components C1 methane N2 nitrogen CO2 carbon dioxide C2 ethane C3 propane H2O water H2S hydrogen sulphide H2 hydrogen CO carbon monoxide 02 oxygen iC4 iso-butane nC4 normal butane iC5 iso-pentane nC5 normal pentane C6 hexane C7 heptane C8 octane C9 nonane C10 decane He helium Ar argon neoC5 neopentane Ux user1 Uy user2

0,2728558

2280,571

0,2712079

483,1948

5,534101

0,8813007

0,3135785

2280,571

390119 0,3805552

40248

22094

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

6,643929E-02

0

0

0

3408

13 Reference

In This Chapter

*	General Specifications151
*	Measurement Standards154
*	Wedge Meter Applications159
*	Configurable Archive Registers
*	Archive Data Format163
*	Modbus Addressing Common to Both Primary and Virtual Slaves170
*	Modbus Port configuration
*	Startup Basics and Frequently Asked Questions

13.1 General Specifications

- Process I/O: analog inputs (pressure, temperature, differential pressure density) from analog modules and pulse inputs from pulse/frequency input modules in rack
- Number of meter channels: 8 meters: differential (AGA3 or ISO5167) or linear (AGA7) Gas; (MPMS Ch 12.2) Liquid.

Calculation Methods

- AGA3 (1992)
- AGA7
- AGA8 (1992) Detail Characterization Method
- API MPMS Ch 21.1, 21.2
- API Tables (API MPMS Ch 11.1) 23/53 and 24/54 for Hydrocarbon Liquids
- GPA TP-25 for Hydrocarbon Liquids (Tables 23E/24E)
- API MPMS Ch 11.2
- GPA TP-15 for Vapor Pressure Correlation
- Energy (heating value) for gases according to AGA 8 Appendix C-4
- API MPMS Ch 20.1
- ISO 5167

Supports energy measurement for gas applications

Meter I/O Scan Time: Less than one second for all channels.

Product Measurement: Hydrocarbon gases and liquids including refined products

Process I/O Calibration Mode: Allows the calibration of transmitters without interfering with the process update for the module or impacting measurement.

Data Archiving

- Hourly for 2 days for each meter run (48 records per channel)
- Daily for 35 days

Note: The number of archives depends on the archive size you have configured. The default values for a 30 word archive are 48 hourly archives and 35 daily archives.

- Extended Archive feature supports up to 1440 daily archives and 1440 hourly archives stored on Compact Flash
- Each record consists of nearly 20 process and other variables. All archived data is available in the onboard Modbus memory map.
- User may configure when archives are generated
- User may configure archive content (from pre-defined list)
- Archives can be exported to an Excel spreadsheet or printed to a local printer.

Other Features

- Event Log with 1999-event buffer and timestamp.
- Virtual Slave with 20,000 re-mappable Modbus registers for contiguous SCADA polling.
- Password protection

13.1.1 On-line Communication & Configuration

The module is designed for online configuration via the configuration port. A user-friendly Windows 95/98/2000/NT/XP-based Module Configuration and Reporting/Monitoring Manager allows easy access to all configuration data for editing and saving on your computer.

Project configurations may be uploaded, downloaded, and saved to disk under user-selectable filenames. The module takes just minutes to configure using the MS Windows-based AFC Manager.

13.1.2 Reports

- Event Log Report: All security-sensitive configuration data (for example, orifice diameter) is date and time stamped and mapped to the local Modbus memory map. This data can be imported into any spreadsheet program and saved to disk or printed to a local printer.
- Hourly and Daily Archive Reports: Mapped to local Modbus memory. This data can be imported into any spreadsheet program and saved to disk, or printed as hard copy.
- **System Configuration:** May be transferred to or from the module. The configuration file can also be printed for hard reference or archiving.
- Audit Scan: A report can be saved to disk or printed to the local printer.

13.1.3 Modbus Interface

The two Modbus Slave ports allow the unit to be used as a SCADA interface and to broaden access to the AFC module's data table.

- Ports 2 and 3 support RS-232, RS-422 and RS-485 modes
- Supports baud rates of up to 19200 baud
- All ports may be configured for RTU or ASCII Modbus mode.
- All Modbus Slave ports provide access to all configuration and measurement data mapped to the Modbus table.
- Module contains two internal slaves (Primary and Virtual)
- Over 130,000 Modbus registers of the Primary Slave table may be remapped to up to 20,000 Modbus registers of the Virtual Slave for contiguous polling from a SCADA master.
- Port 3 can be configured as a Modbus master node
- Supports Modbus functions 3, 4, 5, 6, 15 and 16 as a slave (5 and 15 only on pass-thru operation)
- Supports Modbus functions 1,2,3,4,15 and 16 as a master
- Scratch Pad Modbus block of 6000 words for transfer of arbitrary data between the processor and the SCADA host via the module.

13.1.4 Configurable Options

Configurable options include:

- Gas analysis concentrations for up to 21 components
- Accumulator Rollover
- Reference temperature and pressure for both gases and liquids
- Orifice and pipe diameters, selection of type of taps, and tap locations, and so on.
- Meter K Factor and Meter Factors with 5-point linearization curve
- Temperature, Pressure, and Density Correction for liquids
- Local Atmospheric (barometric) pressure
- Default process and operating parameters such as DP Threshold for flow cutoff, and so on.
- Metric or US units
- User-selectable units for totalizers and flow rates on a per channel basis
- Resettable and non-resettable totalizers for every meter channel.

13.1.5 Supported Meters

The following meter types have been used with the MVI46-AFC module. Because of the broad range of meters available in today's market, refer to the meter's specifications and the contents of this manual to evaluate the use of the AFC modules (even if the meter is listed here). If you have questions, please contact ProSoft Technology Technical Support Group.

Meter Type	Configured As (Differential or Linear)
Turbine	Linear
Orifice	Differential
V-Cone	Differential. You must configure the meter as V-Cone type in the AFC Manager (Meter Configuration / Calculation Options)

Meter Type	Configured As (Differential or Linear)
Wedge	Differential. Refer to Wedge Meter Applications (page 159) for information about using the wedge meters.
Vortex	Linear or Differential
Ultrasonic	Linear or Differential
Coriolis	Linear or Differential

Note: For Vortex, Ultrasonic or Coriolis meters, the selection depends on the output generated by the meter.

If the meter provides a pulse train representing the volume increment, the AFC meter should be configured as Linear with Primary Input selected as Pulse Count.

If the meter provides the instantaneous flow rate, then the AFC meter should be configured as Differential with Primary Input selected as Flow Rate.

Note: The module does not support applications to measure water, because the implemented standards are applicable to hydrocarbon fluids only.

13.1.6 Hardware Specifications

These modules are designed by ProSoft Technology and incorporate licensed technology from Schneider Electric (Modbus technology) and from Rockwell Automation (backplane technology).

	MVI46-AFC
Current Loads	800mA @ 5.1 VDC (from backplane)
Operating Temperature	0 to 60°C
	32 to 140°F
Storage Temperature	-40 to 85°C
	-40 to 185°F
Relative Humidity	5% to 95% (non-condensing)
Modbus Port Connector	Three RJ45 connectors (RJ45 to DB-9 cable shipped with unit) supporting RS-232, RS-422, RS-485 interfaces

13.2 Measurement Standards

The module supports the following hydrocarbon (gases and liquids) measurement standards currently employed in the oil and gas measurement industry:

American Petroleum Institute (API) Manual of Petroleum Measurement Standards (MPMS)

a.	Density Correction to Reference Temperature
	Chapter 11.1.53, 11.1.23
	Equations, Tables 53, 23 - Generalized Crude Oils, Refined Products, Lubricating Oils, Special Applications
b.	Correction of Volume to Reference Temperature and Thermal Expansion: Ctl.
	Chapter 11.1.54, 11.1.24
	Equations, Tables 54, 24 - Generalized Crude Oils, Refined Products, Lubricating Oils, Special Applications

Ame	rican Petroleum Institute (API) Manual of Petroleum Measurement Standards (MPMS)
C.	Compressibility Factors for Hydrocarbons: Cpl.
	Chapter 11.2.1/Chapter 11.2.2 (Chapter 11.2.1M and 11.2.2M for SI units.
d.	Orifice Metering of NGLs & Crude Oils
	Chapter 14.3 (AGA3)
e.	Calculation of Liquid Petroleum Quantities Measured by Turbine or Displacement Meters
	Chapter 12.2
f.	Allocation Measurement
	Chapter 20.1 (high-water-content calculations used for emulsions)
g.	Flow Measurement Using Electronic Metering Systems
	Chapter 21.1, 21.2

American Gas Association (AGA)

a.	Orifice Metering of Natural Gas & Other Hydrocarbon Fluids
	AGA Report No. 3 (1992) (MPMS Ch 14.3)

b. Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases
AGA Report No. 8 (1992) - Detail Characterization Method

International Standards Organization (ISO)

Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 2: Orifice plates
ISO 5167-2 (2003)

Gas Processors Association (GPA)

- a. Temperature Correction for the Volume of Light Hydrocarbons TP-25
- A Simplified Vapor Pressure Completion for Commercial NGLs GPA Document TP-15

13.2.1 Basic Metering According to Meter type

Orifice (Include V-cone): Uses AGA3 1992 / ISO 5167.

A V-cone meter is like an orifice meter, except that the V-cone is an obstruction in the center of the pipe while an orifice is an aperture. V-cone calculation differs from orifice calculation in the following respects:

- 1 The orifice Beta ratio is actually the square root of the ratio of aperture crosssection to pipe cross-section hence for the V-cone it is calculated differently from the two diameters.
- 2 The V-cone Coefficient of Discharge is entered as configuration and not calculated. Expansion Factor (Y) is calculated differently.

Output of the calculation is mass flow rate, which is divided by density to get volume and then integrated over time for accumulation.

Pulse: Both Gas and Liquid

Gross Volume is (pulses) / (K-factor) * (meter factor), according to API MPMS Ch 12 sec 2 1981 and 1995. Output of the standard calculation is volume flow increment, which is then multiplied by density to get mass increment. Flow rate is calculated in parallel to flow increment by applying to (pulse frequency) process input the same calculation as is applied to (pulses); this technique is employed instead of flow increment differentiation because the pulse frequency available from the counter card in the processor is not subject to variations of timing caused by scheduling delays in processor backplane transfer and in the firmware of the module, thus yielding a smoother flow rate.

Correction Factors According to Product Phase

Gas

Compressibility is calculated according to the Detail Characterization Method of AGA8 (1992). Gas density is a byproduct of this calculation. Essential input for this calculation is molar analysis. The compressibility Z is a factor in the gas equation PV=ZNRT, which is the rule by which gas volumes are corrected to reference conditions.

Liquid

Temperature and pressure correction factors are calculated according to API MPMS Ch 11 and applied according to the rules given in MPMS Ch 12. Essential input for this calculation is Liquid Density (page 31) at either standard or flowing conditions.

Gas Pulse Measurement

The standard applied is AGA7, which is merely a combination of the gross volume calculation (page 156) and the gas law (PV=ZNRT) which includes compressibility. It also specifies calculation of some intermediate factors, which are now idiosyncratic and vestigial, having been imported from an earlier AGA3 (1985 and before) which used the "factor" method to calculate gas flow and which has been superseded by the completely overhauled 1990/1992 AGA3.

Water Content of Liquids

The handling of water content in crude and NGL products depends upon whether an "emulsion" Product Group is chosen.

For emulsions, water content is removed from the mixture according to the calculations of API MPMS Chapter 20.1 before calculating and applying correction factors. In this case the volumetric quantity intermediate between "Gross" and "Net" is "Gross Clean Oil", which is the hydrocarbon component of the mixture at flowing conditions. This method is recommended for mixtures containing more than 5% water.

For non-emulsions, water content is removed from the mixture according to the rules of API MPMS Chapter 12.2 after calculating and applying correction factors, In this case the volumetric quantity intermediate between "Gross" and "Net" is "Gross Standard", which is the entire mixture including its water content corrected to standard conditions under the assumption that it is pure hydrocarbon. Because the presence of water skews the correction calculations, this method should be used only when the water content is very low.

Non-Standard Reference Conditions

For both liquids and gases, the AFC permits a range of reference conditions for volume measurement which may vary from the API/AGA standard of 15°C/101.325kPaa (SI) or 60°F/14.696psia (US) (US pressure base for gases is 14.73psia). The allowed ranges for SI units are temperature between 0°C and 25°C and pressure between 50kPaa and 110kPaa, with the allowed ranges for US units approximately equivalent.

For gases, this flexibility of reference conditions is handled automatically by the implementation of the AGA 8 (1992) standard for compressibility Z together with the "real" gas law PV=ZNRT.

For liquids, correction factors for non-standard reference conditions are calculated differently depending on the firmware version. For version 2.05 and later, correction factors and corrected density are calculated according to the 2004 edition of API MPMS Chapter 11.1, except for the "NGL" product groups for which the CTL and density calculations of GPA TP-25 are extended with the CPL calculations of (old) MPMS Chapter 11.2 in a manner analogous to that of the 2004 Chapter 11.1. For version 2.04 and earlier, correction factors and corrected density are calculated as described in the following paragraphs, using the calculations of the 1980 edition of MPMS Chapter 11.1. In all cases, the density input to the calculations is the density at standard API base conditions.

Temperature Correction Factor, CTL

First, the "standard" factor, CTL(Flowing / ApiBase), is calculated, except that the final rounding step is not performed. Then, CTL(UserBase / ApiBase) is calculated, also unrounded. The CTL(Flowing / UserBase) is then calculated as (CTL(Flowing / ApiBase) / CTL(UserBase / ApiBase)), to which result is applied the final rounding step of the standard CTL calculation.

Pressure Correction Factor, CPL

The CPL(Flowing / UserBase) is calculated according to the method given in MPMS Ch 12.2 1995. In order to correct "density at reference" to User Base conditions, and also when iteratively calculating corrected density for the effect of elevated pressure, the CPL(Flowing / ApiBase) (unrounded) is also calculated according to the same method.

Density Correction

The density at API Base is determined according to relevant standards, which density is used as input to the CTL and CPL calculations. The density at User Base is determined by multiplying den(ApiBase) by the term (CTL(UserBase / ApiBase) * CPL(Flowing / ApiBase) / CPL(Flowing / UserBase)), all unrounded factors; this density is reported only and is not used in any calculations. When density correction is not selected, or an alarm causes a default to be assumed, any default "density at reference conditions" is deemed to be at User Base, and is also corrected to API Base for input to the CTL and CPL calculations.

Archiving and Event Log

- A Accumulation and data recording for gas-phase archives conform to the requirements of API MPMS Ch 21 sec 1, 1993. Liquid-phase archives conform to API MPMS Ch 21 sec 2.
- B Event-logging conforms to the requirements given in the Industry Canada Weights and Measures Board Draft Specification "Metrological Audit Trails" of 1995-03-01

13.2.2 Liquid Correction Factor Details

For firmware version 2.05 and later, correction factors for most liquids are calculated according to the 2004 edition of API MPMS Chapter 11.1, enhanced with additional CPL calculations if required in order to allow selection of a non-standard base (reference) pressure. For lighter liquids (NGLs and LPGs), to which the 2004 Chapter 11.1 does not apply, the CTL and density correction calculations of GPA TP-25 are enhanced with the incorporation of the CPL calculations of MPMS Chapters 11.2.1 and 11.2.2 in a manner analogous to the method of the 2004 Chapter 11.1, to permit density correction to account for the effect of pressure and to yield the combined correction factor CTPL. For all liquids the option is available to use the vapor pressure correlation of GPA TP-15 June 1988.

For firmware version 2.04 and earlier, correction factors are calculated as described in the following paragraphs.

Temperature Correction Factor CTL

(According to Several "Tables" of MPMS Ch 11.1 (1980, except E Tables 1998 = GPA TP-25) and Other Standards)

Calculation of CTL (= VCF, Volume Correction Factor) from flowing temperature and density at standard temperature depends on the measurement system (SI or US), the product type (crude or refined), and the density range (high or low).

SI units:

 $D \ge 610 \text{ kg/m3}$ Table 54A (Crude&NGL) or 54B (Refined Products)

 $500 \le D < 610$ (LPG) ASTM-IP-API Petroleum Measurement Tables for Light Hydrocarbon Liquids 500-653 kg/m3 1986 ISBN 0 471 90961 0

US units:

 $D \ge 0.610 \text{ RD60 Table 24A}$ (Crude&NGL) or 24B (Refined Products),

 $0.350 \leq D < 0.610$ (LPG) Table 24E - TP25

The low density range of 0.350 RD60 in US units is considerably lower than the 500 kg/m3 in SI units, because the E Tables are available only for US units.

Correction of density from flowing temperature to standard temperature is a converging iteration which includes the calculation of the VCF (Volume Correction Factor). Standards applied are those listed above except that Tables n3x are used instead of Tables n4x.

An option is available to iteratively correct the density calculation for elevated flowing pressure according to the condition given in bold type in MPMS Ch12.2 1995 Part 1 Appendix B Section B.1 (page 21).

Compressibility Factor F

(According to MPMS Ch 11.2 (US) or11.2M (SI) 1986.)

- Vapor pressure correlation according to GPA TP-15 June 1988.
- Pressure Correction Factor (CPL) is calculated from F and pressure above equilibrium according to MPMS ch12.2 1995, where "atmospheric pressure" is read as "base pressure" and "gage pressure" is read as "pressure above base". The module considers:

Pressure process input + barometric pressure = absolute pressure

13.3 Wedge Meter Applications

For Wedge Meter applications you must convert some parameters from the meter manufacturer's data sheet before entering these values to the AFC Manager. The following spreadsheets can be used to calculate the AFC Manager parameters according to the meter manufacturer as follows:

Filename	Application
WEDGE_ABB.xls	ABB Wedge Meter
WEDGE_PRESO.xls	PRESO Wedge Meter

You must initially configure the meter as a differential type. Then you must configure it as a V-Cone Device (**Meter Configuration / Calculation Options**).

Refer to the spreadsheet for instructions on how to enter the correct values into AFC Manager.

13.4 Configurable Archive Registers

The following table shows the possible registers that can be included in the archive definition. Use the Insert and Remove buttons on the Archive Configuration dialog box to customize the list of registers for each meter archive.

Description	Meter-Relative Address	Length
Analysis molar fraction, component 1	720	1 word
Analysis molar fraction, component 2	721	1 word
Analysis molar fraction, component 3	722	1 word
Analysis molar fraction, component 4	723	1 word
Analysis molar fraction, component 5	724	1 word
Analysis molar fraction, component 6	725	1 word
Analysis molar fraction, component 7	726	1 word
Analysis molar fraction, component 8	727	1 word
Analysis molar fraction, component 9	728	1 word
Analysis molar fraction, component 10	729	1 word
Analysis molar fraction, component 11	730	1 word
Analysis molar fraction, component 12	731	1 word
Analysis molar fraction, component 13	732	1 word
Analysis molar fraction, component 14	733	1 word
Analysis molar fraction, component 15	734	1 word
Analysis molar fraction, component 16	735	1 word
Analysis molar fraction, component 17	736	1 word
Analysis molar fraction, component 18	737	1 word
Analysis molar fraction, component 19	738	1 word
Analysis molar fraction, component 20	739	1 word
Analysis molar fraction, component 21	740	1 word
Analysis molar fraction, component 22	741	1 word
Analysis molar fraction, component 23	742	1 word
Analysis molar fraction, component 24	743	1 word
Input pulse count, archive reset, daily	840	2 words
Input pulse count, archive reset, hourly	842	2 words
Previous input pulse count	846	2 words
Current master pulse count	848	2 words
Non-resettable accumulator, mass, totalizer	850	2 words
Non-resettable accumulator, mass, residue	852	2 words
Non-resettable accumulator, energy, totalizer	854	2 words
Non-resettable accumulator, energy, residue	856	2 words
Non-resettable accumulator, net, totalizer	858	2 words
Non-resettable accumulator, net, residue	860	2 words
Non-resettable accumulator, gross, totalizer	862	2 words
Non-resettable accumulator, gross, residue	864	2 words
Non-resettable accumulator, gross standard, totalizer	866	2 words

ProSoft Technology, Inc. July 2, 2008

Description	Meter-Relative Address	Length
Non-resettable accumulator, gross standard, residue	868	2 words
Non-resettable accumulator, water, totalizer	870	2 words
Non-resettable accumulator, water, residue	872	2 words
Resettable accumulator 1, totalizer	874	2 words
Resettable accumulator 1, residue	876	2 words
Resettable accumulator 2, totalizer	878	2 words
Resettable accumulator 2, residue	880	2 words
Resettable accumulator 3, totalizer	882	2 words
Resettable accumulator 3, residue	884	2 words
Resettable accumulator 4, totalizer	886	2 words
Resettable accumulator 4, residue	888	2 words
Accumulator, archive period, daily, totalizer	890	2 words
Accumulator, archive period, daily, residue	892	2 words
Accumulator, archive period, hourly, totalizer	894	2 words
Accumulator, archive period, hourly, residue	896	2 words
Process input, scaled float, temperature	1520	2 words
Process input, scaled float, pressure	1522	2 words
Process input, scaled float, dif prs / flow rate / freq	1524	2 words
Process input, scaled float, flowing density	1526	2 words
Process input, scaled float, water and sediment	1528	2 words
Process input, scaled integer, temperature	1540	1 word
Process input, scaled integer, pressure	1541	1 word
Process input, scaled integer, dif prs / flow rate / freq	1542	1 word
Process input, scaled integer, flowing density	1543	1 word
Process input, scaled integer, water and sediment	1544	1 word
Temperature, absolute	1570	2 words
Upstream pressure, absolute	1572	2 words
Densitometer frequency	1574	2 words
AGA 7 temperature base factor, Ftb	1594	2 words
AGA 7 pressure base factor, Fpb	1596	2 words
Meter alarms	1601	1 word
Orifice characterization error	1602	1 word
Analysis characterization error	1603	1 word
AGA 8 calculation error	1604	1 word
Density correction error	1605	1 word
Temperature correction error	1606	1 word
Vapor pressure error	1607	1 word
Pressure correction error	1608	1 word
Scan count, process input	1618	1 word
Scan count, calculation	1619	1 word
AGA 8, Molar mass of mixture	1620	2 words

Description	Meter-Relative Address	Length
AGA 8, Ideal gas relative density	1622	2 words
AGA 8, Compressibility at reference	1624	2 words
AGA 8, Molar density at reference	1626	2 words
AGA 8, Density at reference	1628	2 words
AGA 8, Relative density at reference	1630	2 words
AGA 8, Compressibility, flowing	1632	2 words
AGA 8, Molar density, flowing	1634	2 words
AGA 8, Density, flowing	1636	2 words
AGA 8, Supercompressibility, Fpv	1640	2 words
Previous timer tick count	1661	1 word
Scan period (seconds)	1662	2 words
AGA 3, Pressure extension	1664	2 words
AGA 3, Differential pressure in static pressure units	1666	2 words
AGA 3, Orifice bore diameter at temperature	1668	2 words
AGA 3, Meter tube internal diameter at temperature	1670	2 words
Reserved	1672	2 words
AGA 3, Density, flowing	1674	2 words
AGA 3, Mass flow rate, Qm	1678	2 words
AGA 3, Velocity of approach factor, Ev	1680	2 words
AGA 3, Expansion factor, Y	1682	2 words
AGA 3, Coefficient of discharge, Cd	1684	2 words
AGA 3, Composition factor	1686	2 words
AGA 7, Temperature factor, Ftm	1694	2 words
AGA 7, Pressure factor, Fpm	1696	2 words
AGA 7, C-prime	1698	2 words
Molar heating value, MJ/kmol	1700	2 words
Mass heating value	1702	2 words
Volumetric heating value	1704	2 words
API 2540, Density at API base temperature	1738	2 words
API 2540, Hydrometer correction factor	1740	2 words
API 2540, Density at reference	1742	2 words
API 2540, Vapor pressure	1744	2 words
API 2540, CPL low density factor A	1746	2 words
API 2540, CPL low density factor B	1748	2 words
API 2540, CPL factor F	1750	2 words
API 2540, Temperature correction factor, CTL	1752	2 words
API 2540, Pressure correction factor, CPL	1754	2 words
API 2540, Sediment and water correction factor, CSW	1756	2 words
Density calculation select	1759	1 word
AGA 8, Ideal gas relative density - scaled integer	1761	1 word
AGA 8, Compressibility at reference - scaled integer	1762	1 word

Description	Meter-Relative Address	Length
AGA 8, Relative density at reference - scaled integer	1765	1 word
AGA 8, Compressibility, flowing - scaled integer	1766	1 word
AGA 8, Supercompressibility, Fpv - scaled integer	1770	1 word
Reserved	1786	1 word
AGA 3, Velocity of approach factor - scaled integer	1790	1 word
AGA 3, Expansion factor - scaled integer	1791	1 word
AGA 3, Coefficient of discharge - scaled integer	1792	1 word
API 2540, Density at reference	1821	1 word
API 2540, Vapor pressure	1822	1 word
API 2540, Temperature correction factor, CTL	1826	1 word
API 2540, Pressure correction factor, CPL	1827	1 word
API 2540, Sediment and water correction factor, CSW	1828	1 word
Startup input pulse count	1840	2 words
Current input pulse count	1842	2 words
Pulse increment	1844	2 words
Pulse frequency	1846	2 words
Interpolated/static K-factor	1848	2 words
Interpolated/static meter factor	1850	2 words
Multiplier, mass flow rate	1864	2 words
Multiplier, energy flow rate	1866	2 words
Multiplier, volume flow rate	1868	2 words
Multiplier, mass accumulator	1870	2 words
Multiplier, energy accumulator	1872	2 words
Multiplier, volume accumulator	1874	2 words
Accumulator increment, mass	1876	2 words
Accumulator increment, energy	1878	2 words
Accumulator increment, net	1880	2 words
Accumulator increment, gross	1882	2 words
Accumulator increment, gross standard	1884	2 words
Accumulator increment, water	1886	2 words
Flow rate, mass	1888	2 words
Flow rate, energy	1890	2 words
Flow rate, net	1892	2 words
Flow rate, gross	1894	2 words
Flow rate, gross standard	1896	2 words
Flow rate, water	1898	2 words

13.5 Archive Data Format

Column	Description
Ofs	Shows the offset location of the data in each archive. The maximum offset value will depend on the <i>Record Size</i> value you configured.
	If the value has a "+" value (for example 0+) it means that the data occupies 2 words of data.
Reg Shows the Primary Modbus Slave Address of the data. This is a me address. For example: a Reg value of 890+ for meter 1 would be eq Modbus addresses 8890 and 8891.	
Description	Data Description.

There are 3 columns associated with each archive data:

13.5.1 Timestamp Date and Time Format

The date and time format used in the archives is stored in a highly compressed form in order to represent the date and time using only 2 words of data:

0 Date 1 Time	Word	Description
1 Time	0	Date
	1	Time

In order to extract the information from the date format use the following arithmetic:

Date Word

- Year = ([Bits 15 thru 9] from Word 0) + 1996
- Month = ([Bits 8 thru 5] from Word 0) + 1
- Day = ([Bits 4 thru 0] from Word 0) + 1

Time Word

- Hour = ([Bits 15 thru 11] from Word 1)
- Minute = ([Bits 10 thru 5] from Word 1)
- Second = ([Bits 4 thru 0] from Word 1)* 2
- The first 10 words of data (archive header) are common for all archives:

13.5.2 Pre-defined Header

These archive areas are included in the default archive data, and cannot be reconfigured by the user.

Start Offset	End Offset	Data Format	Туре	Description
0	1	Timestamp	Snapshot	Closing timestamp of archive
2		Word	Calculated	Flowing period
3		Bitmap	Calculated	Cumulative meter alarms
4		Bitmap	Calculated	Cumulative status
5		Word	Snapshot	Event counter
6	7	Double word	Calculated	Flowing period, seconds
8	9	Timestamp	snapshot	Opening timestamp of archive

Additional areas are also included in the default archive data, according to the meter type and product group associated with the meter.

Offset	Description
0	Current archive, daily, cumulative meter alarm: Input out of range, temperature
1	Current archive, daily, cumulative meter alarm: Input out of range: pressure
2	Current archive, daily, cumulative meter alarm: Input out of range: differential pressure
3	Current archive, daily, cumulative meter alarm: Input out of range: flowing density
4	Current archive, daily, cumulative meter alarm: Input out of range: water content
5	Current archive, daily, cumulative meter alarm: Differential Pressure Low
6	Current archive, daily, cumulative meter alarm: Orifice Pressure Exception
7	Current archive, daily, cumulative meter alarm: Accumulation overflow
8	Current archive, daily, cumulative meter alarm: Orifice characterization error
9	Not Used
10	Current archive, daily, cumulative meter alarm: Current archive, daily, cumulative meter alarm: Analysis characterization error
11	Current archive, daily, cumulative meter alarm: Compressibility calculation error
12	Current archive, daily, cumulative meter alarm: Reference density error
13	Current archive, daily, cumulative meter alarm: Temperature correction error
14	Current archive, daily, cumulative meter alarm: Vapor pressure error
15	Current archive, daily, cumulative meter alarm: Pressure correction error
The cumu	lative status bits are defined as follows:
Offset	End Offset
00	Stream 1 active
01	Stream 2 active
02	Stream 3 active
03	Stream 4 active
11	Meter enabled
12	Backplane Communication Fault
13	Measurement Configuration Changed
14	Power up
15	Cold Start

The cumulative meter alarms are defined as follows:

The following 20 words (default configuration) will depend on the meter type and product group as follows:

13.5.3 Orifice (Differential) Meter with Gas Product

Start Offset	End Offset	Data Format	Туре	Description
10	11	Accumulator	Snapshot	Accumulator totalizer, net
12	13	Floating point	Snapshot	Accumulator residue, net
14	15	Floating point	Flow weighted average	Flow rate, net
16	17	Floating point	Flow weighted average	Temperature

Start Offset	End Offset	Data Format	Туре	Description
18	19	Floating point	Flow weighted average	Pressure
20	21	Floating point	Flow weighted average	Differential pressure
22		Word	Flow weighted average	Relative density, e-4
23		Word	Flow weighted average	Compressibility, reference, e-4
24		Word	Flow weighted average	Compressibility, flowing, e-4
25		Word	Flow weighted average	Supercompressibility, e-4
26		Word	Flow weighted average	Velocity of approach factor, Ev, e-4
27		Word	Flow weighted average	Expansion factor, Y, e-4
28		Word	Flow weighted average	Coefficient of discharge, Cd, e-4
29		Word		(available)

13.5.4 Pulse (Linear) Meter with Gas Product

End Offset	Data Format	Туре	Description
11	Accumulator	Snapshot	Accumulator totalizer, net
13	Floating point	Snapshot	Accumulator residue, net
15	Floating point	Flow weighted average	Flow rate, net
17	Floating point	Flow weighted average	Temperature
19	Floating point	Flow weighted average	Pressure
21	Floating point	Flow weighted average	K-Factor
23	Floating point	Flow weighted average	Meter Factor
	Word	Flow weighted average	Relative density, e-4
	Word	Flow weighted average	Compressibility, reference, e-4
	Word	Flow weighted average	Compressibility, flowing, e-4
	Word	Flow weighted average	Supercompressibility, e-4
29	Double Word	Snapshot	Pulse Count
	11 13 15 17 19 21 23	11Accumulator13Floating point15Floating point17Floating point19Floating point21Floating point23Floating pointWordWordWordWordWordWord	11AccumulatorSnapshot13Floating pointSnapshot15Floating pointFlow weighted average17Floating pointFlow weighted average19Floating pointFlow weighted average21Floating pointFlow weighted average23Floating pointFlow weighted average24WordFlow weighted average25WordFlow weighted average26WordFlow weighted average27WordFlow weighted average28WordFlow weighted average29WordFlow weighted average20WordFlow weighted average23Flow deghted average24WordFlow weighted average25WordFlow weighted average26WordFlow weighted average27Flow deghted average28WordFlow weighted average

13.5.5 Orifice (Differential) Meter with Liquid Product

Start Offset	End Offset	Data Format	Туре	Description
10	11	Accumulator	Snapshot	Accumulator totalizer, net
12	13	Floating point	Snapshot	Accumulator residue, net
14	15	Floating point	Flow weighted average	Flow rate, net
16	17	Floating point	Flow weighted average	Temperature
18	19	Floating point	Flow weighted average	Pressure
20	21	Floating point	Flow weighted average	Differential pressure
22	23	Floating point	Flow weighted average	Density input

Start Offset	End Offset	Data Format	Туре	Description
24		Word	Flow weighted average	Corrected density (scaled integer)
25		Word	Flow weighted average	CTL e-4
26		Word	Flow weighted average	CPL e-4
27		Word	Flow weighted average	Velocity of approach factor, Ev, e-4
28		Word	Flow weighted average	Expansion factor, Y, e-4
29		Word	Flow weighted average	Coefficient of discharge, Cd, e-4

13.5.6 Pulse (Linear) Meter with Liquid Product

Start Offset	End Offset	Data Format	Туре	Description
10	11	Accumulator	Snapshot	Accumulator totalizer, net
12	13	Floating point	Snapshot	Accumulator residue, net
14	15	Floating point	Flow weighted average	Flow rate, net
16	17	Floating point	Flow weighted average	Temperature
18	19	Floating point	Flow weighted average	Pressure
20	21	Floating point	Flow weighted average	K-Factor
22	23	Floating point	Flow weighted average	Meter Factor
24	25	Floating point	Flow weighted average	Density Input
26		Word	Flow weighted average	Water content, % e-2
27		Word	Flow weighted average	Corrected density (scaled integer)
28		Word	Flow weighted average	CTL e-4
29		Word	Flow weighted average	CPL e-4

13.5.7 Flow Rate Integration with Gas Product

Start Offset	End Offset	Data Format	Туре	Description
10	11	Accumulator	Snapshot	Accumulator totalizer, net
12	13	Floating point	Snapshot	Accumulator residue, net
14	15	Floating point	Flow weighted average	Flow rate, net
16	17	Floating point	Flow weighted average	Temperature
18	19	Floating point	Flow weighted average	Pressure
20	21	Floating point	Flow weighted average	Flow Rate Input
22		Word	Flow weighted average	Relative density, e-4
23		Word	Flow weighted average	Compressibility, reference, e-4
24		Word	Flow weighted average	Compressibility, flowing, e-4
25		Word	Flow weighted average	Supercompressibility, e-4
26		Word		(available)

Start Offset	End Offset	Data Format	Туре	Description
27		Word		(available)
28		Word		(available)
29		Word		(available)

13.5.8 Pulse Frequency Integration with Gas Product

Start Offset	End Offset	Data Format	Туре	Description
10	11	Accumulator	Snapshot	Accumulator totalizer, net
12	13	Floating point	Snapshot	Accumulator residue, net
14	15	Floating point	Flow weighted average	Flow rate, net
16	17	Floating point	Flow weighted average	Temperature
18	19	Floating point	Flow weighted average	Pressure
20	21	Floating point	Flow weighted average	K-Factor
22	23	Floating point	Flow weighted average	Meter Factor
24		Word	Flow weighted average	Relative density e-4
25		Word	Flow weighted average	Compressibility, reference, e-4
26		Word	Flow weighted average	Compressibility, flowing, e-4
27		Word	Flow weighted average	Supercompressibility, e-4
28	29	Floating point	Flow weighted average	Pulse Frequency

13.5.9 Flow Rate Integration with Liquid Product

Start Offset	End Offset	Data Format	Туре	Description
10	11	Accumulator	Snapshot	Accumulator totalizer, net
12	13	Floating point	Snapshot	Accumulator residue, net
14	15	Floating point	Flow weighted average	Flow rate, net
16	17	Floating point	Flow weighted average	Temperature
18	19	Floating point	Flow weighted average	Pressure
20	21	Floating point	Flow weighted average	Flow Rate Input
22	23	Floating point	Flow weighted average	Density Input
24		Word	Flow weighted average	Corrected density (scaled integer)

Start Offset	End Offset	Data Format	Туре	Description	
25		Word	Flow weighted average	CTL e-4	
26		Word	Flow weighted average	CPL e-4	
27		Word		(available)	
28		Word		(available)	
29		Word		(available)	

13.5.10 Pulse Frequency Integration with Liquid Product

Start Offset	End Offset	Data Format	Туре	Description
10	11	Accumulator	Snapshot	Accumulator totalizer, net
12	13	Floating point	Snapshot	Accumulator residue, net
14	15	Floating point	Flow weighted average	Flow rate, net
16	17	Floating point	Flow weighted average	Temperature
18	19	Floating point	Flow weighted average	Pressure
20	21	Floating point	Flow weighted average	K-Factor
22	23	Floating point	Flow weighted average	Meter Factor
24	25	Floating point	Flow weighted average	Density Input
26		Word	Flow weighted average	Water content, % e-2
27		Word	Flow weighted average	Corrected density (scaled integer)
28	29	Floating point	Flow weighted average	Pulse Frequency

Example 1

Find the Net Accumulator addresses at archive 1 (latest daily archive) for the first 4 meters.

Primary Modbus Slave <i>Input</i> Register Address	Description
10 and 11	Net Accumulator Totalizer from archive 1 - Meter 1
2510 and 2511	Net Accumulator Totalizer from archive 1 - Meter 2
5010 and 5011	Net Accumulator Totalizer from archive 1 - Meter 3
7510 and 7511	Net Accumulator Totalizer from archive 1 - Meter 4

Example 2

Find the Net Accumulator addresses at archive 0 (current daily archive) for the first 4 meters.

Primary Modbus Slave Holding Register Address	Description
9910 and 9911	Net Accumulator Totalizer from archive 0 - Meter 1
11910 and 11911	Net Accumulator Totalizer from archive 0 - Meter 2
13910 and 13911	Net Accumulator Totalizer from archive 0 - Meter 3
15910 and 15911	Net Accumulator Totalizer from archive 0 - Meter 4

13.6 Modbus Addressing Common to Both Primary and Virtual Slaves

Address	Туре	Description
Ch00000	Char	Firmware product code, group
		Low byte: platform
		High byte: application class
Ch00001 Char	Firmware product code, item	
		Low byte: number of streams
		High byte: number of meters
Ch00002	Int	Firmware version number
		Low byte: minor version number
		High byte: major version number
Ch00003	Int	Firmware revision number
Ch00004 to Ch00005	Int	Serial number
Ch00006	Bm	Site status
		bit 0 - AFC released
		Latched when both bit 15 (cold start) and bit 12 (Processor offline) first become clear, remaining so until any subsequent cold start. While this bit remains clear events are not logged, allowing an initial configuration to be fully completed without filling up the event log. bit 1 - Checksum alarm
		Set when any bit in the "Checksum Alarms" registers, for site and each meter, is set; clear when all such bits are clear.
		bit 2 - [reserved]
		bit 3 - [reserved]
		bit 4 - Processor halted, offline, or missing
		Set while backplane communication is faulty, which typically occurs when the Processor is switched to program mode. While set, measurement continues using the latest process input values obtained from the processor. Upon resumption of backplane communication, the AFC compensates for the downtime by computing an accumulator increment in a manner that depends on the meter type. For differential (orifice) meters, the first measurement scan acquires a scan period equal to the period of downtime as computed from the system timer, hence periods of processor downtime shorter than the rollover period of the system timer cause no loss of product. For linear (pulse) meters, the first measurement scan acquires a pulse increment equal to the difference between the processor-supplied pulse count of the current scan and that of the last scan before communication loss, hence periods of processor downtime shorter than the rollover period of the counter module cause no loss of product.

Address	Туре	Description
		bit 5 - Measurement configuration changed
		Set when any bit in the "Measurement Configuration Changed" registers is set; clear when all such bits are clear.
		bit 6 - Power up
		Set upon power-up, and cleared upon setting the wallclock for the first time
		bit 7 - Cold start
		Upon power-up, AFC's non-volatile storage is checked for validity, by verifying a checksum and confirming that certain known values are present in their proper locations. If the storage is invalid, then it is initialized with a default configuration, and this bit is set. The bit remains set, even through subsequent power cycles, until at least one meter is enabled at which time the bit is cleared.
		bit 8 - A copy of the "Hard Passwords" site option, made available here so that an external application such as AFC Manager can learn all it needs to know in order to connect to the module by reading the first 20 holding registers from the Modbus table
		bit 9 - [reserved]
		bit 10 - [reserved]
		bit 11 - [reserved]
		bit 12 - [reserved]
		bit 13 - [reserved]
		bit 14 - [reserved]
		bit 15 - [reserved]
Ch00007	Ву	Processor offline code: 0 online, 1 offline
Ch00008	Ву	Zero / primary slave address
		This value distinguishes the two slaves. When read from the primary slave this value is zero; when read from the virtual slave this value is the primary slave address.
Ch00009	Wd	Password, write-enable
Ch00010 to	Wd	Wallclock (Y,M,D,h,m,s)
Ch00015	h00015	The wallclock has a resolution of 1 second.
Ch00016 to	Bm	Wallclock (packed)
Ch00017		The packed wallclock has a resolution of 2 seconds.
Ch00018 Bn	Bm	accessed port and authorization
		bits 0- 3 - Accessed port; 0 = gateway
		bit 4 - Password authorization waived for read
		bit 5 - Password authorization waived for write
		bit 6 - Password authorization granted for read
		bit 7 - Password authorization granted for write
Ch00019	Wd	Password, read-enable
Ch00020 to Ch00089		[reserved]
		Reserved for use by diagnostic and similar procedures.
Ch00090 to Wd Ch00099	Wd	Arbitrary event-logged registers.
		A Modbus master (such as the processor using Modbus Gateway) can use these to record in the Event Log changes to values unrelated to flow measurement.

13.6.1 Modbus Dictionary Entries

The entries listed in this section are available in AFC Manager via **Project / Modbus Dictionary**. The Dictionary will show you only those points that are relevant to your firmware version and project configuration.

Firmware product code, group

This value identifies the application class and the platform upon which it runs. It may be interrogated by external software (such as the AFC Manager) in order to tailor its communication.

Firmware product code, group - platform

This ASCII character identifies the application platform.

Firmware product code, group - application class.

This ASCII character identifies the application class. It is always "F" (hexadecimal 46) for the AFC.

Firmware product code, item

This value identifies additional characteristics of the application build, and may be interrogated by external software as for the Firmware Product Group code.

Firmware product code, item - number of streams

This ASCII character reports the number of streams per meter available in this build of the AFC.

Firmware product code, item - number of meters

This ASCII character reports the number of meters available in this build of the AFC.

Firmware version number

The byte-coded version number of this build of the AFC.

Firmware version number - minor version number

The minor version number of this build of the AFC.

Firmware version number - major version number

The major version number of this build of the AFC.

Firmware revision number

The revision number of this build of the AFC.

<u>Serial number</u>

The serial number of the AFC module. To compare it with the label on the hardware, interpret it in hexadecimal.

Site status (basic)

View bit-level detail for more information.

AFC released

Latched when both bit 7 (Cold Start) and bit 4 (PLC Offline) both become clear, remaining so until any subsequent Cold Start. While this bit remains clear events are not logged, allowing an initial configuration to be fully completed without filling up the event log.

Checksum alarm

Set when any bit in the "Checksum alarms" registers, for site and each meter, is set; clear when all such bits are clear. Checksums are verified upon power-up, and failure raises an alarm.

PLC halted, offline, or missing

Set while backplane communication is faulty, which typically occurs when the PLC is switched to program mode. The behavior of the AFC under this condition depends upon the meter type.

- For linear meters receiving a pulse count primary input: While this bit is set no new pulses or process inputs are arriving from the PLC, hence measurement does not occur and all outputs are "frozen" at their latest values; upon resumption of backplane communication the first measurement scan acquires a pulse increment equal to the difference between the pulse count of the current scan and that of the last scan before communication loss, hence periods of PLC downtime shorter than the rollover period of the counter module cause no measurement loss.
- For all other meters, including flowrate or frequency integration and traditional orifices:

While this bit is set measurement continues using the latest values of the process inputs before communication loss; upon resumption of backplane communication arrival of new process inputs resumes with consequent recalculation of outputs, hence no measurement loss occurs.

Measurement configuration changed

Set when any bit in the "Measurement configuration changed" registers is set; clear when all such bits are clear.

Power up

Set upon power-up and cleared upon setting the wallclock for the first time.

Cold start

Upon power-up the AFC's non-volatile storage is checked for validity, by verifying checksums and confirming that certain known values are present in their expected locations. If the storage is invalid, then it is initialized with a default configuration and this bit is set. The bit remains set, even through subsequent power cycles, until at least one meter is enabled at which time the bit is cleared. A checksum failure does not by itself cause a cold start; instead, a checksum alarm is raised and the module continues to operate with its existing memory.

Extended site status

View bit-level detail for more information.

Hard passwords

A copy of the "Hard passwords" site option. It is made available here to allow an external application (such as the AFC Manager) to determine whether hard password entry is required even when Modbus reads are password-protected, as the site status is always readable.

PLC offline

Values:

- PLC is on-line
- PLC is off-line

Zero (primary slave); Primary slave address (virtual slave)

Allows an external application to determine whether it is interrogating the primary slave or the virtual slave. When read from the primary slave this value is zero, while when read from the virtual slave this value is the address of the primary slave.

Password, write-enable

When non-zero, this value is the password required in order to enable Modbus writes. When zero, it is deemed to have the value of the read-enable password (register 19); if that value is also zero then Modbus writes are unprotected. If the module has hard passwords then the write-enable password is hidden and a read of this register always returns zero; hard passwords may only be written and cannot be read.

Wallclock, year

Continuously maintained.

Wallclock, month

Continuously maintained.

<u>Wallclock, day</u>

Continuously maintained.

<u>Wallclock, hour</u> Continuously maintained.

Wallclock, minute

Continuously maintained.

<u>Wallclock, second</u> Continuously maintained.

Wallclock (packed)

The wallclock as a 32-bit quantity, continuously maintained. If the site option "Return Unix-style timestamps via virtual slave" (register 119 bit 0) is set and this value is read from the virtual slave, then it appears as seconds since 1970 (Unix style) and its bit-field encoding is not relevant. Otherwise the timestamp is packed into bit fields with a resolution of 2 seconds; view bit-level detail for more information.

Wallclock (packed), bisecond

The wallclock second of the minute divided by 2; value 0 thru 29.

Wallclock (packed), minute

The wallclock minute of the hour; value 0 thru 59.

Wallclock (packed), hour

The wallclock hour of the day, using the 24-hour clock; value 0 thru 23.

Wallclock (packed), day

The wallclock day of the month less 1; value 0 thru (days in month) -1.

Wallclock (packed), month

The wallclock month of the year less 1; value 0 thru 11.

Wallclock (packed), year

The wallclock year less 1996; value 0 thru 103 (through year 2099).

Accessed port and authorization (read); Password test (write)

When read, reports the serial port over which the read is performed and the readwrite access granted; view bit-level detail for more information. In hard-password mode the master gains access by writing a candidate password to this register; a subsequent read reports the access granted.

Accessed port

The serial port over which the read is performed. If the read is over the Modbus gateway from the PLC, this value is zero.

Password authorization waived for read

This port is configured to allow all Modbus reads with no password required.

Password authorization granted for read

This port has been granted Modbus read access, by one of these conditions:

- Authorization is waived (this register, bit 4).
- The password is zero therefore not required.
- The correct password has been provided.

Password, read-enable

When non-zero, this value is the password required in order to enable Modbus reads. When zero, Modbus reads are unprotected. If the module has hard passwords then the read-enable password is hidden and a read of this register always returns zero; hard passwords may only be written and cannot be read.

Arbitrary event-logged registers #1 through #10

A change to any of these registers is recorded in the event log. This allows a master to record in the event log changes to values unrelated to flow measurement.

Modbus slave address, primary

Through this slave, all configuration, process, and historical data for the site and all meters are available. Regardless of the module's configuration, this slave is always accessible through Port 1. Value must lie between 1 and 247. A written value of 0 is ignored (without error) and does not change the currently configured value. A non-zero value changes the slave address to the new value; subsequent Modbus commands must address the module using the new slave address. Default value is 244.

Modbus slave address, virtual

This is the address of the 20,000-register "virtual" slave defined by its indirect address table in the primary slave. Value must lie between 0 and 247. A value of 0 disables the virtual slave via the serial ports; all data is then accessible only through the primary slave. If this address is the same as that of the primary slave then it is hidden by the primary slave at serial ports that enable access to the primary slave. Regardless of the value of this point, the PLC can always access either slave over the backplane using Modbus Gateway transfers. Default value is 0.

Port #, UART parameters and Modbus mode

View bit-level detail for more information.

Port #, Baud code

Values:

- 300 baud
- 600 baud
- 1200 baud
- 2400 baud
- 4800 baud
- 9600 baud
- 19200 baud

Writing 0 to this field causes the entire port reconfiguration to be ignored and the existing configuration remains unchanged.

Port #, Parity code

Values:

- No parity
- Odd parity
- Even parity
- Reserved (currently treated as "no parity")

Port #, Data bits

Values:

- 8 data bits
- 7 data bits

Port #, Stop bits

Values:

- 1 stop bit
- 2 stop bits

Port #, Modbus mode

Values:

- RTU mode
- ASCII mode

<u>Port #, Swap mask</u>

Values:

- No swap
- Swap bytes
- Swap words (32-bit items only)
- Swap both words and bytes (full reversal)

Port #, Disable pass-thru

Values:

- Pass-thru enabled
- Pass-thru disabled

Port #, CTS timeout

In units of 5 ms, with valid values from 0 to 255 (1.275 seconds). In a Modbus transmission, after RTS is raised CTS must appear within this time in order to continue the transmission; except if the timeout is zero then CTS is not expected but is immediately assumed to be present.

Port #, Delay before data

In units of 5 ms, with valid values from 0 to 255 (1.275 seconds). In a Modbus transmission, this delay is imposed between the actual or assumed appearance of CTS and the start of data transmission.

Port #, Password authorization waiver

Waive password requirement for Modbus reads and/or writes via this port. View bit-level detail for more information.

Port #, Authorization waiver, read

If set, Modbus reads through this port are always authorized; no password is required.

Port #, Authorization waiver, write

If set, Modbus writes through this port are always authorized; no password is required.

Port #, Delay after data

In units of 5 ms, with valid values from 0 to 255 (1.275 seconds). In a Modbus transmission, this delay is imposed between the end of data transmission and the dropping of RTS.

Site options

View bit-level detail for more information.

Return Unix-style timestamps via virtual slave

Return packed (32-bit) timestamps as seconds since 1970 (Unix style) when reading from the virtual slave. Packed timestamps read from the primary slave are always bit-field encoded.

Event log unlocked

If set, then event-log records may be overwritten before being downloaded first.

Barometric pressure in US units

If set, then barometric pressure for the site is expressed in US units (psia); if clear, then barometric pressure is expressed in SI units (kPaa).

Record process input range alarms as events

If set, then out-of-range alarms on process inputs are deemed to be events and are recorded in the event log.

Hard passwords

Enables secure password-controlled access to the AFC. Passwords are stored in the AFC by writing them to the password registers 9 and 19, but in hard-password mode reading those registers always returns zero. Read and/or write access to the AFC is granted by writing a candidate password to the password-test register (register 18) and the access granted is determined by reading back that register and examining its contents. The access is granted to the port over which the request was made; other ports remain unaffected. If the port remains idle with no Modbus activity for two minutes, then the granted access is removed and can be regained only by writing a new password to the test register. Refer to the description of registers 9, 19, and 18 for more information.

End-of-day minute

The minute of the day at which daily archive records are written. Value must lie between 0 and 1439.

End-of-hour minute

The minute of the hour at which hourly archive records are written, expressed as minutes since midnight. Value must lie between 0 and 59.

Barometric pressure

The normal atmospheric pressure for the site. It is added to the value from a pressure transmitter that supplies gauge units (above atmospheric) to arrive at absolute units for use in measurement calculations. It may be expressed in either SI units (kPaa) or US units (psia) according to the setting of site option "Barometric pressure in US units" (register 119 bit 2).

Modbus pass-thru: Maximum PLC window size

These five registers specify the pass-thru capability of the virtual slave, in which Modbus write commands issued by an external master are passed through directly to the PLC for interpretation, bypassing the AFC's Modbus table. Passthru is enabled by entering a non-zero PLC window size (this register) that specifies the maximum width (in 16-bit words) of the data portion of a Modbus command to be passed to the PLC, together with Modbus address regions (registers 142 and 143 for word-write, registers 144 and 145 for bit-write) that specify which incoming Modbus commands are to be treated as pass-thru. The window size may range from zero (pass-thru disabled) up through a maximum of 125 (the maximum length of the data portion of a Modbus command) or a smaller number depending on the backplane characteristics of the platform. Pass-thru is enabled or disabled for individual serial ports according to the setting of a port option bit. Pass-thru is effective only for Modbus write commands to the virtual slave arriving via an enabled serial port and only for the pass-thru register region specified; any other Modbus access, including reads, writes to registers outside the specified region, access via disabled ports, backplane gateway access, and primary slave access, is unaffected. A write to the virtual slave through an enabled port must reside either wholly within the pass-thru region (and is passed thru) or wholly without it (and is a normal virtual slave write); no region-spanning is permitted.

Modbus pass-thru: Word region address

This register and the next specify the region of the virtual slave Modbus address space to which incoming Modbus word-write commands (functions 6 and 16) are to be passed-thru directly to the PLC. This region may be taken from anywhere in the 65536-register Modbus holding-register address space, even from outside the defined range of the virtual slave, with the exception of the first 100 registers addressed 0 through 99. A region size of zero disables word-write pass-thru. Refer to the description of register 141 for more information.

Modbus pass-thru: Word region size

This register and the previous specify the region of the virtual slave Modbus address space to which incoming Modbus word-write commands (functions 6 and 16) are to be passed-thru directly to the PLC. This region may be taken from anywhere in the 65536-register Modbus holding-register address space, even from outside the defined range of the virtual slave, with the exception of the first 100 registers addressed 0 through 99. A region size of zero disables word-write pass-thru. Refer to the description of register 141 for more information.
Modbus pass-thru: Bit region address

This register and the next specify the region of the virtual slave Modbus address space to which incoming Modbus bit-write commands (functions 5 and 15) are to be passed-thru directly to the PLC. This region may be taken from anywhere in the 65536-register Modbus coil address space. As the AFC does not itself define any bit-registers, pass-thru bit-writes are the only bit-access Modbus commands that the AFC will recognize. A region size of zero disables bit-write pass-thru. Refer to the description of register 141 for more information.

Modbus pass-thru: Bit region size

This register and the previous specify the region of the virtual slave Modbus address space to which incoming Modbus bit-write commands (functions 5 and 15) are to be passed-thru directly to the PLC. This region may be taken from anywhere in the 65536-register Modbus coil address space. As the AFC does not itself define any bit-registers, pass-thru bit-writes are the only bit-access Modbus commands that the AFC will recognize. A region size of zero disables bit-write pass-thru. Refer to the description of register 141 for more information.

Project name

Identifies this AFC configuration. During project download the project name of the new configuration is compared to that already in the module and a warning is issued if they do not match. Also available for printing on reports.

<u>Site name</u>

Identifies the site, for printing on reports.

PLC address: Supervisory, get

The address in the PLC of the block of 52 registers through which the PLC issues system controls and signals to the AFC, including meter-enable signals. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465485 (stored in the module as a value between 1 and 65485) and is the starting address in the 4x register bank of the block. For proper operation of the AFC, this block is required. For more information, refer to the documentation of your platform's backplane.

PLC address: Supervisory, put

The address in the PLC of the block of 50 registers through which the AFC returns to the PLC system status and results of some system signals. Status includes the gross characterization or enable status of each meter. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465487 (stored in the module as a value between 1 and 65487) and is the starting address in the 4x register bank of the block. For more information, refer to the documentation of your platform's backplane.

PLC address: Wallclock, get & put

The address in the PLC of the block of 6 registers that transfers the wallclock between the PLC and the AFC. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465531 (stored in the module as a value between 1 and 65531) and is the starting address in the 4x register bank of the block. For proper operation of the AFC, this block is required. For more information, refer to the documentation of your platform's backplane.

PLC address: Modbus gateway, get & put

The address in the PLC of the block of 129 registers that transfers the addressing, data, and status of Modbus gateway transactions issued by the PLC to the AFC. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465408 (stored in the module as a value between 1 and 65408) and is the starting address in the 4x register bank of the block. For more information, refer to the documentation of your platform's backplane.

PLC address: Modbus pass-thru, put

The address in the PLC of the block of 130 registers through which the AFC transfers to the PLC the status of the Modbus pass-thru feature and any pass-thru data written by an external host. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465407 (stored in the module as a value between 1 and 65407) and is the starting address in the 4x register bank of the block. For more information, refer to the documentation of your platform's backplane.

PLC address: Modbus master, get & put

The address in the PLC of the block of 130 registers that transfers the addressing, data, and status of Modbus master transactions issued by the PLC through the AFC to an external slave. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465407 (stored in the module as a value between 1 and 65407) and is the starting address in the 4x register bank of the block. For more information, refer to the documentation of your platform's backplane.

Site signals

A signal instructs the AFC to immediately perform a particular function once. A signal bit is latched by the process issuing the signal (e.g. the PLC) and is unlatched by the AFC when the function has been performed. As site signals are discharged immediately upon receipt, a read of this word always returns zero. View bit-level detail for more information.

Event log download complete

Issued by an application (e.g. AFC Manager) after downloading all events, this signal causes the AFC to mark all events as "downloaded" so that they may be overwritten by new events.

Clear all checksum alarms

A checksum alarm indicates a checksum verification failure during power-up. Non-volatile information is kept in battery-backed RAM. It is partitioned into several blocks, each of which contains a checksum, and when the information is changed the checksum is updated also. During power-up the checksum is verified, and upon failure the alarm bit is latched and the checksum corrected. The alarm bit remains latched, even through subsequent power cycles, until it is explicitly cleared from outside, which may be performed by issuing this signal (to clear all alarms) or by writing a "1" to an individual alarm bit (to clear that alarm only). There is one checksum alarm word for the site as a whole and one checksum alarm word for each meter.

Checksum alarms, site

Checksum alarms detected for the site as a whole. For more information, view bit-level detail and refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Site identification and configuration

During power-up the checksum for the non-volatile memory containing the site identification and configuration did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Virtual slave indirect address table

During power-up the checksum for the non-volatile memory containing the virtual slave indirect address table did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Event log

During power-up the checksum for the non-volatile memory containing the event log did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Measurement configuration changed, site

Whenever a change is made to a configuration item that may affect the results of measurement calculations, a bit in one of these registers is set. These bits may also be set or cleared by writing directly to these registers. The contents of these registers determines the value of the "Measurement configuration changed" status bit (register 6 bit 5).

Measurement configuration changed, site: Options

Changes have been made to the site's options since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, site: Parameter value

Changes have been made to the site's parameter values since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, site: Arbitrary event-logged value

Changes have been made to arbitrary event-logged values since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter # base

Whenever a change is made to a configuration item that may affect the results of measurement calculations, a bit in one of these registers is set. These bits may also be set or cleared by writing directly to these registers. The contents of these registers determines the value of the "Measurement configuration changed" status bit (register 6 bit 5).

Measurement configuration changed, meter #: Process input calibration / alarm

Changes have been made to the calibration status of the meter's process inputs, or (if configured by site option "Record process input range alarms as events", register 119 bit 3) process input alarms have occurred for the meter, since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Meter classification

Changes have been made to the meter classification since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Reference conditions

Changes have been made to the meter's reference conditions since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Meter options

Changes have been made to the meter's options since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Process input scaling

Changes have been made to the ranging or scaling of the meter's process inputs since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Analysis component selection

Changes have been made to the list of recognized components of molar analyses for the meter since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Pulse input rollover

Changes have been made to the meter's pulse input rollover since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Units

Changes have been made to the meter's units for accumulator output, flow rate output, flow rate input, and/or K-factor since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Accumulator rollovers

Changes have been made to the meter's accumulator rollovers since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Parameter value

Changes have been made to the meter's parameter values since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter #: Densitometer

Changes have been made to the meter's densitometer configuration since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter # stream

Whenever a change is made to a configuration item that may affect the results of measurement calculations, a bit in one of these registers is set. These bits may also be set or cleared by writing directly to these registers. The contents of these registers determines the value of the "Measurement configuration changed" status bit (register 6 bit 5).

Measurement configuration changed, meter # stream #: Options

Changes have been made to the stream's options since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter # stream #: Parameter value

Changes have been made to the stream's parameter values since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter # stream #: Meter/K factor curve

Changes have been made to the stream's K-factors or meter factors since the last time this bit was clear, and associated events have been written to the event log.

Measurement configuration changed, meter # stream #: Analysis mole fraction

Changes have been made to the stream's molar analysis since the last time this bit was clear, and associated events have been written to the event log.

Scan count

A free-running 16-bit counter, incremented once for each execution of the AFC's main scan loop.

Meters in alarm

Bitmap identifying meters that are currently in alarm.

Meter 1 in alarm

Set whenever any bit in meter 1's "Meter alarms" register (register 9601) is set.

Meter 2 in alarm

Set whenever any bit in meter 2's "Meter alarms" register (register 11601) is set.

Meter 3 in alarm

Set whenever any bit in meter 3's "Meter alarms" register (register 13601) is set.

Meter 4 in alarm

Set whenever any bit in meter 4's "Meter alarms" register (register 15601) is set.

<u>Meter 5 in alarm</u>

Set whenever any bit in meter 5's "Meter alarms" register (register 17601) is set.

Meter 6 in alarm

Set whenever any bit in meter 6's "Meter alarms" register (register 19601) is set.

Meter 7 in alarm

Set whenever any bit in meter 7's "Meter alarms" register (register 21601) is set.

Meter 8 in alarm

Set whenever any bit in meter 8's "Meter alarms" register (register 23601) is set.

Meter 9 in alarm

Set whenever any bit in meter 9's "Meter alarms" register (register 25601) is set.

Meter 10 in alarm

Set whenever any bit in meter 10's "Meter alarms" register (register 27601) is set.

Meter 11 in alarm

Set whenever any bit in meter 11's "Meter alarms" register (register 29601) is set.

Meter 12 in alarm

Set whenever any bit in meter 12's "Meter alarms" register (register 31601) is set.

Meter 13 in alarm

Set whenever any bit in meter 13's "Meter alarms" register (register 33601) is set.

Meter 14 in alarm

Set whenever any bit in meter 14's "Meter alarms" register (register 35601) is set.

Meter 15 in alarm

Set whenever any bit in meter 15's "Meter alarms" register (register 37601) is set.

Meter 16 in alarm

Set whenever any bit in meter 16's "Meter alarms" register (register 39601) is set.

Number of backplane transfers received by module

Free-running 16-bit counter. For diagnostic purposes only.

Number of backplane transfers sent by module

Free-running 16-bit counter. For diagnostic purposes only.

Backplane transfer state

State of the backplane transfer process. For diagnostic purposes only.

Number of backplane queue entries allocated

A number that varies, but that should not exceed a few dozen. For diagnostic purposes only.

Number of backplane queue allocation failures

Should always be zero. For diagnostic purposes only.

Audit in progress

Values:

- Audit not in progress
- Audit in progress

These dozen registers manage a meter audit, which is the capture of the meter's process input, intermediate calculated values, and output results for a short series of consecutive calculation scans, and which can be used by an auditor to verify compliance with applicable Standards. To perform an audit, write the meter number before the down-counter or write them both with the same transaction. Upon a transition of the down-counter from zero to non-zero, the meter number is latched, the wallclock is recorded, and the audit area is cleared and reinitialized. After each scan, the down-counter is decremented, the up-counter is incremented, and the corresponding detail area is completed with values. During an audit, the down-counter may be changed to add or remove scheduled scans, but any attempt to respecify the meter number is ignored. The audit ends when the down-counter becomes zero or the up-counter becomes 8; in the latter case the down-counter is forced to zero regardless of its previous value.

Audit meter number, request

To initiate an audit, write here the number of the meter to be audited, then write the down-counter. Refer to the description of register 381 for more information.

Audit scan down-counter

To initiate an audit, write the down-counter here, after writing the number of the meter to be audited. Refer to the description of register 381 for more information.

Wallclock at audit start, year

Captured at the start of the audit. Refer to the description of register 381 for more information.

Wallclock at audit start, month

Captured at the start of the audit. Refer to the description of register 381 for more information.

Wallclock at audit start, day

Captured at the start of the audit. Refer to the description of register 381 for more information.

Wallclock at audit start, hour

Captured at the start of the audit. Refer to the description of register 381 for more information.

Wallclock at audit start, minute

Captured at the start of the audit. Refer to the description of register 381 for more information.

Wallclock at audit start, second

Captured at the start of the audit. Refer to the description of register 381 for more information.

Audit meter number, latched

Copied from the requested-meter register at the start of the audit. Refer to the description of register 381 for more information.

Audit scan up-counter

The number of audit scans completed. Refer to the description of register 381 for more information.

Meter number (1-based)

This value is always 1.

Meter status

Bitmap of selected meter status accumulated since the last archive record was written. The bitmap is cleared to zero upon writing a record to either archive file. View bit-level detail for more information.

Meter status: Meter enabled, not yet archived

The state of the meter has been switched from disabled to enabled since the last archive record was written.

Meter status: Backplane communications fault since last archive

Loss of communication with the PLC has been detected since the last archive record was written. This is usually due to a switch of the PLC to program mode.

Meter status: Measurement configuration changed since last archive

Configured items that might affect measurement calculations have been changed since the last archive record was written.

Meter status: Power up since last archive

The module lost power and has been rebooted since the last archive record was written.

Meter status: Cold start, not yet archived

A cold start (complete reinitialization) has occurred and an archive record has not yet been written.

Active stream number (0-based)

The number of the currently active stream less 1.

Map of enabled streams

This bitmap reports the streams that are currently enabled and to which the active stream can be switched. As the meter must always have an active stream, the bitmap is never all zero.

Stream # enabled

Meter signals and stream-select

A signal instructs the AFC to immediately perform a particular function once. A signal bit is latched by the process issuing the signal (e.g. the PLC) and is unlatched by the AFC when the function has been performed. Meter signals are discharged upon the next calculation scan, before which several Modbus transactions may be completed, hence a read of this word may show pending undischarged signals. View bit-level detail for more information.

Select stream 1

Issued by an external process (almost always the PLC, as it is typically accompanied by the swinging of valves) to switch measurement to stream 1 and make it active. Measurement continues using stream 1's parameters and stream 1's accumulators. Stream 1 must be enabled; if it is disabled then the signal is cancelled immediately with no action.

Select stream 2

Issued by an external process (almost always the PLC, as it is typically accompanied by the swinging of valves) to switch measurement to stream 2 and make it active. Measurement continues using stream 2's parameters and stream 2's accumulators. Stream 2 must be enabled; if it is disabled then the signal is cancelled immediately with no action.

Select stream 3

Issued by an external process (almost always the PLC, as it is typically accompanied by the swinging of valves) to switch measurement to stream 3 and make it active. Measurement continues using stream 3's parameters and stream 3's accumulators. Stream 3 must be enabled; if it is disabled then the signal is cancelled immediately with no action.

Select stream 4

Issued by an external process (almost always the PLC, as it is typically accompanied by the swinging of valves) to switch measurement to stream 4 and make it active. Measurement continues using stream 4's parameters and stream 4's accumulators. Stream 4 must be enabled; if it is disabled then the signal is cancelled immediately with no action.

Reset resettable accumulator 1

Issued by an external process (e.g. the PLC), or automatically according to archive configuration options (registers 8341 and 8421), to reset resettable accumulator 1. For a multiple-stream AFC, resettable accumulator 1 for the meter and all its streams are simultaneously reset.

Reset resettable accumulator 2

Issued by an external process (e.g. the PLC), or automatically according to archive configuration options (registers 8341 and 8421), to reset resettable accumulator 2. For a multiple-stream AFC, resettable accumulator 2 for the meter and all its streams are simultaneously reset.

Reset resettable accumulator 3

Issued by an external process (e.g. the PLC), or automatically according to archive configuration options (registers 8341 and 8421), to reset resettable accumulator 3. For a multiple-stream AFC, resettable accumulator 3 for the meter and all its streams are simultaneously reset.

Reset resettable accumulator 4

Issued by an external process (e.g. the PLC), or automatically according to archive configuration options (registers 8341 and 8421), to reset resettable accumulator 4. For a multiple-stream AFC, resettable accumulator 4 for the meter and all its streams are simultaneously reset.

Write daily archive

Issued by an external process, or automatically according to archive configuration options (registers 8341 and 8421), to cause the current-period daily archive to be closed and written to the daily archive file and to restart the daily archive period.

Write hourly archive

Issued by an external process, or automatically according to archive configuration options (registers 8341 and 8421), to cause the current-period hourly archive to be closed and written to the hourly archive file and to restart the hourly archive period.

Process input calibration

Toggling these bits switches process inputs into and out of calibration mode. While a process input is in calibration mode its latest live value is stored in the point "Input scaling, input frozen during calibration" and used for all calculations, which allows the transmitter to be calibrated without the consequent changes in output affecting measurement. When the process input is switched out of calibration mode normal operation is resumed. Changes to calibration mode bits are written as events to the event log.

Process input calibration, temperature

The temperature process input is in calibration mode.

Process input calibration, pressure

The pressure process input is in calibration mode.

Process input calibration, differential pressure

The differential pressure process input is in calibration mode.

Process input calibration, flow rate

The flow rate process input is in calibration mode.

Process input calibration, density

The density process input is in calibration mode.

Process input calibration, water content

The water content process input is in calibration mode.

<u>Meter tag</u>

Identifies the meter, for printing on reports.

Gross meter characterization

Specifies gross characteristics of the meter, including meter type. Changes to this point are permitted only while the meter is disabled and cause a complete reinitialization of the meter configuration and zeroing of all accumulators.

Meter type

Basic meter type; also may select applicable measurement Standards. Values:

- Differential meter (orifice/V-cone/wedge, or flow rate integration)
- Linear meter (pulse input, or pulse frequency integration)

<u>Measurement system</u>

Fundamental system of engineering units; also may select applicable measurement Standards. Values:

- SI (metric) units (temperature in °C, pressure in kPa, differential pressure in kPa)
- US (English) units (temperature in °F, pressure in psi, differential pressure in hW@60)

Density units

Engineering units for the input and expression of density values. Values:

- Density as kilograms per cubic meter (kg/m3)
- Density as density relative to water at 60°F (Rd60)
- Density as API gravity (°API)

Primary input

Specifies the input that directly represents the measured quantity; also may select applicable measurement Standards. Values:

- Standard (differential pressure, pulse count)
- Rate integration (quantity flow rate, frequency)

Product group

Specifies the overall class of substance measured by this meter, and selects applicable measurement Standards. Values are:

Gas

Densities and compressibilities required for volume correction are calculated from the gas molar analysis by the Detail Characterization Method of the AGA 8 (1992) Standard.

- Liquid (crudes, NGLs, LPGs) Standards are API MPMS Chapters 11.1 and 11.2 (API 2540), Tables "A" and "E".
- Liquid (refined products: gasolines, jet fuels, etc.)
 Standards are API MPMS Chapters 11.1 and 11.2 (API 2540), Tables "B".
- Liquid (oil-water emulsion) Standards are API MPMS Chapters 11.1 and 11.2 (API 2540), Tables "A", together with the high-water-content algorithms of API MPMS Chapter 20.1.

Changes to this point are permitted only while the meter is disabled and cause a complete reinitialization of the meter configuration and zeroing of all accumulators.

Reference (contract) temperature

The reference (or "base", or "standard") temperature to which measured volumes are to be corrected. When this value is downloaded to the Module, the AFC firmware rounds it to the nearest 0.05°C or 0.10°F; the rounded value is used in all subsequent calculations. The rounding is silent (unannounced) and the value stored in the AFC project file does not change until the project (or meter) configuration is re-uploaded and the project file re-saved.

Reference (contract) pressure

The reference (or "base", or "standard") pressure to which measured volumes are to be corrected.

Meter calculation options

Several options affecting details of the measurement calculations. View bit-level detail for more information.

Downstream static pressure

Specifies whether the static pressure transmitter is downstream or upstream of the flow constriction that causes the differential pressure. Measurement Standards require that the static pressure supplied to the calculations be determined upstream of the constriction; if this option is set, then the differential pressure is added to the downstream static pressure to yield the upstream static pressure supplied to the calculations. If the meter is an integral type (such as a V-cone or wedge) that includes its own pressure transmitter, do not set this option.

Corner taps

Applicable only to traditional orifice meters, this option specifies a differential pressure tapping that is alternate to the more common flange tapping.

Radius taps

Applicable only to traditional orifice meters, this option specifies a differential pressure tapping that is alternate to the more common flange tapping.

V-cone/Wedge device

Most of the AGA 3 and ISO 5167 Standards specify the calculation of the coefficient of discharge of a traditional orifice meter. When a V-cone or Wedge meter is used instead, the Standard calculation is not applicable and the discharge coefficient must be entered directly from the manufacturer's data sheet into the point "V-cone/Wedge coefficient of discharge". For these devices, also, the effective diameter of the flow obstruction (not the aperture, as it is for traditional orifice meters) must be entered into the point "Orifice plate: measured diameter"; that value is calculated by a spreadsheet which is primed with data from the manufacturer's data sheet.

ISO 5167 (2003)

Applicable only to traditional orifice meters, this option selects the measurement Standard to be used for the calculation of the orifice discharge coefficient. Values:

- AGA 3 (1992)
- ISO 5167 (2003)

Ignore default flowing density

If a process input is out of range, normal behavior is to substitute a default value (refer to the "Input scaling" points for information) and proceed with the calculations that use the input. In the case of density input at flowing conditions (liquid meter with meter calculation option "Density correction", bit 8, set) this behavior might be less than ideal, as this default value would still undergo correction to reference conditions causing the corrected density to vary depending on temperature and pressure. Setting this option causes the AFC to ignore the process input default and instead assume a corrected density from the stream parameter point "Default density at reference" and to skip the density correction.

Density correction

This option enables the Standard calculation for correcting the density process input from flowing to reference conditions. The Standards applied are those in API MPMS Chapter 11.1 ("API 2540")

- SI units: Tables 53xx. The input density is converted to the units required by the Standard (kg/m3) before applying the calculation.
- US units: Tables 23xx. The input density is converted to the units required by the Standard (Rd60) before applying the calculation.

If this option is clear then the input density is deemed to be corrected already to reference conditions.

Hydrometer correction

When the density process input has been measured at flowing conditions with a glass hydrometer, this option enables an adjustment of the density correction calculation that further corrects for the effect of temperature on the volume of the hydrometer.

Temperature correction

This option enables the Standard calculation for CTL, the factor that corrects measured liquid volume from flowing to reference conditions for the effect of temperature, and which requires as input the corrected density. The Standards applied are those in API MPMS Chapter 11.1 ("API 2540").

- SI units: Tables 54xx. The corrected density is converted to the units required by the Standard (kg/m3) before applying the calculation.
- US units: Tables 24xx. The corrected density is converted to the units required by the Standard (Rd60) before applying the calculation.

If this option is clear, or if the calculation fails, then the CTL used to correct liquid volume is that given in the stream parameter point "Default CTL".

Pressure correction

This option enables the Standard calculation for CPL, the factor that corrects measured liquid volume from flowing to reference conditions for the effect of pressure, and which requires as input the corrected density. The Standards applied are those in API MPMS Chapter 11.2, and the particular calculation that is used depends on both the measurement system for the meter (SI or US units) and the density range (low or high). The corrected density is converted to the units required by the Standard before applying the calculation. If this option is clear, or if the calculation fails, then the CPL used to correct liquid volume is that given in the stream parameter point "Default CPL".

Vapor pressure via TP-15

With this option set, liquid vapor pressure is calculated according to the correlation given in the Gas Processors Association Technical Publication #15. Vapor pressure is significant only if it can rise above reference pressure at either reference or operating temperature and only if pressure correction is enabled (bit 11). If this option is clear, then the vapor pressure given in the stream parameter point "Default vapor pressure" is assumed.

Density correction for pressure

The API 2540 (1980) procedure for correcting density from operating to reference conditions considers only the effect of temperature. For lighter fluids flowing under elevated pressure the effect of pressure can be significant and should not be ignored. This option, effective only when density correction is performed, enables an iteration which applies CPL to the input observed density and recalculates corrected density and CPL, repeating until two successive densities differ by no more than 0.005 kg/m3 (SI Units) or 0.00005 Rd60.

Calculate net energy

With this option clear, calculated energy content of the stream is the gross heating value, in which produced water is deemed to be condensed to the liquid state and the latent heat released is included in the energy content. Setting this option causes calculation of net heating value, in which produced water is deemed to remain in the vapor state and does not contribute its latent heat of condensation to the energy content.

Meter control options

Several options affecting the handling and representation of data, and whether certain calculations are performed. View bit-level detail for more information.

Split-double pulse input

If set, the input from the pulse counter module is deemed to arrive as a splitdouble value, in which the actual value is (MSW * 10,000 + LSW). If clear, the pulse input is interpreted as a full 32-bit integer.

Split-double accumulators

If set, then accumulator totalizers are stored and presented as split-double quantities, in which the actual value is (MSW * 10,000 + LSW). If clear, then accumulator totalizers are stored and presented as full 32-bit integers. This option also affects the maximum meaningful value of the accumulator rollovers (three long integers at register 8150).

Treat analysis as process input

If this option is clear, the molar analysis is treated as a sealable parameter and changes to it are recorded in the event log. If this option is set, then changes to the analysis can occur freely, just like any other process input.

Meter enable

While disabled, a meter ignores all process input and signals and performs no measurement or archiving. Generally, an in-service meter is always enabled.

Input scaling, temperature, range low end

This is the lowest value allowed for temperature input, and for "raw" input corresponds to the D/A zero-scale value. An input less than this causes an out-of-range alarm. This and the two following points must satisfy the relationship:

 $(low range) \le (default) \le (high range)$

Input scaling, temperature, range high end

This is the highest value allowed for temperature input, and for "raw" input corresponds to the D/A full-scale value. An input greater than this causes an out-of-range alarm. This and the two surrounding points must satisfy the relationship:

 $(low range) \le (default) \le (high range)$

Input scaling, temperature, default

This is the default value for temperature input, assumed when the actual input is out of range. This and the two preceding points must satisfy the relationship:

 $(low range) \le (default) \le (high range)$

Input scaling, temperature, module id code

The "module id code" specifies the processing of the PLC-supplied value that is required in order to obtain the process input value in engineering units. Permitted values are:

- -1 The PLC supplies temperature directly as a floating-point value.
- 0 The PLC supplies temperature directly as a fixed-point value, scaled to 2 decimal places.
- >0 The PLC supplies the "raw" D/A value from an analog input module; this code selects from a predefined list of modules whose pertinent characteristics are its D/A zero-scale and full-scale values; the AFC scales the raw input so that the valid D/A range scales to the configured temperature range.

Input scaling, temperature, input frozen during calibration

This point holds the scaled temperature input present at the time that the input was switched to calibration mode. This value is used for all calculations while in calibration, until the input is switched out of calibration mode at which time normal operation is resumed.

Input scaling, pressure, range low end

This is the lowest value allowed for pressure input, and for "raw" input corresponds to the D/A zero-scale value. An input less than this causes an out-of-range alarm. This and the two following points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

Input scaling, pressure, range high end

This is the highest value allowed for pressure input, and for "raw" input corresponds to the D/A full-scale value. An input greater than this causes an out-of-range alarm. This and the two surrounding points must satisfy the relationship:

 $(low range) \le (default) \le (high range)$

Input scaling, pressure, default

This is the default value for pressure input, assumed when the actual input is out of range. This and the two preceding points must satisfy the relationship:

 $(low range) \le (default) \le (high range)$

Input scaling, pressure, module id code

The "module id code" specifies the processing of the PLC-supplied value that is required in order to obtain the process input value in engineering units. Permitted values are:

- -1 The PLC supplies pressure directly as a floating-point value.
- 0 The PLC supplies pressure directly as a fixed-point value, scaled to 0 decimal places.
- >0 The PLC supplies the "raw" D/A value from an analog input module; this code selects from a predefined list of modules whose pertinent characteristics are its D/A zero-scale and full-scale values; the AFC scales the raw input so that the valid D/A range scales to the configured pressure range.

Input scaling, pressure, input frozen during calibration

This point holds the scaled pressure input present at the time that the input was switched to calibration mode. This value is used for all calculations while in calibration, until the input is switched out of calibration mode at which time normal operation is resumed.

Input scaling, differential pressure, range low end

This is the lowest value allowed for differential pressure input, and for "raw" input corresponds to the D/A zero-scale value. An input less than this causes an out-of-range alarm. This and the two following points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

Input scaling, differential pressure, range high end

This is the highest value allowed for differential pressure input, and for "raw" input corresponds to the D/A full-scale value. An input greater than this causes an out-of-range alarm. This and the two surrounding points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

Input scaling, differential pressure, default

This is the default value for differential pressure input, assumed when the actual input is out of range. This and the two preceding points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

Input scaling, differential pressure, module id code

The "module id code" specifies the processing of the PLC-supplied value that is required in order to obtain the process input value in engineering units. Permitted values are:

- -1 The PLC supplies differential pressure directly as a floating-point value.
- 0 The PLC supplies differential pressure directly as a fixed-point value, scaled to 3 decimal places.
- >0 The PLC supplies the "raw" D/A value from an analog input module; this code selects from a predefined list of modules whose pertinent characteristics are its D/A zero-scale and full-scale values; the AFC scales the raw input so that the valid D/A range scales to the configured differential pressure range.

Input scaling, differential pressure, input frozen during calibration

This point holds the scaled differential pressure input present at the time that the input was switched to calibration mode. This value is used for all calculations while in calibration, until the input is switched out of calibration mode at which time normal operation is resumed.

Input scaling, flow rate, range low end

This is the lowest value allowed for flow rate input, and for "raw" input corresponds to the D/A zero-scale value. An input less than this causes an out-of-range alarm. This and the two following points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

Input scaling, flow rate, range high end

This is the highest value allowed for flow rate input, and for "raw" input corresponds to the D/A full-scale value. An input greater than this causes an out-of-range alarm. This and the two surrounding points must satisfy the relationship: (low range) \leq (default) \leq (high range)

Input scaling, flow rate, default

This is the default value for flow rate input, assumed when the actual input is out of range. This and the two preceding points must satisfy the relationship: (low range) \leq (default) \leq (high range)

Input scaling, flow rate, module id code

The "module id code" specifies the processing of the PLC-supplied value that is required in order to obtain the process input value in engineering units. Permitted values are:

- -1 The PLC supplies flow rate directly as a floating-point value.
- 0 The PLC supplies flow rate directly as a fixed-point value, scaled to 0 decimal places.
- >0 The PLC supplies the "raw" D/A value from an analog input module; this code selects from a predefined list of modules whose pertinent characteristics are its D/A zero-scale and full-scale values; the AFC scales the raw input so that the valid D/A range scales to the configured flow rate range.

Input scaling, flow rate, input frozen during calibration

This point holds the scaled flow rate input present at the time that the input was switched to calibration mode. This value is used for all calculations while in calibration, until the input is switched out of calibration mode at which time normal operation is resumed.

Input scaling, density, range low end

This is the lowest value allowed for density input, and for "raw" input corresponds to the D/A zero-scale value. An input less than this causes an out-of-range alarm. This and the two following points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

If a densitometer is configured and its calculation enabled (see "module id code"), then the PLC supplies a frequency to the densitometer calculation and this point applies to the calculated density.

Input scaling, density, range high end

This is the highest value allowed for density input, and for "raw" input corresponds to the D/A full-scale value. An input greater than this causes an out-of-range alarm. This and the two surrounding points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

If a densitometer is configured and its calculation enabled (see "module id code"), then the PLC supplies a frequency to the densitometer calculation and this point applies to the calculated density.

Input scaling, density, default

This is the default value for density input, assumed when the actual input is out of range. This and the two preceding points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

If a densitometer is configured and its calculation enabled (see "module id code"), then the PLC supplies a frequency to the densitometer calculation and this point applies to the calculated density.

Input scaling, density, module id code

The "module id code" specifies the processing of the PLC-supplied value that is required in order to obtain the process input value in engineering units. Permitted values are:

- -1 The PLC supplies density directly as a floating-point value. Any densitometer configuration is ignored.
- 0 The PLC supplies density directly as a fixed-point value, scaled to 1 decimal place. Any densitometer configuration is ignored.
- >0 If a densitometer is not configured then the PLC supplies the "raw" D/A value from an analog input module; this code selects from a predefined list of modules whose pertinent characteristics are its D/A zero-scale and full-scale values; the AFC scales the raw input so that the valid D/A range scales to the configured density range. If a densitometer is configured then any positive value for this point enables the densitometer calculation; in this case, the PLC supplies the densitometer frequency in Hz as a floating-point value and the calculated density is then subjected to the range check.

Input scaling, density, input frozen during calibration

This point holds the scaled density input present at the time that the input was switched to calibration mode. This value is used for all calculations while in calibration, until the input is switched out of calibration mode at which time normal operation is resumed. If a densitometer is configured and its calculation enabled (see "module id code"), then the PLC supplies a frequency to the densitometer calculation and while in calibration mode this point holds the latest calculated density.

Input scaling, water content, range low end

This is the lowest value allowed for water content input, and for "raw" input corresponds to the D/A zero-scale value. An input less than this causes an out-of-range alarm. This and the two following points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

Input scaling, water content, range high end

This is the highest value allowed for water content input, and for "raw" input corresponds to the D/A full-scale value. An input greater than this causes an out-of-range alarm. This and the two surrounding points must satisfy the relationship:

 $(low range) \le (default) \le (high range)$

Input scaling, water content, default

This is the default value for water content input, assumed when the actual input is out of range. This and the two preceding points must satisfy the relationship:

(low range) \leq (default) \leq (high range)

Input scaling, water content, module id code

The "module id code" specifies the processing of the PLC-supplied value that is required in order to obtain the process input value in engineering units. Permitted values are:

- -1 The PLC supplies water content directly as a floating-point value.
- 0 The PLC supplies water content directly as a fixed-point value, scaled to 2 decimal places.
- >0 The PLC supplies the "raw" D/A value from an analog input module; this code selects from a predefined list of modules whose pertinent characteristics are its D/A zero-scale and full-scale values; the AFC scales the raw input so that the valid D/A range scales to the configured water content range.

Input scaling, water content, input frozen during calibration

This point holds the scaled water content input present at the time that the input was switched to calibration mode. This value is used for all calculations while in calibration, until the input is switched out of calibration mode at which time normal operation is resumed.

Analysis component map

Specifies which pure chemical substances contribute to molar analyses.

Selected component 1, C1

If set, then molar concentrations for component 1, C1, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 1, C1, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 2, N2

If set, then molar concentrations for component 2, N2, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 2, N2, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 3, CO2

If set, then molar concentrations for component 3, CO2, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 3, CO2, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 4, C2

If set, then molar concentrations for component 4, C2, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 4, C2, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 5.

If set, then molar concentrations for component 5, C3, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 5, C3, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 6, H2O

If set, then molar concentrations for component 6, H2O, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 6, H2O, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 7, H2S

If set, then molar concentrations for component 7, H2S, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 7, H2S, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 8, H2

If set, then molar concentrations for component 8, H2, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 8, H2, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 9, CO

If set, then molar concentrations for component 9, CO, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 9, CO, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 10, O2

If set, then molar concentrations for component 10, O2, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 10, O2, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 11, IC4

If set, then molar concentrations for component 11, IC4, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 11, IC4, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 12, NC4

If set, then molar concentrations for component 12, NC4, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 12, NC4, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 13, IC5

If set, then molar concentrations for component 13, IC5, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 13, IC5, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 14, NC5

If set, then molar concentrations for component 14, NC5, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 14, NC5, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 15, C6

If set, then molar concentrations for component 15, C6, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 15, C6, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 16, C7

If set, then molar concentrations for component 16, C7, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 16, C7, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 17, C8

If set, then molar concentrations for component 17, C8, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 17, C8, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 18, C9

If set, then molar concentrations for component 18, C9, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 18, C9, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 19, C10

If set, then molar concentrations for component 19, C10, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 19, C10, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 20, He

If set, then molar concentrations for component 20, He, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 20, He, are ignored (assumed to be zero) even if supplied as non-zero.

<u>Selected component 21, Ar</u>

If set, then molar concentrations for component 21, Ar, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 21, Ar, are ignored (assumed to be zero) even if supplied as non-zero.

Selected component 22, neoC5

If set, then molar concentrations for component 22, neoC5, are expected in molar analyses and enter into the calculations. If clear, then molar concentrations for component 22, neoC5, are ignored (assumed to be zero) even if supplied as non-zero.

Number of components

Total number of selected components. This value cannot be written by an external process (any value written is ignored) but is recalculated whenever the component map is changed by counting the selected components.

Analysis normalization total error tolerance

The number of parts per ten thousand by which the sum of all molar concentrations in a component analysis may differ from 1.0000 without raising the alarm "Analysis total not normalized" (register 9601 bit 10). Each analysis, whether alarmed or not, is always normalized (concentrations scaled so that they sum to 1.0000) before entering into any further calculations. This value is intended to allow for small deviations from normality due to such causes as unavoidable imprecision in the output of a gas chromatograph and roundoff error when converting an analysis to the form required by the AFC.

<u>Pulse input rollover</u>

The value at which the pulse count in the counter module is reset to zero, which is 1 greater than the highest value that the counter can have.

Resettable accumulator # select

The measured quantity that is to be accumulated in resettable accumulator #. Values depend on the product group.

- None (no accumulation)
- Mass
- Energy (heating value)
- Net (corrected) volume
- Gross volume

Units - Primary input characteristics

This point characterizes the measured quantity, engineering units, and scaling of the primary input, which is the process input that represents the quantity of fluid being measured. Depending on the meter type, some of these characteristics are available for configuration while others are fixed and cannot be changed. See byte- and bit-level detail for more information.

Units - Primary input units

This value specifies the engineering units base and scaling of the measured quantity selected for the primary input. For some meter types (notably a traditional orifice) this value is fixed and cannot be changed. For a linear (pulse) meter it specifies K-factor characteristics. See accompanying documentation for a complete list of values.

Units - Primary input measured quantity and flow rate period

This value selects the measured quantity that the primary input represents, and the time base to which the primary input flow rate is referenced. For some meter types (notably a traditional orifice) this value is fixed and cannot be changed. For a linear (pulse) meter it characterizes the K-factor. View bit-level detail for more information.

Units - Primary input measured quantity

This value specifies the physical property of the fluid that is measured directly or indirectly by the primary input. Values are:

- Mass
- Energy (heating value)
- Gross volume (volume at operating conditions)

For some meter types (notably a traditional orifice) this value is fixed and cannot be changed. For a linear (pulse) meter it characterizes the K-factor. For a traditional pulse meter such as a turbine, this quantity is "Gross volume".

Units - Primary input flow rate period

This value specifies the time period to which the primary input flow rate is referenced. Values are:

- Second
- Minute
- Hour
- Day

For all meter types except flow rate integration this value is fixed and cannot be changed.

Units - Mass flow rate period

This value specifies the time period to which the calculated mass flow rate is referenced. Values are:

- Second
- Minute
- Hour
- Day

Units - Mass flow rate units

This value specifies the engineering units and scaling of the calculated mass flow rate. See accompanying documentation for a complete list of values.

Units - Mass accumulator units

This value specifies the engineering units and scaling of the calculated mass accumulation. See accompanying documentation for a complete list of values.

Units - Energy flow rate period

This value specifies the time period to which the calculated energy flow rate is referenced. Values are:

- Second
- Minute
- Hour
- Day

Units - Energy flow rate units

This value specifies the engineering units and scaling of the calculated energy flow rate. See accompanying documentation for a complete list of values.

Units - Energy accumulator units

This value specifies the engineering units and scaling of the calculated energy accumulation. See accompanying documentation for a complete list of values.

Units - Volume flow rate period

This value specifies the time period to which calculated volume flow rates are referenced. Values are:

- Second
- Minute
- Hour
- Day

Units - Volume flow rate units

This value specifies the engineering units and scaling of calculated volume flow rates. See accompanying documentation for a complete list of values.

Units - Volume accumulator units

This value specifies the engineering units and scaling of calculated volume accumulations. See accompanying documentation for a complete list of values.

Accumulator rollover, mass

This is the value at which mass accumulators are reset to zero, and is 1 greater than the highest value that the accumulator may hold. For example, a value of 1000000 (6 zeros) specifies a 6-digit accumulator, which rolls over to 0 from 999999. Any unsigned 32-bit value may be given. A value of zero indicates a free-running accumulator, which rolls over to 0 from 655359999 (split-double) or 4294967295 (32-bit). For a split-double accumulator, a value greater than 655360000 is deemed to be 655360000, i.e. free-running. Default value is 100000000 (8 zeros).

Accumulator rollover, energy

This is the value at which energy accumulators are reset to zero, and is 1 greater than the highest value that the accumulator may hold. For example, a value of 1000000 (6 zeros) specifies a 6-digit accumulator, which rolls over to 0 from 999999. Any unsigned 32-bit value may be given. A value of zero indicates a free-running accumulator, which rolls over to 0 from 655359999 (split-double) or 4294967295 (32-bit). For a split-double accumulator, a value greater than 655360000 is deemed to be 655360000, i.e. free-running. Default value is 100000000 (8 zeros).

Accumulator rollover, volume

This is the value at which volume accumulators are reset to zero, and is 1 greater than the highest value that the accumulator may hold. For example, a value of 1000000 (6 zeros) specifies a 6-digit accumulator, which rolls over to 0 from 999999. Any unsigned 32-bit value may be given. A value of zero indicates a free-running accumulator, which rolls over to 0 from 655359999 (split-double) or 4294967295 (32-bit). For a split-double accumulator, a value greater than 655360000 is deemed to be 655360000, i.e. free-running. Default value is 100000000 (8 zeros).

Orifice plate: measurement temperature

The temperature at which the orifice diameter was measured. For a V-cone or Wedge device, this is the temperature at which the documented Beta ratio was determined.

Orifice plate: measured diameter

The measured inside diameter of the orifice. For a V-cone or Wedge device, this is instead the effective diameter of the flow obstruction, calculated by spreadsheet.

Orifice plate: coefficient of thermal expansion

The coefficient of thermal expansion of the material of the orifice plate. For an integral device such as a V-cone or Wedge, this is the expansion coefficient of the material of the device.

Meter tube: measurement temperature

The temperature at which the meter tube diameter was measured. For an integral device such as a V-cone or Wedge, which includes its own section of pipe, this is the temperature at which the documented Beta ratio was determined, and should be the same value as that of "Orifice plate: measurement temperature".

Meter tube: measured diameter

The measured inside diameter of the meter tube. For an integral device such as a V-cone or Wedge, which includes its own section of pipe, this is the inside diameter of that section.

Meter tube: coefficient of thermal expansion

The coefficient of thermal expansion of the material of the meter tube. For an integral device such as a V-cone or Wedge, which includes its own section of pipe, this is the expansion coefficient of the material of the device, and should be the same value as that of "Orifice plate: coefficient of thermal expansion".

Differential pressure flow threshold

An input differential pressure smaller than this is deemed to be zero.

Flow rate flow threshold

An input flow rate smaller than this is deemed to be zero.

Pulse frequency flow threshold

An input pulse frequency smaller than this is deemed to be zero.

Differential pressure alarm threshold

An input differential pressure smaller than this raises the alarm "Differential pressure low" (register 9601 bit 5).

Flow rate alarm threshold

An input flow rate smaller than this raises the alarm "Flow rate low" (register 9601 bit 5).

Pulse frequency alarm threshold

An input pulse frequency smaller than this raises the alarm "Pulse frequency low" (register 9601 bit 5).

V-cone/Wedge coefficient of discharge

Used only with meter calculation option "V-cone/wedge device" (bit 4), this is the coefficient of discharge from the manufacturer's data sheet or calculated via spreadsheet.

PLC address: Meter process input etc., get

The address in the PLC of the block of 56 registers that supplies process input for the meter calculations. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465481 (stored in the module as a value between 1 and 65481) and is the starting address in the 4x register bank of the block. For proper measurement of an enabled meter, this block is required. If the meter is disabled, this block is not accessed. For more information, refer to the documentation of your platform's backplane.

PLC address: Meter results, put

The address in the PLC of the block of 38 registers that returns calculated results to the PLC. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465499 (stored in the module as a value between 1 and 65499) and is the starting address in the 4x register bank of the block. If the meter is disabled, this block is not accessed. For more information, refer to the documentation of your platform's backplane.

PLC address: Meter archive fetch, put

The address in the PLC of the block of 42 registers that returns requested archive records to the PLC. If this value is 0 then the block does not exist and is not accessed. Otherwise, this value must lie between 400001 and 465495 (stored in the module as a value between 1 and 65495) and is the starting address in the 4x register bank of the block. If the meter is disabled, this block is not accessed. For more information, refer to the documentation of your platform's backplane.

Densitometer type code

Selects the algorithm which calculates density at operating conditions from a frequency input. Values are:

- None (densitometer not configured)
- Solartron 78xx series (also used by many other manufacturers)
- Solartron 1762 series
- UGC series

The densitometer calculation is performed when both

(1) this value is non-zero,

and

(2) the density "Input scaling: module id code" is a positive value selecting "raw" input,

and when it is performed it expects its input frequency (Hz) in floating point (regardless of the "module id code" setting) and the calculated output is taken as the density process input. In all other cases the value supplied by the PLC is the density process input.

Densitometer calibration parameter 1 (CalT)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 2 (CalP)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 3 (K0)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 4 (K1)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 5 (K2)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 6 (K18/PF1)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 7 (K19/PF2)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 8 (K20a/TCF)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 9 (K20b)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 10 (K21a)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 11 (K21b)

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 12

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 13

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Densitometer calibration parameter 14

The named parameter from the manufacturer's densitometer calibration sheet, where applicable to the selected densitometer type.

Open archive record select (age), daily

Enter the age of the desired daily archive record (1 through oldest) into this point and immediately read the selected record from the associated window. Click the "Addresses" button in the "Archive Configuration" window for more information.

Open archive record select (age), hourly

Enter the age of the desired hourly archive record (1 through oldest) into this point and immediately read the selected record from the associated window. Click the "Addresses" button in the "Archive Configuration" window for more information.

Checksum alarms

Checksum alarms detected for this meter. For more information, view bit-level detail and refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Meter configuration

During power-up the checksum for the non-volatile memory containing the meter configuration did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Meter component analysis

During power-up the checksum for the non-volatile memory containing the meter component analysis did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Meter accumulators

During power-up the checksum for the non-volatile memory containing the meter accumulators did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Meter archive status

During power-up the checksum for the non-volatile memory containing the meter archive status did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Meter archive detail, daily

During power-up the checksum for the non-volatile memory containing the meter archive detail, daily, did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Checksum alarm - Meter archive detail, hourly

During power-up the checksum for the non-volatile memory containing the meter archive detail, hourly, did not verify. For more information, refer to the site signal "Clear all checksum alarms" (register 200 bit 1).

Backplane return select, analysis, offset

Specifies the meter data point, if any, whose value is to be returned over the backplane to the PLC in the word at offset # of the "analysis backplane return" block, and some details of its handling. For more information about this value, view bit-level detail (AFC Manager and stored AFC project files hide this detail). For more information about backplane return, refer to the documentation of your platform's backplane.

Backplane return select, analysis, offset # - Address

The meter-relative Modbus holding register address of the register to be returned at offset #. For registers that are part of register pairs (longs and floats) this address is little-endian, i.e. (address+0) addresses the LSR and (address+1) the MSR.

Backplane return select, analysis, offset # - Invert bit 0

This bit is not used by the firmware but is recorded for use by external software to enable proper handling of individual halves of Modbus register pairs.

Backplane return select, analysis, offset # - Swap words

This bit, present only for pairs of entries that refer to Modbus register pairs (longs and floats), enables those register pairs to be swapped or not according to platform, so that the long or float appears in the PLC in its native orientation.

Backplane return select, analysis, offset # - Defined

If set, then this entry is defined; if clear, then this entry is ignored and the PLC receives zero at offset #.

Backplane return select, process input, offset

Specifies the meter data point, if any, whose value is to be returned over the backplane to the PLC in the word at offset # of the "process input backplane return" block. and some details of its handling. For more information about this value, view bit-level detail (AFC Manager and stored AFC project files hide this detail). For more information about backplane return, see backplane documentation for your platform.

Backplane return select, process input, offset # - Address

The meter-relative Modbus holding register address of the register to be returned at offset #. For registers that are part of register pairs (longs and floats) this address is little-endian, i.e. (address+0) addresses the LSR and (address+1) the MSR.

Backplane return select, process input, offset # - Invert bit 0

This bit is not used by the firmware but is recorded for use by external software to enable proper handling of individual halves of Modbus register pairs.

Backplane return select, process input, offset # - Swap words

This bit, present only for pairs of entries that refer to Modbus register pairs (longs and floats), enables those register pairs to be swapped or not according to platform, so that the long or float appears in the PLC in its native orientation.

Backplane return select, process input, offset # - Defined

If set, then this entry is defined; if clear, then this entry is ignored and the PLC receives zero at offset 0.

Archive configuration, daily, archive record template type

This code selects the size and basic layout of the daily archive record. Values are:

- 10 words (2 predefined)
- 20 words (6 predefined)
- 30 words (10 predefined)
- 40 words (10 predefined)

Archive configuration, daily, filename character

This ASCII character, which intrinsically distinguishes the two archive files, is incorporated into codes in the project file (.AFC) and the names of extended archive files on compact flash. It is always "D" for the daily archive file.

Archive configuration, daily, options

Settings that determine the conditions under which daily archive records are automatically written and resettable accumulators are automatically reset. View bit-level detail for more information.

Archive option, daily - Period-select, hourly

Selects which of the two period-ends determine the automatic writing of daily archive records and the automatic resetting of accumulators. Values are:

- Daily period Period-end is the minute of the day selected by the point "End-of-day minute" (register 120).
- Hourly period Period-end is the minute of the hour selected by the point "End-of-hour minute" (register 121).

By default, this bit is clear for the daily archive file, but it can be toggled to select the other period-end regardless of the designation of the archive file as "daily". Refer to the descriptions of other archive options for more information.

Archive option, daily - Archive upon period-end

Upon the end of the period selected by "Archive option, daily: Period-select, hourly" (bit 0), this option causes the meter signal "Write daily archive" (bit 8) to be issued automatically. Refer to the description of that signal for more information.

Archive option, daily - Archive upon event

When an event occurs that records a change that might affect the results of measurement calculations, such as a change to a sealable parameter, this option causes the meter signal "Write daily archive" (bit 8) to be issued automatically. Refer to the description of that signal for more information.

Archive option, daily - Reset accumulator # upon period-end

Upon the end of the period selected by "Archive option, daily: Period-select, hourly" (bit 0), this option causes the meter signal "Reset resettable accumulator #" (bit 4) to be issued automatically. The reset occurs regardless of whether an archive record is written at the same time. Refer to the description of that signal for more information.

Archive option, daily - Reset accumulator # upon event

When an event occurs that records a change that might affect the results of measurement calculations, such as a change to a sealable parameter, this option causes the meter signal "Reset resettable accumulator #" (bit 4) to be issued automatically. The reset occurs regardless of whether an archive record is written at the same time. Refer to the description of that signal for more information.

Archive configuration, daily, period accumulator select

The measured quantity that is to be accumulated in the daily archive period accumulator, which is reset automatically each time the daily archive is written. Values depend on the selected product group.

Archive configuration, daily, extended file size

The number of older daily archives to be stored on compact flash. A compact flash card MUST be installed in the module for this setting to have effect. Recent archives are stored locally in the Modbus Input Register bank; when a new archive is written the oldest local one is copied to the extended file freeing up its space to receive the new one. Refer to **Open archive record select (age), daily** for information about how to retrieve these archives. The maximum number of extended daily archives depends on the firmware version.

Archive configuration, daily, item # flags

Archive configuration, daily, item # address

Archive configuration, hourly, archive record template type

This code selects the size and basic layout of the hourly archive record. Values are:

- 10 words (2 predefined)
- 20 words (6 predefined)
- 30 words (10 predefined)
- 40 words (10 predefined)
Archive configuration, hourly, filename character

This ASCII character, which intrinsically distinguishes the two archive files, is incorporated into codes in the project file (.AFC) and the names of extended archive files on compact flash. It is always "H" for the hourly archive file.

Archive configuration, hourly, options

Settings that determine the conditions under which hourly archive records are automatically written and resettable accumulators are automatically reset. View bit-level detail for more information.

Archive option, hourly - Period-select, hourly

Selects which of the two period-ends determine the automatic writing of hourly archive records and the automatic resetting of accumulators. Values are:

- Daily period Period-end is the minute of the day selected by the point "End-of-day minute" (register 120).
- Hourly period Period-end is the minute of the hour selected by the point "End-of-hour minute" (register 121).

By default, this bit is set for the hourly archive file, but it can be toggled to select the other period-end regardless of the designation of the archive file as "hourly". Refer to the descriptions of other archive options for more information.

Archive option, hourly - Archive upon period-end

Upon the end of the period selected by "Archive option, hourly: Period-select, hourly" (bit 0), this option causes the meter signal "Write hourly archive" (bit 9) to be issued automatically. Refer to the description of that signal for more information.

Archive option, hourly - Archive upon event

When an event occurs that records a change that might affect the results of measurement calculations, such as a change to a sealable parameter, this option causes the meter signal "Write hourly archive" (bit 9) to be issued automatically. Refer to the description of that signal for more information.

Archive option, hourly - Reset accumulator # upon period-end

Upon the end of the period selected by "Archive option, hourly: Period-select, hourly" (bit 0), this option causes the meter signal "Reset resettable accumulator #" (bit 4) to be issued automatically. The reset occurs regardless of whether an archive record is written at the same time. Refer to the description of that signal for more information.

Archive option, hourly - Reset accumulator # upon event

When an event occurs that records a change that might affect the results of measurement calculations, such as a change to a sealable parameter, this option causes the meter signal "Reset resettable accumulator #" (bit 4) to be issued automatically. The reset occurs regardless of whether an archive record is written at the same time. Refer to the description of that signal for more information.

Archive configuration, hourly, period accumulator select

The measured quantity that is to be accumulated in the hourly archive period accumulator, which is reset automatically each time the hourly archive is written. Values depend on the product group.

Archive configuration, hourly, extended file size

The number of older hourly archives to be stored on compact flash. A compact flash card MUST be installed in the module for this setting to have effect. Recent archives are stored locally in the Modbus Input Register bank; when a new archive is written the oldest local one is copied to the extended file freeing up its space to receive the new one. Refer to **Open archive record select (age)**, **hourly** for information about how to retrieve these archives. The maximum number of extended hourly archives depends on the firmware version.

Archive configuration, hourly, item # flags

Archive configuration, hourly, item # address

Stream options

Several options specifying how stream-specific information is handled. View bitlevel detail for more information.

Use meter factor to full precision

The API Standard requires that meter factors used in calculations be rounded to 4 decimal places. This option allows that requirement to be vacated. Rounding applies only to the meter factor; the K-factor is always used to its full precision.

Interpolate K-factor

The primary measured quantity (usually gross volume) is calculated as (pulse count) divided by (K-factor) and multiplied by (meter factor). The common practice is to combine a static K-factor (from the meter manufacturer's data sheet) with a meter factor derived from one or more proves and optionally interpolated over flow rate; the K-factor is entered into the single stream parameter "K-factor" (register 8512) and the one or more proven meter factors and their associated flow rates are entered into the meter factor linearization table beginning at register 8530. Setting this option enables the less common practice of combining a static meter factor (usually always 1.0000) with a K-factor determined from proves and interpolation; the roles of K-factor and meter factor are swapped, with the meter factor entered into the single stream parameter "Meter factor" (register 8512) and the one or more proven K-factors and their associated flow rates as entered into the single stream parameter "Meter factor" (register 8512) and the one or more proven K-factors and their associated flow rates entered into the single stream parameter "Meter factor" (register 8512) and the one or more proven K-factors and their associated flow rates entered into the K-factor linearization table beginning at register 8530.

<u>Stream enable</u>

If set, stream 1 is enabled and may be made active by issuing the corresponding meter signal. The meter must always have an active stream, hence the currently active stream may not be disabled and there is always at least one enabled stream.

Stream component accumulator select

The measured quantity to be accumulated in the per-component accumulators for stream #. Values:

- None (no accumulation)
- Mass
- Energy (heating value)
- Net (corrected) volume
- Net (absolute) volume

Default relative density at reference

Normally, the AFC uses the "Detail Characterization Method" of the AGA 8 Standard to calculate the density of the gas from its composition as given by the molar analysis, which density is used in all subsequent calculations. When AGA 8 cannot be applied because no analysis is available (no components selected, or analysis is all zero), then this value supplies the density at reference conditions (relative to the density of air at reference) to be substituted for the output of AGA 8.

Viscosity (cP)

The viscosity of the fluid, used only in the calculation of the meter's coefficient of discharge.

Isentropic exponent

The ratio of (specific heat at constant pressure) to (specific heat at constant volume).

<u>Default Fpv</u>

Normally, the AFC uses the "Detail Characterization Method" of the AGA 8 Standard to calculate the compressibilities of the gas from its composition as given by the molar analysis, which compressibilities are used in all subsequent calculations. When AGA 8 cannot be applied because no analysis is available (no components selected, or analysis is all zero), then this value supplies the supercompressibility (which combines the effects of the compressibilities at both reference and operating conditions) to be substituted for the output of AGA 8.

K/Meter factor

The primary measured quantity (usually gross volume) is calculated as (pulse count) divided by (K-factor) and multiplied by (meter factor). One of those factors (usually the K-factor) is static and is entered here; the other factor (usually the meter factor) is calculated by interpolating from the table that begins at register 8530, which table in turn acquires its values from one or more meter provings at different flow rates. For more information, see stream option "Interpolate K-factor" (register 8500 bit 8).

Default energy content

Normally, the AFC uses the "Detail Characterization Method" of the AGA 8 Standard to calculate the heating value of the gas from its composition as given by the molar analysis, which heating value is used in all subsequent calculations. When AGA 8 cannot be applied because no analysis is available (no components selected, or analysis is all zero), then this value supplies the mass heating value to be substituted for the output of AGA 8.

Default density at reference

The density at reference conditions ("corrected density") to be substituted for use in measurement calculations when it is otherwise unavailable because either

(a) density process input is out of range, and both meter calculation options
"Density correction" and "Ignore default flowing density" (register 8025 bits 8 and 7) are set,

or

(b) the density correction calculation fails (for example, if an input to the calculation is outside the range allowed by the Standard).

Default vapor pressure

The vapor pressure (gauge units) of the liquid. This value is used only when pressure correction is enabled (meter calculation option "Pressure correction", register 8025 bit 11) and either

(a) vapor pressure calculation is not enabled (meter calculation option "Vapor pressure via TP-15", register 8025 bit 12)

or

(b) the vapor pressure calculation fails.

Water density at API reference (kg/m3)

The density of the water contained in the emulsion, which value may vary depending on the salt content. Value is always expressed as kg/m3, and is limited to the range 900 through 1200 kg/m3.

Default CTL

CTL is the factor that corrects for the effect of temperature on liquid volume when correcting the volume to reference conditions, This value is used only when either

(a) temperature correction is not enabled (meter calculation option "Temperature correction", register 8025 bit 10)

or

(b) the temperature correction calculation fails.

Default CPL

CPL is the factor that corrects for the effect of pressure on liquid volume when correcting the volume to reference conditions, This value is used only when either

(a) pressure correction is not enabled (meter calculation option "Pressure correction", register 8025 bit 11)

or

(b) the pressure correction calculation fails.

Shrinkage factor

An adjustment to the computed net volume, applied to account for losses sustained during processing (after measurement but before billing or payment) such as evaporation of lighter fractions. This value is the fraction of the measured net volume that remains after processing, and is a number between 0.0000 (total loss) and 1.0000 (no loss).

Meter/K-factor linearization, point #, factor

The factor (meter factor or K-factor, depending on the setting of stream option "Interpolate K-factor", register 8500 bit 8) determined by a meter prove at the flow rate for linearization point #. This table may define up to 5 linearization points; a point is defined if its factor is non-zero and undefined if its factor is zero; at least one point must be defined. The factor used in subsequent calculations is determined by interpolating the flow rate over all defined points. These linearization points may be entered in any order and in any position; the AFC sorts them internally into an order suitable for the interpolation logic.

Meter/K-factor linearization, point #, flow rate

The flow rate of the primary input measured quantity at which the meter was proved when determining the factor for linearization point #. The primary input measured quantity is configured in the point "Units: Primary input characteristics" (register 8140), bitfield "Units: Primary input measured quantity" (bits 8 thru 11), which for a traditional pulse meter (such as a turbine) is "Gross volume". For defined linearization points (factor non-zero), all flow rates must be different; for undefined points (factor zero), flow rate must also be zero.

Analysis molar fraction, component 1

The concentration of the 1st component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 1 then this table entry #1 contains the concentration of the component identified by the 1st "1"-bit in the component map, and if the number of components is less than 1 then this table entry #1 is zero.

Analysis molar fraction, component 2

The concentration of the 2nd component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 2 then this table entry #2 contains the concentration of the component identified by the 2nd "1"-bit in the component map, and if the number of components is less than 2 then this table entry #2 is zero.

Analysis molar fraction, component 3

The concentration of the 3rd component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 3 then this table entry #3 contains the concentration of the component identified by the 3rd "1"-bit in the component map, and if the number of components is less than 3 then this table entry #3 is zero.

The concentration of the 4th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 4 then this table entry #4 contains the concentration of the component identified by the 4th "1"-bit in the component map, and if the number of components is less than 4 then this table entry #4 is zero.

Analysis molar fraction, component 5

The concentration of the 5th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 5 then this table entry #5 contains the concentration of the component identified by the 5th "1"-bit in the component map, and if the number of components is less than 5 then this table entry #5 is zero.

Analysis molar fraction, component 6

The concentration of the 6th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 6 then this table entry #6 contains the concentration of the component identified by the 6th "1"-bit in the component map, and if the number of components is less than 6 then this table entry #6 is zero.

Analysis molar fraction, component 7

The concentration of the 7th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 7 then this table entry #7 contains the concentration of the component identified by the 7th "1"-bit in the component map, and if the number of components is less than 7 then this table entry #7 is zero.

The concentration of the 8th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 8 then this table entry #8 contains the concentration of the component identified by the 8th "1"-bit in the component map, and if the number of components is less than 8 then this table entry #8 is zero.

Analysis molar fraction, component 9

The concentration of the 9th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 9 then this table entry #9 contains the concentration of the component identified by the 9th "1"-bit in the component map, and if the number of components is less than 9 then this table entry #9 is zero.

Analysis molar fraction, component 10

The concentration of the 10th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 10 then this table entry #10 contains the concentration of the component identified by the 10th "1"-bit in the component map, and if the number of components is less than 10 then this table entry #10 is zero.

Analysis molar fraction, component 11

The concentration of the 11th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 11 then this table entry #11 contains the concentration of the component identified by the 11th "1"-bit in the component map, and if the number of components is less than 11 then this table entry #11 is zero.

The concentration of the 12th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 12 then this table entry #12 contains the concentration of the component identified by the 12th "1"-bit in the component map, and if the number of components is less than 12 then this table entry #12 is zero.

Analysis molar fraction, component 13

The concentration of the 13th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 13 then this table entry #13 contains the concentration of the component identified by the 13th "1"-bit in the component map, and if the number of components is less than 13 then this table entry #13 is zero.

Analysis molar fraction, component 14

The concentration of the 14th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 14 then this table entry #14 contains the concentration of the component identified by the 14th "1"-bit in the component map, and if the number of components is less than 14 then this table entry #14 is zero.

Analysis molar fraction, component 15

The concentration of the 15th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 15 then this table entry #15 contains the concentration of the component identified by the 15th "1"-bit in the component map, and if the number of components is less than 15 then this table entry #15 is zero.

The concentration of the 16th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 16 then this table entry #16 contains the concentration of the component identified by the 16th "1"-bit in the component map, and if the number of components is less than 16 then this table entry #16 is zero.

Analysis molar fraction, component 17

The concentration of the 17th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 17 then this table entry #17 contains the concentration of the component identified by the 17th "1"-bit in the component map, and if the number of components is less than 17 then this table entry #17 is zero.

Analysis molar fraction, component 18

The concentration of the 18th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 18 then this table entry #18 contains the concentration of the component identified by the 18th "1"-bit in the component map, and if the number of components is less than 18 then this table entry #18 is zero.

Analysis molar fraction, component 19

The concentration of the 19th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 19 then this table entry #19 contains the concentration of the component identified by the 19th "1"-bit in the component map, and if the number of components is less than 19 then this table entry #19 is zero.

The concentration of the 20th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 20 then this table entry #20 contains the concentration of the component identified by the 20th "1"-bit in the component map, and if the number of components is less than 20 then this table entry #20 is zero.

Analysis molar fraction, component 21

The concentration of the 21st component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 21 then this table entry #21 contains the concentration of the component identified by the 21st "1"-bit in the component map, and if the number of components is less than 21 then this table entry #21 is zero.

Analysis molar fraction, component 22

The concentration of the 22nd component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 22 then this table entry #22 contains the concentration of the component identified by the 22nd "1"-bit in the component map, and if the number of components is less than 22 then this table entry #22 is zero.

Analysis molar fraction, component 23

The concentration of the 23rd component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 23 then this table entry #23 contains the concentration of the component identified by the 23rd "1"-bit in the component map, and if the number of components is less than 23 then this table entry #23 is zero.

The concentration of the 24th component selected in the "Analysis component map" at register 8130, represented as an integer scaled by 10000. The value is as input via configuration or over the backplane from the PLC, before normalization. Concentrations are packed towards the beginning of this table; if the number of components (in register 8130 bits 8 thru 15) is not less than 24 then this table entry #24 contains the concentration of the component identified by the 24th "1"-bit in the component map, and if the number of components is less than 24 then this table entry #24 is zero.

Input pulse count, archive reset, daily

This unsigned 32-bit integer holds the total pulses accumulated during the current daily archive period. When the daily archive is written this point is zeroed. No rollover is applied, as it is assumed that daily archives will be written frequently enough that this 32-bit quantity never overflows.

Input pulse count, archive reset, hourly

This unsigned 32-bit integer holds the total pulses accumulated during the current hourly archive period. When the hourly archive is written this point is zeroed. No rollover is applied, as it is assumed that hourly archives will be written frequently enough that this 32-bit quantity never overflows.

Previous input pulse count

At the end of the meter calculation scan the pulse count received from the PLC is copied to this non-volatile point. At the next scan this value is subtracted from the new pulse input to yield the pulse increment required for the calculations.

Current master pulse count

Pulses received from the PLC are accumulated here with a fixed rollover value of 100000000 (8 zeros). This allows an external monitoring application to track pulse input accurately even if its polling period is longer than the rollover period of the pulse input module.

Non-resettable accumulator, mass, totalizer

Non-resettable accumulator, mass, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, energy, totalizer

The total accumulation is maintained in two parts; this point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or split-double value, and the next point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, energy, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, net, totalizer

The total accumulation is maintained in two parts; this point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or split-double value, and the next point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, net, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, gross, totalizer

Non-resettable accumulator, gross, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, gross standard, totalizer

The total accumulation is maintained in two parts; this point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or split-double value, and the next point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, gross standard, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, gross clean oil, totalizer

The total accumulation is maintained in two parts; this point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or split-double value, and the next point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, gross clean oil, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Non-resettable accumulator, water, totalizer

Non-resettable accumulator, water, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Resettable accumulator #, totalizer

The total accumulation is maintained in two parts; this point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or split-double value, and the next point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Resettable accumulator #, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Accumulator, archive period, daily, totalizer

The total accumulation is maintained in two parts; this point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or split-double value, and the next point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Accumulator, archive period, daily, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Accumulator, archive period, hourly, totalizer

Accumulator, archive period, hourly, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Component non-resettable accumulator, component #, totalizer

The total accumulation is maintained in two parts; this point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or split-double value, and the next point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Component non-resettable accumulator, component #, residue

The total accumulation is maintained in two parts; the previous point, the "totalizer", is the integral part and is stored as an unsigned 32-bit integer or splitdouble value, and this point, the "residue", is the fractional part and is stored as a floating point value. To determine the total accumulation, add together the totalizer and the residue.

Process input, scaled float, temperature

This point holds the temperature input received from the PLC as a floating-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary. For more information, refer to the "Input scaling, temperature" points.

Process input, scaled float, pressure

This point holds the pressure input received from the PLC as a floating-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary. For more information, refer to the "Input scaling, pressure" points.

Process input, scaled float, differential pressure

This point holds the differential pressure input received from the PLC as a floating-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary. For more information, refer to the "Input scaling, differential pressure" points.

Process input, scaled float, flow rate

This point holds the flow rate input received from the PLC as a floating-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary. For more information, refer to the "Input scaling, flow rate" points.

Process input, scaled float, density

This point holds the density input received from the PLC as a floating-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary. If a densitometer is configured and its calculation enabled, then the PLC supplies a frequency to the densitometer calculation and this point holds the calculated density. For more information, refer to the "Input scaling, density" points.

Process input, scaled float, water content

This point holds the water content input received from the PLC as a floating-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary. For more information, refer to the "Input scaling, water content" points.

Process input, scaled integer, temperature

This point holds the temperature input received from the PLC as a fixed-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary, scaled to 2 decimal places. For more information, refer to the "Input scaling, temperature" points.

Process input, scaled integer, pressure

This point holds the pressure input received from the PLC as a fixed-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary, scaled to 0 decimal places. For more information, refer to the "Input scaling, pressure" points.

Process input, scaled integer, differential pressure

This point holds the differential pressure input received from the PLC as a fixedpoint value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary, scaled to 3 decimal places. For more information, refer to the "Input scaling, differential pressure" points.

Process input, scaled integer, flow rate

This point holds the flow rate input received from the PLC as a fixed-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary, scaled to 0 decimal places. For more information, refer to the "Input scaling, flow rate" points.

Process input, scaled integer, density

This point holds the density input received from the PLC as a fixed-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary, scaled to 1 decimal place. If a densitometer is configured and its calculation enabled, then the PLC supplies a frequency to the densitometer calculation and this point holds the calculated density. For more information, refer to the "Input scaling, density" points.

Process input, scaled integer, water content

This point holds the water content input received from the PLC as a fixed-point value after conversion and scaling according to the "module id code" configured for the input and after its range is checked and the default substituted if necessary, scaled to 2 decimal places. For more information, refer to the "Input scaling, water content" points.

Temperature, absolute

The process input temperature in units relative to absolute zero; required for some calculations.

Upstream pressure, absolute

The process input pressure in absolute units, upstream of the differential meter flow constriction; required for some calculations. This value is calculated as (gauge pressure) + (barometric pressure) + (differential pressure).

Pressure, absolute

The process input pressure in absolute units; required for some calculations. This value is calculated as (gauge pressure) + (barometric pressure).

Densitometer frequency

Holds the process input densitometer frequency when a densitometer is configured and its calculation enabled. For more information, refer to the "Input scaling, density" points.

AGA 7, Temperature base factor, Ftb

This value is the ratio of the reference temperature to the traditional US gasmeasurement "base" temperature of 519.67°R (60°F), where both temperatures are in consistent absolute units. It is a factor in the calculation of C-prime.

AGA 7, Pressure base factor, Fpb

This value is the ratio of the traditional US gas-measurement "base" pressure of 14.73 psia to the reference pressure, where both pressures are in consistent absolute units. It is a factor in the calculation of C-prime.

<u>Meter alarms</u>

Bitmap that announces exceptional conditions about measurement of meter 1. Bit 0 of "Meters in alarm" (register 301) is set whenever this point is non-zero. These alarms are transient and any one might persist only for a single scan, so they might be missed when viewing this register directly. However, alarms are also accumulated into the archive, so alarms that have occurred during any archive period may be viewed by inspecting the relevant archive; click the "Addresses" button in the "Archive Configuration" window for relevant Modbus addresses. See bit-level detail for more information.

Meter alarm: input out of range, temperature

The temperature process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, temperature" points.

Meter alarm: input out of range, pressure

The pressure process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, pressure" points.

Meter alarm: input out of range, differential pressure

The differential pressure process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, differential pressure" points.

Meter alarm: input out of range, flow rate

The flow rate process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, flow rate" points.

Meter alarm: input out of range, density

The density process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. If a densitometer is configured and its calculation enabled, then the PLC supplies a frequency to the densitometer calculation and this alarm applies to the calculated density. For more information, refer to the "Input scaling, density" points.

Meter alarm: input out of range, water content

The water content process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, water content" points.

Meter alarm: Differential pressure low

The differential pressure process input is smaller than the "Differential pressure alarm threshold".

Meter alarm: Flow rate low

The flow rate process input is smaller than the "Flow rate alarm threshold".

Meter alarm: Pulse frequency low

The pulse frequency process input is smaller than the "Pulse frequency alarm threshold".

Meter alarm: Orifice pressure exception

The combination of gauge pressure process input, differential pressure process input, barometric pressure (register 138), and the setting of meter calculation option "Downstream static pressure" (register 8025 bit 0) results in an effective downstream static pressure of less than vacuum, a physical impossibility. Upstream pressure is raised by the amount necessary to raise absolute downstream pressure to zero, and calculation continues.

Meter alarm: Accumulation overflow

An accumulator increment in a single scan that is unreasonable, i.e. less than 0 or greater than 1,000,000,000 (9 zeros), is ignored and this alarm is raised.

Meter alarm: Orifice characterization error

Orifice meter parameters are such that measurement cannot occur. The specific reason for this alarm is available in the point "Orifice characterization error" (register 9602).

Meter alarm: Analysis total zero

The input molar analysis is zero, therefore it cannot be normalized and cannot be input to AGA 8 for calculation of compressibilities and densities. Calculation proceeds as if no components were selected. The point "Analysis characterization error" (register 9603) contains the value 2.

Meter alarm: Analysis total not normalized

The input molar analysis sums to a total that is outside the tolerance allowed by the value of the point "Analysis normalization total error tolerance". The analysis is normalized anyway and is input to AGA 8 for calculation of compressibilities and densities. The point "Analysis characterization error" (register 9603) contains the value 1.

Meter alarm: Analysis characterization error

The characterization of the input analysis has encountered a problem. The specific reason for this alarm is available in the point "Analysis characterization error" (register 9603)

Meter alarm: Compressibility calculation error

The AGA 8 calculation has reported an error. The specific reason for this alarm is available in the point "Compressibility calculation error" (register 9604)

Meter alarm: High water error

The water content of the emulsion is too large. The specific reason for this alarm is available in the point "High water error" (register 9604)

Meter alarm: Reference density error

The density correction calculation has reported an error. The specific reason for this alarm is available in the point "Reference density error" (register 9605)

Meter alarm: Temperature correction error

The temperature correction calculation has reported an error. The specific reason for this alarm is available in the point "Temperature correction error" (register 9606)

Meter alarm: Vapor pressure error

The vapor pressure correlation calculation has reported an error. The specific reason for this alarm is available in the point "Vapor pressure error" (register 9607)

Meter alarm: Pressure correction error

The pressure correction calculation has reported an error. The specific reason for this alarm is available in the point "Pressure correction error" (register 9608)

Orifice characterization error

The error code reported by the orifice characterization procedure, which is run whenever orifice parameters are changed. A non-zero value sets the alarm "Meter alarm: Orifice characterization error" (register 9601 bit 8) and measurement does not occur. Values are:

- No alarm
- Orifice diameter not positive
- Orifice not narrower than pipe
- Beta ratio < 0.10 (0.025)
- Beta ratio > 0.75 (0.9375)
- Pipe diameter < 2.0 (0.5) inches
- Orifice diameter < 0.45 (0.1125) inches

In the above table, the non-parenthesized numbers are the limits specified by the AGA 3 Standard, and the parenthesized numbers are the limits enforced by the AFC; the AFC relaxes the AGA limits to 25% of their Standard values.

Analysis characterization error

The error code reported by the analysis characterization procedure, which is run whenever a new analysis is input. Values are:

- No alarm
- Analysis total not normalized

The input molar analysis sums to a total that is outside the tolerance allowed by the value of the point "Analysis normalization total error tolerance". The analysis is normalized anyway and is input to AGA 8 for calculation of compressibilities and densities. The alarm "Meter alarm: Analysis normalization error" (register 9601 bit 10) is set.

Analysis total is zero

The input molar analysis is zero, therefore it cannot be normalized and cannot be input to AGA 8 for calculation of compressibilities and densities. Calculation proceeds as if no components were selected. The alarm "Meter alarm: Analysis total zero" (register 9601 bit 9) is set.

Compressibility calculation error

The error code reported by the AGA 8 calculation, which is run each calculation scan. If non-zero, the compressibility and density available at the point that the error occurred are assumed for use in subsequent calculations, but their values might not be reliable. A non-zero value sets the alarm "Meter alarm: Compressibility calculation error" (register 9601 bit 11). Values are:

- No alarm
- Density exceeded reasonable maximum
 - This is a warning only and does not terminate the calculation.
- Pressure maximum found
- Too many iterations (braket)
- Too many iterations (ddetail)

A full understanding of these error codes requires familiarity with the mathematics of the AGA 8 procedure.

High water error

The error code reported by the initial stages of the API MPMS Chapter 20.1 calculation, which is run each calculation scan. A non-zero value sets the alarm "Meter alarm: High water error" (register 9601 bit 11). Values are:

- No alarm
- Emulsion is more than 99% water

The calculation of the density of the clean oil component of the emulsion becomes highly sensitive to errors in the density and water content process inputs when the clean oil concentration is very low, and is impossible to perform when the clean oil concentration is zero. In such cases the water content is assumed to be 100% and the clean oil content to be zero; clean oil accumulations and flow rates therefore are zero, and clean oil density is not calculated.

Reference density error

The error code reported by the density correction calculation, which is run each calculation scan. A non-zero value sets the alarm "Meter alarm: Reference density error" (register 9601 bit 12), and the stream parameter "Default corrected density" supplies the corrected density to be used in subsequent calculations. Values are:

- No alarm
- Low density range, input value outside allowable range of Table
- High density range, input value outside allowable range of Table
- Non-convergence of density correction iteration
- Zero VCF
- Temperature above critical point
- Input density outside reference fluid adjusted range
- Corrected density out of range
- Standard density input outside API range

Temperature correction error

The error code reported by the temperature correction calculation, which is run each calculation scan. A non-zero value sets the alarm "Meter alarm: Temperature correction error" (register 9601 bit 13), and the stream parameter "Default CTL" supplies the temperature correction factor to be used in subsequent calculations. Values are:

- No alarm
- Low density range, input value outside allowable range of Table
- High density range, input value outside allowable range of Table
- Temperature above critical point

Vapor pressure error

The error code reported by the vapor pressure correlation calculation of GPA TP-15, which is run each calculation scan. A non-zero value sets the alarm "Meter alarm: Vapor pressure error" (register 9601 bit 14). Values are:

- No alarm
- Expected vapor pressure above range of TP-15 The stream parameter "Default vapor pressure" supplies the vapor pressure to be used in subsequent calculations.
- Vapor pressure greater than measured static pressure The vapor pressure above equilibrium is assumed to be zero.

Pressure correction error

The error code reported by the pressure correction calculation, which is run each calculation scan. A non-zero value sets the alarm "Meter alarm: Pressure correction error" (register 9601 bit 15), and the stream parameter "Default CPL" supplies the pressure correction factor to be used in subsequent calculations. Values are:

- No alarm
- Density outside allowable range of Chapter 11.2
- Temperature above near critical limit
- Temperature outside allowable range of Chapter 11.2.1
- Temperature outside allowable range of Chapter 11.2.2
- Non-convergence of CPL-density iteration

Water temperature error

The error code reported by the calculation of CTW, the factor that corrects water density for temperature, which is run each calculation scan. A non-zero value sets the alarm "Meter alarm: Temperature correction error" (register 9601 bit 13), and CTW is assumed to be 1.0000 for subsequent calculations. Values are:

- No alarm
- Temperature < 0°C or > 138°C or Temperature < 32°F or > 280°F

Scan count, process input

A free-running 16-bit counter, incremented once for each set of the meter's process input received from the PLC.

Scan count, calculation

A free-running 16-bit counter, incremented once for each execution of the meter's measurement calculations.

Molar mass of mixture

The average of the molar masses of the pure components of the fluid, weighted by their concentrations as given by the input analysis. This value is calculated by the analysis characterization procedure, which is run whenever the input analysis changes.

AGA 8, Ideal gas relative density

The ratio of the density of the ideal gas at reference conditions to that of air at reference conditions. This value is calculated by the analysis characterization procedure, which is run whenever the input analysis changes.

AGA 8, Compressibility at reference

The compressibility of the gas at reference conditions. This value is calculated by the analysis characterization procedure, which is run whenever the input analysis changes.

AGA 8, Molar density at reference

The density of the real gas at reference conditions in units of kmol/m3. This value is calculated by the analysis characterization procedure, which is run whenever the input analysis changes.

AGA 8, Density at reference

The density of the real gas at reference conditions. This value is calculated by the analysis characterization procedure, which is run whenever the input analysis changes.

AGA 8, Relative density at reference

The ratio of the density of the real gas at reference conditions to that of air at reference conditions. This value is calculated by the analysis characterization procedure, which is run whenever the input analysis changes.

AGA 8, Compressibility, flowing

The compressibility of the gas at operating conditions.

AGA 8, Molar density, flowing

The density of the real gas at operating conditions in units of kmol/m3.

AGA 8, Density, flowing

The density of the real gas at operating conditions.

AGA 8, Supercompressibility, Fpv

The square root of the ratio of (reference compressibility) to (flowing compressibility).

Previous timer tick count

Remembers the value of the system timer between calculation scans. For all meter types except traditional linear (pulse) meters, flow accumulation is calculated by integrating the flow rate over time. The system timer supplies this time, the increment of which is multiplied by the flow rate to yield the accumulation at each calculation scan.

Scan period (seconds)

The time elapsed between this calculation scan and the previous, which is the difference between the current system timer value and the previous value (point "Previous timer tick count" scaled by the timer tick rate. For all meter types except traditional linear (pulse) meters, flow accumulation is calculated by integrating the flow rate over time. The system timer supplies this time, the increment of which is multiplied by the flow rate to yield the accumulation at each calculation scan.

AGA 3, Pressure extension

The square root of the product of (differential pressure) and (static pressure); one of the factors in the Bernoulli equation for measurement of gas flow using differential pressure.

AGA 3, Density extension

The square root of the product of (differential pressure) and (flowing density); one of the factors in the Bernoulli equation for measurement of liquid flow using differential pressure.

AGA 3, Differential pressure in static pressure units

The differential pressure converted to the units of static pressure.

AGA 3, Orifice bore diameter at temperature

The configured diameter of the orifice (or, for a V-cone or Wedge meter, the effective diameter of the flow constriction) corrected for the effect of temperature.

AGA 3, Meter tube inside diameter at temperature

The configured inside diameter of the meter tube corrected for the effect of temperature.

AGA 3, Beta ratio

The ratio at operating temperature of the orifice bore diameter to the diameter of the meter tube (or, for a V-cone or Wedge meter, the square root of the ratio of the apertures).

Density, flowing

The density of the gas at operating conditions.

AGA 3, Mass flow rate, Qm

The flow rate calculated from the Bernoulli equation.

AGA 3, Velocity of approach factor, Ev

The square root of (1 minus the reciprocal of Beta to the 4th power), one of the factors in the Bernoulli equation for measurement of fluid flow using differential pressure.

AGA 3, Expansion factor, Y

One of the factors in the Bernoulli equation for measurement of fluid flow using differential pressure. This factor represents the effect of the expansion of the fluid due to the differential pressure drop across the flow constriction; it is always 1.0 for liquids, which are deemed to be incompressible.

AGA 3, Coefficient of discharge, Cd

The coefficient of discharge for the meter, one of the factors in the Bernoulli equation for measurement of fluid flow using differential pressure. For a traditional orifice meter, this value is calculated by the procedure given in the AGA 3 (1992) Standard or the ISO 5167 (2003) Standard, depending on the setting of meter calculation option "ISO 5167 (2003)" (register 8025 bit 5). For a V-cone or Wedge meter, selected by the setting of meter calculation option "V-cone/Wedge device" (register 8025 bit 4), this value is copied from the point "V-cone/Wedge coefficient of discharge" which in turn receives its value from a spreadsheet primed with data from the manufacturer's data sheet.

Composition factor

This factor multiplied by the pressure extension is the density extension required by the AGA 3 / ISO 5167 Standard. It is the product of supercompressibility and the square root of (air factor times relative density at reference divided by absolute flowing temperature). The air factor depends only on the reference conditions and is the molar mass of air divided by (gas constant times compressibility of air at reference).

AGA 7, Temperature factor, Ftm

This value is the ratio of the traditional US gas-measurement "base" temperature of 519.67°R (60°F) to the operating temperature, where both temperatures are in consistent absolute units. It is a factor in the calculation of C-prime.

AGA 7, Pressure factor, Fpm

This value is the ratio of the operating pressure to the traditional US gasmeasurement "base" pressure of 14.73 psia, where both pressures are in consistent absolute units. It is a factor in the calculation of C-prime.

<u>C-prime</u>

This value is the product of:

- the square of "AGA 8, Supercompressibility, Fpv"
- "AGA 7, Temperature factor, Ftb"
- "AGA 7, Temperature base factor, Ftb"
- "AGA 7, Pressure factor, Fpb"
- "AGA 7, Pressure base factor, Fpb"

It is the factor, according to the Gas Law, that converts gross volume (measured at operating conditions) to net volume (corrected to reference conditions).

C-prime

This value is the quotient of "AGA 8, Density, flowing" divided by "AGA 8, Density at reference". It is the factor, according to the Gas Law, that converts gross volume (measured at operating conditions) to net volume (corrected to reference conditions).

Molar heating value, MJ/kmol

This value depends only on the molar analysis and the setting of "Meter calculation options" bit 14, "Calculate net energy".

Mass heating value

This value depends only on the molar analysis and the setting of "Meter calculation options" bit 14, "Calculate net energy".

Volumetric heating value

This value depends only on the molar analysis, the reference conditions, and the setting of "Meter calculation options" bit 14, "Calculate net energy".

Clean oil mass fraction

The fraction of the total mass of the liquid that represents the clean oil component (water removed). For this product group, this value is the same as "API 2540, Water content correction factor, CSW".

MPMS Ch 20.1, Density of produced water, flowing

The density of the water component of the emulsion determined at operating conditions.

MPMS Ch 20.1, Water temperature correction to user base

The factor that corrects for the effect of temperature the volume of the water component of the emulsion to the reference conditions configured by the user.

MPMS Ch 20.1, Water temperature correction to API base

The factor that corrects for the effect of temperature the volume of the water component of the emulsion to the reference conditions of the API Standard.

MPMS Ch 20.1, Water salinity percent by mass

A measure of the salt content of the water component of the emulsion, determined from the density of pure water and stream parameter "Water density at API reference (kg/m3)".

API 2540, Vapor pressure, absolute

The absolute vapor pressure of the liquid, calculated by GPA TP-15 or assumed upon vapor pressure error. This value is meaningful only when both meter calculation options "Pressure correction" (bit 11) and "Vapor pressure via TP-15" (bit 12) are set.

API 2540, Density at API base

The density of the fluid corrected to the reference conditions of the API Standard.

API 2540, Hydrometer correction factor

The factor that corrects for the effect of temperature the volume of a glass hydrometer that is used to hold a sample of the fluid for the measurement of density at operating conditions. This value is calculated only when meter calculation option "Density correction" (bit 8) is set, and is 1.0000 unless meter calculation option "Hydrometer correction" (bit 9) is set.

API 2540, Density at reference

The density of the fluid corrected to the reference conditions configured by the user.

API 2540, Vapor pressure, gauge

The excess of the absolute vapor pressure of the liquid above the reference pressure configured by the user. If the absolute vapor pressure is less than reference, this value is zero. This value is meaningful only when both meter calculation options "Pressure correction" (bit 11) and "Vapor pressure via TP-15" (bit 12) are set.

API 2540, CPL low density factor A

The "A" factor calculated by API MPMS Chapter 11.2.2, for the correction for the effect of pressure of the volume of low-density hydrocarbons to the reference conditions configured by the user. This value is calculated only when meter calculation option "Pressure correction" (bit 11) is set.

API 2540, CPL low density factor B

The "B" factor calculated by API MPMS Chapter 11.2.2, for the correction for the effect of pressure of the volume of low-density hydrocarbons to the reference conditions configured by the user. This value is calculated only when meter calculation option "Pressure correction" (bit 11) is set.

API 2540, CPL factor F

The compressibility factor calculated by API MPMS Chapter 11.2, for the correction for the effect of pressure of volume to the reference conditions configured by the user. This value is calculated only when meter calculation option "Pressure correction" (bit 11) is set.

API 2540, Temperature correction factor, CTL

The factor that corrects volume for the effect of temperature to the reference conditions configured by the user.

API 2540, Pressure correction factor, CPL

The factor that corrects volume for the effect of pressure to the reference conditions configured by the user.

Density calculation select

Flags that select Standard calculations according to attributes of density.

Low density range for CPL calculation

Selects the procedure that calculates the compressibility factor for correcting volume for the effect of pressure to reference conditions. This value is meaningful only when meter calculation option "Pressure correction" (bit 11) is set. Values are:

- High density range
 Use API MPMS Chapter 11.2.1
- Low density range Use API MPMS Chapter 11.2.2

Input density is at reference

States whether the density supplied by the PLC or assumed from a default value, according to the settings of meter calculation options "Density correction" (bit 8) and "Ignore default flowing density" (bit 7), is at operating conditions or is already corrected to the reference conditions configured by the user. Values are:

- Input density is at operating conditions
- Input density is already corrected to reference conditions; no density correction need be performed

Input density is net oil at reference

States whether the density supplied by the PLC or assumed from a default value, according to the settings of meter calculation options "Density correction" (bit 8) and "Ignore default flowing density" (bit 7), is that of the emulsion at operating conditions or is that of the clean oil already corrected to the reference conditions configured by the user. Values are:

- Input density is at operating conditions
- Input density is already corrected to reference conditions; no density correction need be performed and water content has been removed

AGA 3, Beta ratio

The ratio at operating temperature of the orifice bore diameter to the diameter of the meter tube (or, for a V-cone or Wedge meter, the square root of the ratio of the apertures), represented as an integer scaled to 4 decimal places.

AGA 3, Velocity of approach factor

The square root of (1 minus the reciprocal of Beta to the 4th power), one of the factors in the Bernoulli equation for measurement of fluid flow using differential pressure, represented as an integer scaled to 4 decimal places.

AGA 3, Expansion factor

One of the factors in the Bernoulli equation for measurement of fluid flow using differential pressure, represented as an integer scaled to 4 decimal places. This factor represents the effect of the expansion of the fluid due to the differential pressure drop across the flow constriction; it is always 1.0 (i.e. 10000, here) for liquids, which are deemed to be incompressible.

AGA 3, Coefficient of discharge

The coefficient of discharge for the meter, one of the factors in the Bernoulli equation for measurement of fluid flow using differential pressure, represented as an integer scaled to 4 decimal places. For a traditional orifice meter, this value is calculated by the procedure given in the AGA 3 (1992) Standard or the ISO 5167 (2003) Standard, depending on the setting of meter calculation option "ISO 5167 (2003)" (register 8025 bit 5). For a V-cone or Wedge meter, selected by the setting of meter calculation option "V-cone/Wedge device" (register 8025 bit 4), this value is copied from the point "V-cone/Wedge coefficient of discharge" which in turn receives its value from a spreadsheet primed with data from the manufacturer's data sheet.

API 2540, Water content correction factor, CSW

The fraction of the total volume of the emulsion at operating conditions that represents the clean oil component, represented as an integer scaled to 4 decimal places.

Startup input pulse count

Upon power up the point "Previous input pulse count" is copied to this point and the "Previous input pulse count" is zeroed. Under the more likely scenario in which the pulse input module has also lost power and been restarted with its pulse counter zeroed, this results in an accurate pulse increment being computed for the first meter scan after power-up. In the less likely scenario in which the pulse input card has retained the value of its pulse counter, this point contains the information required in order to adjust for the spurious but possibly large pulse increment computed for the first meter scan.

Current input pulse count

The pulse count as received from the PLC.

Pulse increment

The number of pulses counted during this calculation scan, which is the difference (adjusted for rollover) between "Previous input pulse count" and "Current input pulse count". It is the raw measure of the flow increment to be accumulated for this scan.

Pulse frequency

The latest pulse frequency as received from the PLC.

<u>K-factor</u>

The K-factor actually used in the calculation of the primary input measured quantity from pulse count. It is either a copy of stream parameter "K-factor" or determined by interpolation over flow rate of the stream table "K-factor linearization", depending on the setting of stream option "Interpolate K-factor".

Meter factor

The meter factor actually used in the calculation of the primary input measured quantity from pulse count. It is either a copy of stream parameter "Meter factor" or determined by interpolation over flow rate of the stream table "Meter factor linearization", depending on the setting of stream option "Interpolate K-factor".

Multiplier, K-factor flow rate

The factor that when applied to the primary input flow rate scaled to the configured K-factor units ("Primary input units", yields the primary input flow rate scaled to the configured flow rate units for the "Primary input measured quantity" bits 8 thru 11). This value, which is the same as one of the three flow rate multipliers (selected according to the measured quantity), is combined with input pulse frequency, K-factor, and meter factor to yield the flow rate to be used in interpolating the factor linearization table for the stream.

Multiplier, mass flow rate

The factor that when applied to the mass flow rate scaled to the configured primary input units yields the mass flow rate scaled to the configured flow rate units.

Multiplier, energy flow rate

The factor that when applied to the energy flow rate scaled to the configured primary input units yields the energy flow rate scaled to the configured flow rate units.

Multiplier, volume flow rate

The factor that when applied to the volume flow rate scaled to the configured primary input units yields the volume flow rate scaled to the configured flow rate units.

Multiplier, mass accumulator

The factor that when applied to the mass flow increment scaled to the configured primary input units yields the mass flow increment scaled to the configured accumulator units.

Multiplier, energy accumulator

The factor that when applied to the energy flow increment scaled to the configured primary input units yields the energy flow increment scaled to the configured accumulator units.

Multiplier, volume accumulator

The factor that when applied to the volume flow increment scaled to the configured primary input units yields the volume flow increment scaled to the configured accumulator units.

Accumulator increment, mass

The flow increment added to the mass accumulator during this scan.

Accumulator increment, energy

The flow increment added to the energy accumulator during this scan.

Accumulator increment, net

The flow increment added to the net accumulator during this scan.

Accumulator increment, gross

The flow increment added to the gross accumulator during this scan.

Accumulator increment, gross standard

The flow increment added to the gross standard accumulator during this scan.

Accumulator increment, gross clean oil

The flow increment added to the gross clean oil accumulator during this scan.

Accumulator increment, water

The flow increment added to the water accumulator during this scan.

Flow rate, mass

The mass flow rate calculated during this scan.

Flow rate, energy

The energy flow rate calculated during this scan.

Flow rate, net

The net flow rate calculated during this scan.

Flow rate, gross

The gross flow rate calculated during this scan.

Flow rate, gross standard

The gross standard flow rate calculated during this scan.

Flow rate, gross clean oil

The gross clean oil flow rate calculated during this scan.

Flow rate, water

The water flow rate calculated during this scan.

Current archive, daily, closing timestamp (packed)

The closing timestamp of the archive, which for the current (on-going) archive is the timestamp of its latest update. If the site option "Return Unix-style timestamps via virtual slave" (register 119 bit 0) is set and this value is read from the virtual slave, then it appears as seconds since 1970 (Unix style) and its bit-field encoding is not relevant. Otherwise the timestamp is packed into bit fields with a resolution of 2 seconds; view bit-level detail for more information.

Current archive, daily, closing timestamp (packed), bisecond

The archive's closing timestamp second of the minute divided by 2; value 0 thru 29.

Current archive, daily, closing timestamp (packed), minute

The archive's closing timestamp minute of the hour; value 0 thru 59.

Current archive, daily, closing timestamp (packed), hour

The archive's closing timestamp hour of the day, using the 24-hour clock; value 0 thru 23.

Current archive, daily, closing timestamp (packed), day

The archive's closing timestamp day of the month less 1; value 0 thru (days in month) - 1.

Current archive, daily, closing timestamp (packed), month

The archive's closing timestamp month of the year less 1; value 0 thru 11.

Current archive, daily, closing timestamp (packed), year

The archive's closing timestamp year less 1996; value 0 thru 103 (through year 2099).

Current archive, daily, flowing period fraction

The fraction of the archive period during which flow occurred. This is calculated as

(number of scans with flow) / (total number of scans)

and is expressed as an integer scaled to 4 decimal places (so that "10000" means 1.0000, i.e. continuous flow). The period covered is the period that contributes to this record, i.e. the period between the opening timestamp and the closing timestamp.

Current archive, daily, cumulative meter alarms

Bitmap of all meter alarms occurring during the archive period, calculated by ORing into this point at the end of each calculation scan the contents of "Meter alarms", register 9601. See bit-level detail for more information.

Current archive, daily, cumulative meter alarm - input out of range, temperature

The temperature process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, temperature" points.

Current archive, daily, cumulative meter alarm - input out of range, pressure

The pressure process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, pressure" points.

Current archive, daily, cumulative meter alarm - input out of range, differential pressure

The differential pressure process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, differential pressure" points.

Current archive, daily, cumulative meter alarm - input out of range, flow rate

The flow rate process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, flow rate" points.

Current archive, daily, cumulative meter alarm - input out of range, density

The density process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. If a densitometer is configured and its calculation enabled, then the PLC supplies a frequency to the densitometer calculation and this alarm applies to the calculated density. For more information, refer to the "Input scaling, density" points.

Current archive, daily, cumulative meter alarm - input out of range, water content

The water content process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, water content" points.

Current archive, daily, cumulative meter alarm - Differential pressure low

The differential pressure process input is smaller than the "Differential pressure alarm threshold".

Current archive, daily, cumulative meter alarm - Flow rate low

The flow rate process input is smaller than the "Flow rate alarm threshold".

Current archive, daily, cumulative meter alarm - Pulse frequency low

The pulse frequency process input is smaller than the "Pulse frequency alarm threshold".

Current archive, daily, cumulative meter alarm - Orifice pressure exception

The combination of gauge pressure process input, differential pressure process input, barometric pressure (register 138), and the setting of meter calculation option "Downstream static pressure" (register 8025 bit 0) results in an effective downstream static pressure of less than vacuum, a physical impossibility. Upstream pressure is raised by the amount necessary to raise absolute downstream pressure to zero, and calculation continues.
Current archive, daily, cumulative meter alarm - Accumulation overflow

An accumulator increment in a single scan that is unreasonable, i.e. less than 0 or greater than 1,000,000,000 (9 zeros), is ignored and this alarm is raised.

Current archive, daily, cumulative meter alarm - Orifice characterization error

Orifice meter parameters are such that measurement cannot occur. While the original meter alarm is active, the specific reason for this alarm is available in the point "Orifice characterization error" (register 9602).

Current archive, daily, cumulative meter alarm - Analysis total zero

The input molar analysis is zero, therefore it cannot be normalized and cannot be input to AGA 8 for calculation of compressibilities and densities. Calculation proceeds as if no components were selected. The point "Analysis characterization error" (register 9603) contains the value 2.

Current archive, daily, cumulative meter alarm - Analysis total not normalized

The input molar analysis sums to a total that is outside the tolerance allowed by the value of the point "Analysis normalization total error tolerance". The analysis is normalized anyway and is input to AGA 8 for calculation of compressibilities and densities. The point "Analysis characterization error" (register 9603) contains the value 1.

Current archive, daily, cumulative meter alarm - Analysis characterization error

The characterization of the input analysis has encountered a problem. While the original meter alarm is active, the specific reason for this alarm is available in the point "Analysis characterization error" (register 9603)

Current archive, daily, cumulative meter alarm - Compressibility calculation error

The AGA 8 calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Compressibility calculation error" (register 9604)

Current archive, daily, cumulative meter alarm - High water error

The water content of the emulsion is too large. While the original meter alarm is active, the specific reason for this alarm is available in the point "High water error" (register 9604)

Current archive, daily, cumulative meter alarm - Reference density error

The density correction calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Reference density error" (register 9605)

Current archive, daily, cumulative meter alarm - Temperature correction error

The temperature correction calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the points "Temperature correction error" and/or "Water temperature error".

Current archive, daily, cumulative meter alarm - Vapor pressure error

The vapor pressure correlation calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Vapor pressure error" (register 9607)

Current archive, daily, cumulative meter alarm - Pressure correction error

The pressure correction calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Pressure correction error" (register 9608)

Current archive, daily, meter number (1-based)

This value is always 1.

Current archive, daily, cumulative meter status

Bitmap of selected meter status accumulated during the archive period, calculated by OR-ing into this point at the end of each calculation scan the contents of "Meter status". View bit-level detail for more information.

Current archive, daily, cumulative meter status - Meter enabled

The state of the meter has been switched from disabled to enabled during the archive period.

Current archive, daily, cumulative meter status - Backplane communications fault

Loss of communication with the PLC has been detected during the archive period. This is usually due to a switch of the PLC to program mode.

<u>Current archive, daily, cumulative meter status - Measurement configuration</u> <u>changed</u>

Configured items that might affect measurement calculations have been changed during the archive period.

Current archive, daily, cumulative meter status - Power up

The module lost power and has been rebooted during the archive period.

Current archive, daily, cumulative meter status - Cold start

A cold start (complete reinitialization) has occurred during the archive period.

Current archive, daily, event count

The number of the last event recorded during the archive period. This value is 1 less than the value of "Next event number" at register 40002 of the Input Register bank.

Current archive, daily, flowing period (seconds)

The number of seconds during which flow was detected during the archive period.

Current archive, daily, opening timestamp (packed)

The opening timestamp of the archive. If the site option "Return Unix-style timestamps via virtual slave" (register 119 bit 0) is set and this value is read from the virtual slave, then it appears as seconds since 1970 (Unix style) and its bit-field encoding is not relevant. Otherwise the timestamp is packed into bit fields with a resolution of 2 seconds; view bit-level detail for more information.

Current archive, daily, opening timestamp (packed), bisecond

The archive's opening timestamp second of the minute divided by 2; value 0 thru 29.

Current archive, daily, opening timestamp (packed), minute

The archive's opening timestamp minute of the hour; value 0 thru 59.

Current archive, daily, opening timestamp (packed), hour

The archive's opening timestamp hour of the day, using the 24-hour clock; value 0 thru 23.

Current archive, daily, opening timestamp (packed), day

The archive's opening timestamp day of the month less 1; value 0 thru (days in month) - 1.

Current archive, daily, opening timestamp (packed), month

The archive's opening timestamp month of the year less 1; value 0 thru 11.

Current archive, daily, opening timestamp (packed), year

The archive's opening timestamp year less 1996; value 0 thru 103 (through year 2099).

Current archive, daily, item #

Archive file header, daily - Archive record template type

This code selects the size and basic layout of the daily archive record. Values are:

- 10 words (2 predefined)
- 20 words (6 predefined)
- 30 words (10 predefined)
- 40 words (10 predefined)

This value is a copy of the corresponding configuration item at register 12340.L.

Archive file header, daily - Archive detail record size

The size of each daily archive record in words. This value is determined by the value of "Archive file header, daily: Archive record template type", register 12340.L.

Archive file header, daily - Number of records, local

The number of daily archive records stored locally and available by direct access to the Modbus Input Register bank. This value depends on the archive record size and is the total number of archive records that will fit into 1060 words. Click the "Addresses" button in the "Archive Configuration" window for more information.

Archive file header, daily - Number of records, extended

The actual number of records in the extended daily archive file. If a Compact Flash card is installed, this value is the same as that of "Archive configuration, daily, extended file size", register 12343; if a Compact Flash card is not installed, this value is zero.

Archive file header, daily - Index of last write, local

This number is maintained by the AFC to keep track of the physical location in the AFC's memory where the newest (age 1) local daily archive record has been stored. Outside the AFC it provides no useful information.

Archive file header, daily - Index of last write, extended

This number is maintained by the AFC to keep track of the physical location on the Compact Flash card where the newest extended daily archive record has been stored. Outside the AFC it provides no useful information.

Archive file header, daily - Modbus holding register address, header

This is the address in the Modbus Holding Register bank of the file header of the daily archive file. For this archive file it is always 13940.

Archive file header, daily - Modbus input register address, detail

This is the address in the Modbus Input Register bank of the local daily archive file. For this archive file it is always 5000. Click the "Addresses" button in the "Archive Configuration" window for more information.

Archive file header, daily - Modbus holding register address, summary

This is the address in the Modbus Holding Register bank of the current-period (ongoing) daily archive record. For this archive file it is always 13900. Click the "Addresses" button in the "Archive Configuration" window for more information.

Current archive, hourly, closing timestamp (packed)

The closing timestamp of the archive, which for the current (on-going) archive is the timestamp of its latest update. If the site option "Return Unix-style timestamps via virtual slave" (register 119 bit 0) is set and this value is read from the virtual slave, then it appears as seconds since 1970 (Unix style) and its bit-field encoding is not relevant. Otherwise the timestamp is packed into bit fields with a resolution of 2 seconds; view bit-level detail for more information.

Current archive, hourly, closing timestamp (packed), bisecond

The archive's closing timestamp second of the minute divided by 2; value 0 thru 29.

Current archive, hourly, closing timestamp (packed), minute

The archive's closing timestamp minute of the hour; value 0 thru 59.

Current archive, hourly, closing timestamp (packed), hour

The archive's closing timestamp hour of the day, using the 24-hour clock; value 0 thru 23.

Current archive, hourly, closing timestamp (packed), day

The archive's closing timestamp day of the month less 1; value 0 thru (days in month) -1.

Current archive, hourly, closing timestamp (packed), month

The archive's closing timestamp month of the year less 1; value 0 thru 11.

Current archive, hourly, closing timestamp (packed), year

The archive's closing timestamp year less 1996; value 0 thru 103 (through year 2099).

Current archive, hourly, flowing period fraction

The fraction of the archive period during which flow occurred. This is calculated as

(number of scans with flow) / (total number of scans)

and is expressed as an integer scaled to 4 decimal places (so that "10000" means 1.0000, i.e. continuous flow). The period covered is the period that contributes to this record, i.e. the period between the opening timestamp and the closing timestamp.

Current archive, hourly, cumulative meter alarms

Bitmap of all meter alarms occurring during the archive period, calculated by ORing into this point at the end of each calculation scan the contents of "Meter alarms", register 9601. See bit-level detail for more information.

Current archive, hourly, cumulative meter alarm - input out of range, temperature

The temperature process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, temperature" points.

Current archive, hourly, cumulative meter alarm - input out of range, pressure

The pressure process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, pressure" points.

<u>Current archive, hourly, cumulative meter alarm - input out of range, differential</u> <u>pressure</u>

The differential pressure process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, differential pressure" points.

Current archive, hourly, cumulative meter alarm - input out of range, flow rate

The flow rate process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, flow rate" points.

Current archive, hourly, cumulative meter alarm - input out of range, density

The density process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. If a densitometer is configured and its calculation enabled, then the PLC supplies a frequency to the densitometer calculation and this alarm applies to the calculated density. For more information, refer to the "Input scaling, density" points.

Current archive, hourly, cumulative meter alarm - input out of range, water content

The water content process input, after conversion and scaling according to the "module id code" configured for the input, was outside its configured allowable range and the default has been substituted. For more information, refer to the "Input scaling, water content" points.

Current archive, hourly, cumulative meter alarm - Differential pressure low

The differential pressure process input is smaller than the "Differential pressure alarm threshold".

Current archive, hourly, cumulative meter alarm - Flow rate low

The flow rate process input is smaller than the "Flow rate alarm threshold".

Current archive, hourly, cumulative meter alarm - Pulse frequency low

The pulse frequency process input is smaller than the "Pulse frequency alarm threshold".

Current archive, hourly, cumulative meter alarm - Orifice pressure exception

The combination of gauge pressure process input, differential pressure process input, barometric pressure, and the setting of meter calculation option "Downstream static pressure" (bit 0) results in an effective downstream static pressure of less than vacuum, a physical impossibility. Upstream pressure is raised by the amount necessary to raise absolute downstream pressure to zero, and calculation continues.

Current archive, hourly, cumulative meter alarm - Accumulation overflow

An accumulator increment in a single scan that is unreasonable, i.e. less than 0 or greater than 1,000,000,000 (9 zeros), is ignored and this alarm is raised.

Current archive, hourly, cumulative meter alarm - Orifice characterization error

Orifice meter parameters are such that measurement cannot occur. While the original meter alarm is active, the specific reason for this alarm is available in the point "Orifice characterization error" (register 9602).

Current archive, hourly, cumulative meter alarm - Analysis total zero

The input molar analysis is zero, therefore it cannot be normalized and cannot be input to AGA 8 for calculation of compressibilities and densities. Calculation proceeds as if no components were selected. The point "Analysis characterization error" (register 9603) contains the value 2.

Current archive, hourly, cumulative meter alarm - Analysis total not normalized

The input molar analysis sums to a total that is outside the tolerance allowed by the value of the point "Analysis normalization total error tolerance". The analysis is normalized anyway and is input to AGA 8 for calculation of compressibilities and densities. The point "Analysis characterization error" (register 9603) contains the value 1.

Current archive, hourly, cumulative meter alarm - Analysis characterization error

The characterization of the input analysis has encountered a problem. While the original meter alarm is active, the specific reason for this alarm is available in the point "Analysis characterization error" (register 9603)

Current archive, hourly, cumulative meter alarm - Compressibility calculation error

The AGA 8 calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Compressibility calculation error" (register 9604)

Current archive, hourly, cumulative meter alarm - High water error

The water content of the emulsion is too large. While the original meter alarm is active, the specific reason for this alarm is available in the point "High water error" (register 9604)

Current archive, hourly, cumulative meter alarm - Reference density error

The density correction calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Reference density error" (register 9605)

Current archive, hourly, cumulative meter alarm - Temperature correction error

The temperature correction calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Temperature correction error".

Current archive, hourly, cumulative meter alarm - Vapor pressure error

The vapor pressure correlation calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Vapor pressure error" (register 9607)

Current archive, hourly, cumulative meter alarm - Pressure correction error

The pressure correction calculation has reported an error. While the original meter alarm is active, the specific reason for this alarm is available in the point "Pressure correction error" (register 9608)

Current archive, hourly, meter number (1-based)

This value is always 1.

Current archive, hourly, cumulative meter status

Bitmap of selected meter status accumulated during the archive period, calculated by OR-ing into this point at the end of each calculation scan the contents of "Meter status", register 8800.H. View bit-level detail for more information.

Current archive, hourly, cumulative meter status - Meter enabled

The state of the meter has been switched from disabled to enabled during the archive period.

<u>Current archive, hourly, cumulative meter status - Backplane communications</u> <u>fault</u>

Loss of communication with the PLC has been detected during the archive period. This is usually due to a switch of the PLC to program mode.

<u>Current archive, hourly, cumulative meter status - Measurement configuration</u> <u>changed</u>

Configured items that might affect measurement calculations have been changed during the archive period.

Current archive, hourly, cumulative meter status - Power up

The module lost power and has been rebooted during the archive period.

Current archive, hourly, cumulative meter status - Cold start

A cold start (complete reinitialization) has occurred during the archive period.

Current archive, hourly, event count

The number of the last event recorded during the archive period. This value is 1 less than the value of "Next event number" at register 40002 of the Input Register bank.

Current archive, hourly, flowing period (seconds)

The number of seconds during which flow was detected during the archive period.

Current archive, hourly, opening timestamp (packed)

The opening timestamp of the archive. If the site option "Return Unix-style timestamps via virtual slave" (register 119 bit 0) is set and this value is read from the virtual slave, then it appears as seconds since 1970 (Unix style) and its bit-field encoding is not relevant. Otherwise the timestamp is packed into bit fields with a resolution of 2 seconds; view bit-level detail for more information.

Current archive, hourly, opening timestamp (packed), bisecond

The archive's opening timestamp second of the minute divided by 2; value 0 thru 29.

Current archive, hourly, opening timestamp (packed), minute

The archive's opening timestamp minute of the hour; value 0 thru 59.

Current archive, hourly, opening timestamp (packed), hour

The archive's opening timestamp hour of the day, using the 24-hour clock; value 0 thru 23.

Current archive, hourly, opening timestamp (packed), day

The archive's opening timestamp day of the month less 1; value 0 thru (days in month) -1.

Current archive, hourly, opening timestamp (packed), month

The archive's opening timestamp month of the year less 1; value 0 thru 11.

Current archive, hourly, opening timestamp (packed), year

The archive's opening timestamp year less 1996; value 0 thru 103 (through year 2099).

Current archive, hourly, items 9 through 38

Archive file header, hourly - Archive record template type

This code selects the size and basic layout of the hourly archive record. Values are:

- 10 words (2 predefined)
- 20 words (6 predefined)
- 30 words (10 predefined)
- 40 words (10 predefined)

This value is a copy of the corresponding configuration item at register 8240.L.

Archive file header, hourly - Archive detail record size

The size of each hourly archive record in words. This value is determined by the value of "Archive file header, hourly: Archive record template type", register 9990.L.

Archive file header, hourly - Number of records, local

The number of hourly archive records stored locally and available by direct access to the Modbus Input Register bank. This value depends on the archive record size and is the total number of archive records that will fit into 1440 words. Click the "Addresses" button in the "Archive Configuration" window for more information.

Archive file header, hourly - Number of records, extended

The actual number of records in the extended hourly archive file. If a Compact Flash card is installed, this value is the same as that of "Archive configuration, hourly, extended file size", register 8243; if a Compact Flash card is not installed, this value is zero.

Archive file header, hourly - Index of last write, local

This number is maintained by the AFC to keep track of the physical location in the AFC's memory where the newest (age 1) local hourly archive record has been stored. Outside the AFC it provides no useful information.

Archive file header, hourly - Index of last write, extended

This number is maintained by the AFC to keep track of the physical location on the Compact Flash card where the newest extended hourly archive record has been stored. Outside the AFC it provides no useful information.

Archive file header, hourly - Modbus holding register address, header

This is the address in the Modbus Holding Register bank of the file header of the hourly archive file. For this archive file it is always 9990.

Archive file header, hourly - Modbus input register address, detail

This is the address in the Modbus Input Register bank of the local hourly archive file. For this archive file it is always 1060. Click the "Addresses" button in the "Archive Configuration" window for more information.

Archive file header, hourly - Modbus holding register address, summary

This is the address in the Modbus Holding Register bank of the current-period (ongoing) hourly archive record. For this archive file it is always 9950. Click the "Addresses" button in the "Archive Configuration" window for more information.

13.7 Modbus Port configuration

Configuration of the serial ports is stored in these blocks of the Modbus table:

Address	Туре	Description
Ph00102 to Ph00105	Bm	Port 1 configuration
Ph00106 to Ph00109	Bm	Port 2 configuration
Ph00110 to Ph00113	Bm	Port 3 configuration

Each group of registers specifies configuration of the corresponding serial port. The four registers of each block are interpreted as follows:

Ofs	Туре	Tag	Contents	
+0	Bm	Uart	Uart UART parameters and port options	
+1.L	Ву	TmoC	LSB: Timeout for CTS	
+1.H	Ву	TmoR	TmoR MSB: Master mode receive timeout	
+2	Ву	Dly1	Delay before first data after CTS	
+3	Ву	Dly0	Delay after last data before ~RTS	

The CTS timeout and both delays are in units of 5ms (200Hz system clock), with valid values from 0 thru 255, and are significant only for transmission of outgoing Modbus messages. The receive timeout is in units of 0.1 second, with valid values from 0 thru 255 (where 0 implies the default of 5, that is, one-half second), and is significant only for the last port when configured as a Modbus master. The UART parameters and port options word is a bitmap:

Bit	Parameter	Value
bits 0 to 2	Baud	000: none; see below
		001: 300 baud
		010: 600 baud
		011: 1200 baud
		100: 2400 baud
		101: 4800 baud
		110: 9600 baud
		111: 19200 baud
bits 3 to 4	Parity	00: no parity
		01: odd parity
		10: even parity
		11: no parity (should not be used)
bit 5	Data bits	0: 8 data bits
		1: 7 data bits
bit 6	Stop bits	0: 1 stop bit
		1: 2 stop bits
bit 7	Modbus mode	0: RTU mode
		1: ASCII mode
bit 8	Modbus orientation	0: slave
		1: master (permitted only for last port)

Bit	Parameter	Value
bit 9	Primary slave accessibility (not	0: primary slave accessible through this port
	meaningful for master port)	1: primary slave not accessible (not permitted for Port 1)
bit 10		Swap Modbus bytes
bit 11		Swap Modbus words
bit 12		Disable pass-thru (not meaningful for master port)
bits 13 to 15		[reserved]

A change in configuration takes effect after transmission of the response to the Modbus command that causes the change; the response is sent using the old configuration, but subsequent Modbus commands to the reconfigured port must use the new one. Writing a baud code of 0 means that the current configuration is not to be changed, and all other items are ignored. Default values are 6 for the bitmap (9600,N,8,1,RTU,slave,primary,noswap,passthru) and 0 for the timeout and both delays. The message transmission procedure is:

- Raise RTS.
- If TmoC is zero ignore CTS, else wait up to TmoC clock ticks for CTS.
- Delay for Dly1 clock ticks.
- Transmit message.
- Delay for Dly0 clock ticks.
- Drop RTS.

13.8 Startup Basics and Frequently Asked Questions

The Automatic Flow Computer (AFC) is a powerful rack flow computer solution for PLC platforms. The design intent of the module is to simplify the setup and maintenance of a meter installation. With this in mind, the sample ladder logic was created to accomplish the following:

- Pass meter run variables to the module.
- Return meter results to the processor.
- Allow individual meters to be enabled or disabled.
- Allow resets of individual meter runs.
- Allow transfer of a new gas analysis to an individual meter run.

Actual meter setup includes units of measure setup, range checking for input variables, and the type of meter being used. This setup is handled by the AFC Manager software. The intended design is to have the processor only handle the variables of an actual process and the AFC Manager handle the setup and configuration of necessary meter variables.

The sample ladder logic included with the system is intended to fulfill this requirement and works for many applications. Should you feel that your application requires more than this, then a very intimate knowledge of the operations of the module are required to be successful in the implementation of the application. It is highly recommended that the sample be used as a starting point for any application.

13.8.1 How does the module work?

Ignoring the fundamentals of a meter run, the module's operation is very simply divided into two operations, those being the transfer of data from the Processor to the module (variables as a rule) and the second being the transfer of data from the module to the Processor (results).

Refer to the Backplane section of the AFC User Manual for your module for more information on backplane operation.

13.8.2 Why should I use the AFC Manager?

The AFC Manager should be used to configure the module project parameters (Site Configuration) and each meter (Meter Configuration).

Once your project is up and running, you can also use the AFC Manager to monitor each meter run (Meter Monitor), archives, and events.

13.8.3 Why can't the AFC Manager connect to the module?

Check the cable used in your project: a null-modem cable should be used to connect the module with the local PC serial port. Make sure that the baud rate, data bits, mode, parity and primary slave address are the same (both in PC and module).

If you change the primary slave address and later forget the new address, the module will not establish communications. You must read the primary slave address value (address 100) over the backplane using the Modbus Gateway Transaction Block.

13.8.4 Why do I have to enable or disable a meter?

A meter channel will only perform flow calculation if it is enabled. For performance reasons you should disable all meter channels that are not being used. You cannot change a meter type and/or product group for a meter channel that is currently enabled.

13.8.5 Why does the card not calculate results, or why did it stop calculating results?

This could be caused by a couple of things.

- 1 The first thing to check is that the module actually received a clock. If the card does not get a clock it will not be able to schedule storage of historical records.
- 2 The next possibility is that the meter is not enabled or some parameter for the run is not correct. Check to see if the run is enabled and that no errors exist in configuration or data for the run in question. Check for alarms arising from the calculations. The AFC Manager software can be a great help with this as it will highlight problem areas.

13.8.6 What is the Virtual Modbus Slave?

The AFC Modbus database can be accessed using the Primary Modbus Slave address. More than 100.000 registers may be accessed using this slave.

You may want to use certain values from the Modbus database in a different order than the one presented in the Primary Modbus Slave. One example is if you want to poll certain values from the Modbus database using a Modbus master device in the field. Instead of using several commands to poll from different locations in the Modbus database, it is better to remap these values to other locations in order to optimize the master polling.

This is the reason the AFC module offers a second slave: the Virtual Modbus Slave. Using the AFC Manager software, you can remap up to 20.000 registers from the Primary Modbus Slave in any order. The Virtual Modbus Slave Address must be configured using the AFC Manager software (Site Config dialog box).

The Virtual Modbus Slave is also used when using the Modbus Pass-Thru function block.

13.8.7 How does the AFC Manager transfer the configuration to the module?

You can configure the site and meter parameters at the local PC saving the project as a .AFC file. You may then download the configuration by clicking on **Project / Download Configuration**. In this case, all configuration will be downloaded from the local PC to the module, except for the Virtual Slave Remapping (must be written separately).

Once you download the entire configuration, you may perform smaller adjustments (Site Configuration and Meter Configuration) by clicking on the Write button.

13.8.8 What is the password used for?

The password protects the module from any changes to "sealable" parameters. Sealable parameters directly affect measurement calculations (for example, orifice diameter, or K-factor).

The password is stored in the module so different computers should always use the same password.

13.8.9 Why do I receive an "Illegal Data Value" warning when I try to write a meter configuration or download the entire configuration to the module?

Follow these steps:

 Ensure that any parameters you had changed (from the default configuration) are acceptable according to applicable standards. The white rectangle (Site Configuration and Meter Configuration) shows the correct range of values for each parameter.

- The module will not accept a downloaded configuration that changes the meter type and/or the product group of a meter that is currently enabled. Disable the meter first, then proceed with the meter download.
- Look at the number of events currently stored in the module. You can check this using **Monitor / Event Log** and then click on the Read button. If the "number of events not yet downloaded" is 1999 it means that the event log is full. In this case, if the project also has the "event log unlocked" option clear, the module will not accept any further configuration downloads generating the "Illegal Data Value" at any attempt. Delete all events from the module event buffer (refer to the Event Log section). You may want to select (check) the "Event Log Unlocked" check box. This setting allows the module to overwrite the oldest event from the buffer when the buffer is full.

13.8.10 Why is the Molar Analysis button disabled?

In order to transfer the molar analysis values between the module and the local computer, it is required that the module's configuration and the configuration at the local computer should match. In order to accomplish this, you can perform either a **Meter Configuration / Read** or a **Meter Configuration / Write** operation.

13.8.11 Why does the AFC Manager show a "Communication Timeout" warning?

The communication parameters for the AFC Manager and the module should match. Look at the communication parameters and cables (RS-232 null-modem). Also ensure that the setup jumper on the module is OFF.

13.8.12 What is the difference between Net Accumulator and Gross Accumulator?

The module initially calculates the Gross Accumulator value. It then uses the Gross Accumulator value and corrects it for pressure and temperature before calculating the Gross Standard Accumulator value.

For Gases, Gross Standard Accumulator = Net Accumulator

For Liquids, Gross Standard Accumulator - Water = Net Accumulator

13.8.13 What are the accumulator's totalizer and residue values?

The totalizer is the integer part and the residue is the fractional part. The accumulator will be calculated by:

Accumulator = Totalizer + Residue

13.8.14 Do I have to enter all molar concentrations for the gas product?

Yes, the module uses the Detail Characterization Method that requires all molar concentration values.

13.8.15 Can I update the molar concentration values dynamically?

Yes, if the values are generated from a gas chromatograph you can update these values from the processor to the module (via backplane). Refer to the module's user manual for more information about this subject.

13.8.16 Why do the accumulator values not update?

Follow these steps:

- 1 Check if the Wallclock is running. The Wallclock should be set every time the module powers up by ladder logic. If the Wallclock is not running, some very early versions of the AFC will not perform the applicable calculation.
- 2 Determine if the meter has an alarm using the Meter Monitor dialog box. If the alarm field is red, it indicates that the meter has at least one alarm.
- **3** Determine if the meter is enabled. If the meter is not enabled, it will not perform the applicable calculation.
- 4 Look at the input variables in the AFC Manager. Make sure the values that are being copied from the processor match the input variables displayed at the AFC Manager Meter Monitor dialog box.

13.8.17 What is the Wallclock?

The Wallclock is the internal module clock that is used by the module to perform the applicable calculation. Typically, the Wallclock will be copied from the processor at every power up operation, otherwise the module will not perform time-of-day-dependent calculations.

13.8.18 Can I read the Primary (or Virtual) Slave values using the AFC Manager?

Yes, the Modbus Master interface (**Communications / Modbus Master**) allows you to easily read (or write) to any register in both slaves.

13.8.19 When are the archives generated?

There are two types of archives: the *daily* archives (which are generated once a day) and the *hourly* archives (which are generated once a hour). The Site Configuration dialog box has two parameters that allow you to configure when the archives will be generated:

- End-of-Day minute = the minute of the day when the daily archives will be written
- End-of-Hour minute = the minute of the hour when the hourly archives will be written

13.9 Cable Connections

The application ports on the MVI46-AFC module support RS-232, RS-422, and RS-485 interfaces. Please inspect the module to ensure that the jumpers are set correctly to correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require hardware handshaking (control and monitoring of modem signal lines). Enable this in the configuration of the module by setting the UseCTS parameter to 1.

13.9.1 RS-232 Configuration/Debug Port

This port is physically an RJ45 connection. An RJ45 to DB-9 adapter cable is included with the module. This port permits a PC based terminal emulation program to view configuration and status data in the module and to control the module. The cable for communications on this port is shown in the following diagram:

Disabling the RSLinx Driver for the Com Port on the PC

The communication port driver in RSLinx can occasionally prevent other applications from using the PC's COM port. If you are not able to connect to the module's configuration/debug port using ProSoft Configuration Builder (PCB), HyperTerminal or another terminal emulator, follow these steps to disable the RSLinx Driver.

1 Open RSLinx and go to Communications>RSWho

2 Make sure that you are not actively browsing using the driver that you wish to stop. The following shows an actively browsed network:

क्कैRSWho - 1	
Autobrowse Refresh	Browsing - node 10 found
 ● Workstation, PSFT-VAIO-1 ● 금급 Linx Gateways, Ethernet ● 급 AB_DF1-1, DH-485 ● 급 01, SLC-5/05, UNTITLED □ 10, Workstation, DF1-COM1 	10 DF1-COM1 UNTITLED

3 Notice how the DF1 driver is opened, and the driver is looking for a processor on node 1. If the network is being browsed, then you will not be able to stop this driver. To stop the driver your RSWho screen should look like this:

윫RSWho - 1				
Autobrowse Refresh	2.0	Not Browsing		
□-르, Workstation, PSFT-VAIO-1 만 풉 Linx Gateways, Ethernet 만 욺 AB_DF1-1, DH-485		Linx Gatew	8_DF1-1 DH-485	

Branches are displayed or hidden by clicking on the = or the = icons.

4 When you have verified that the driver is not being browsed, go to

Communications>Configure Drivers You may see something like this:

nfigure Drivers		
Available Driver Types:		
	•	Add New
Configured Drivers:	c	tatus
Name and Description		tatus
-		tatus unning

If you see the status as running, you will not be able to use this com port for anything other than communication to the processor. To stop the driver press the "Stop" on the side of the window:

Con <u>f</u> igure
Star <u>t</u> up
<u>S</u> tart
Stop
<u>D</u> elete

5 After you have stopped the driver you will see the following:

on	îgure Drivers	
	Available Driver Types:	<u>A</u> dd New
Γ(Configured Drivers:	
	Name and Description	Status
	AB_DF1-1 DH485 Sta: 10 COM1: STOPPED	Stopped

6 Upon seeing this, you may now use that com port to connect to the debug port of the module.

Note: You may need to shut down and restart your PC before it will allow you to stop the driver (usually only on Windows NT machines). If you have followed all of the above steps, and it will not stop the driver, then make sure you do not have RSLogix open. If RSLogix is not open, and you still cannot stop the driver, then reboot your PC.

13.9.2 RS-232

When the RS-232 interface is selected, the use of hardware handshaking (control and monitoring of modem signal lines) is user definable. If no hardware handshaking will be used, the cable to connect to the port is as shown below:

RS-232: Modem Connection

This type of connection is required between the module and a modem or other communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for most modem applications.

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module requires hardware handshaking (control and monitoring of modem signal lines).

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field device communication port.

Note: If the port is configured with the "Use CTS Line" set to 'Y', then a jumper is required between the RTS and the CTS line on the module connection.

13.9.3 RS-422

13.9.4 RS-485

The RS-485 interface requires a single two or three wire cable. The Common connection is optional and dependent on the RS-485 network. The cable required for this interface is shown below:

Note: Terminating resistors are generally not required on the RS-485 network, unless you are experiencing communication problems that can be attributed to signal echoes or reflections. In this case, install a 120 ohm terminating resistor on the RS-485 line.

RS-485 and RS-422 Tip

If communication in the RS-422/RS-485 mode does not work at first, despite all attempts, try switching termination polarities. Some manufacturers interpret +/- and A/B polarities differently.

13.9.5 DB9 to RJ45 Adaptor (Cable 14)

Wiring Diagram

14 Support, Service & Warranty

In This Chapter

ProSoft Technology, Inc. (ProSoft) is committed to providing the most efficient and effective support possible. Before calling, please gather the following information to assist in expediting this process:

- 1 Product Version Number
- **2** System architecture
- 3 Network details

If the issue is hardware related, we will also need information regarding:

- 1 Module configuration and contents of file
 - Module Operation
 - Configuration/Debug status information
 - LED patterns
- 2 Information about the processor and user data files as viewed through and LED patterns on the processor.
- **3** Details about the serial devices interfaced, if any.

14.1 How to Contact Us: Technical Support

Internet	Web Site: http://www.prosoft-technology.com/support (http://www.prosoft-technology.com/support)
	E-mail address: support@prosoft-technology.com (mailto:support@prosoft-technology.com)

Asia Pacific

+603.7724.2080, support.asia@prosoft-technology.com (mailto:support.asia@prosoft-technology.com)

Languages spoken include: Chinese, English

Europe (location in Toulouse, France)

+33 (0) 5.34.36.87.20, support.EMEA@prosoft-technology.com (mailto:support.emea@prosoft-technology.com)

Languages spoken include: French, English

North America/Latin America (excluding Brasil) (location in California)

+1.661.716.5100, support@prosoft-technology.com (mailto:support@prosoft-technology.com)

Languages spoken include: English, Spanish

For technical support calls within the United States, an after-hours answering system allows pager access to one of our qualified technical and/or application support engineers at any time to answer your questions.

Brasil (location in Sao Paulo)

+55-11-5084-5178, eduardo@prosoft-technology.com (mailto:eduardo@prosoft-technology.com)

Languages spoken include: Portuguese, English

14.2 Return Material Authorization (RMA) Policies and Conditions

The following RMA Policies and Conditions (collectively, "RMA Policies") apply to any returned Product. These RMA Policies are subject to change by ProSoft without notice. For warranty information, see "Limited Warranty". In the event of any inconsistency between the RMA Policies and the Warranty, the Warranty shall govern.

14.2.1 All Product Returns:

- a) In order to return a Product for repair, exchange or otherwise, the Customer must obtain a Returned Material Authorization (RMA) number from ProSoft and comply with ProSoft shipping instructions.
- b) In the event that the Customer experiences a problem with the Product for any reason, Customer should contact ProSoft Technical Support at one of the telephone numbers listed above (page 277). A Technical Support Engineer will request that you perform several tests in an attempt to isolate the problem. If after completing these tests, the Product is found to be the source of the problem, we will issue an RMA.
- c) All returned Products must be shipped freight prepaid, in the original shipping container or equivalent, to the location specified by ProSoft, and be accompanied by proof of purchase and receipt date. The RMA number is to be prominently marked on the outside of the shipping box. Customer agrees to insure the Product or assume the risk of loss or damage in transit. Products shipped to ProSoft using a shipment method other than that specified by ProSoft or shipped without an RMA number will be returned to the Customer, freight collect. Contact ProSoft Technical Support for further information.
- A 10% restocking fee applies to all warranty credit returns whereby a Customer has an application change, ordered too many, does not need, etc.

14.2.2 Procedures for Return of Units Under Warranty:

A Technical Support Engineer must approve the return of Product under ProSoft's Warranty:

- a) A replacement module will be shipped and invoiced. A purchase order will be required.
- b) Credit for a product under warranty will be issued upon receipt of authorized product by ProSoft at designated location referenced on the Return Material Authorization.
- If a defect is found and is determined to be customer generated, or if the defect is otherwise not covered by ProSoft's Warranty, there will be no credit given. Customer will be contacted and can request module be returned at their expense.

14.2.3 Procedures for Return of Units Out of Warranty:

- a) Customer sends unit in for evaluation
- b) If no defect is found, Customer will be charged the equivalent of \$100 USD, plus freight charges, duties and taxes as applicable. A new purchase order will be required.
- c) If unit is repaired, charge to Customer will be 30% of current list price (USD) plus freight charges, duties and taxes as applicable. A new purchase order will be required or authorization to use the purchase order submitted for evaluation fee.

The following is a list of non-repairable units:

- o 3150 All
- o **3750**
- o 3600 All
- o **3700**
- o 3170 All
- o **3250**
- o 1560 Can be repaired, only if defect is the power supply
- o 1550 Can be repaired, only if defect is the power supply
- o **3350**
- o **3300**
- o 1500 All

14.2.4 Purchasing Warranty Extension:

 a) ProSoft's standard warranty period is three (3) years from the date of shipment as detailed in "Limited Warranty (page 280)". The Warranty Period may be extended at the time of equipment purchase for an additional charge, as follows:

- Additional 1 year = 10% of list price
- Additional 2 years = 20% of list price
- Additional 3 years = 30% of list price

14.3 LIMITED WARRANTY

This Limited Warranty ("Warranty") governs all sales of hardware, software and other products (collectively, "Product") manufactured and/or offered for sale by ProSoft, and all related services provided by ProSoft, including maintenance, repair, warranty exchange, and service programs (collectively, "Services"). By purchasing or using the Product or Services, the individual or entity purchasing or using the Product or Services ("Customer") agrees to all of the terms and provisions (collectively, the "Terms") of this Limited Warranty. All sales of software or other intellectual property are, in addition, subject to any license agreement accompanying such software or other intellectual property.

14.3.1 What Is Covered By This Warranty

- a) Warranty On New Products: ProSoft warrants, to the original purchaser, that the Product that is the subject of the sale will (1) conform to and perform in accordance with published specifications prepared, approved and issued by ProSoft, and (2) will be free from defects in material or workmanship; provided these warranties only cover Product that is sold as new. This Warranty expires three years from the date of shipment (the "Warranty Period"). If the Customer discovers within the Warranty Period a failure of the Product to conform to specifications, or a defect in material or workmanship of the Product, the Customer must promptly notify ProSoft by fax, email or telephone. In no event may that notification be received by ProSoft later than 39 months. Within a reasonable time after notification, ProSoft will correct any failure of the Product to conform to specifications or any defect in material or workmanship of the Product, with either new or used replacement parts. Such repair, including both parts and labor, will be performed at ProSoft's expense. All warranty service will be performed at service centers designated by ProSoft.
- b) Warranty On Services: Materials and labor performed by ProSoft to repair a verified malfunction or defect are warranteed in the terms specified above for new Product, provided said warranty will be for the period remaining on the original new equipment warranty or, if the original warranty is no longer in effect, for a period of 90 days from the date of repair.

14.3.2 What Is Not Covered By This Warranty

a) ProSoft makes no representation or warranty, expressed or implied, that the operation of software purchased from ProSoft will be uninterrupted or error free or that the functions contained in the software will meet or satisfy the purchaser's intended use or requirements; the Customer assumes complete responsibility for decisions made or actions taken based on information obtained using ProSoft software.

- b) This Warranty does not cover the failure of the Product to perform specified functions, or any other non-conformance, defects, losses or damages caused by or attributable to any of the following: (i) shipping; (ii) improper installation or other failure of Customer to adhere to ProSoft's specifications or instructions; (iii) unauthorized repair or maintenance; (iv) attachments, equipment, options, parts, software, or user-created programming (including, but not limited to, programs developed with any IEC 61131-3, "C" or any variant of "C" programming languages) not furnished by ProSoft; (v) use of the Product for purposes other than those for which it was designed; (vi) any other abuse, misapplication, neglect or misuse by the Customer; (vii) accident, improper testing or causes external to the Product such as, but not limited to, exposure to extremes of temperature or humidity, power failure or power surges; or (viii) disasters such as fire, flood, earthquake, wind and lightning.
- c) The information in this Agreement is subject to change without notice. ProSoft shall not be liable for technical or editorial errors or omissions made herein; nor for incidental or consequential damages resulting from the furnishing, performance or use of this material. The user guide included with your original product purchase from ProSoft contains information protected by copyright. No part of the guide may be duplicated or reproduced in any form without prior written consent from ProSoft.

14.3.3 Disclaimer Regarding High Risk Activities

Product manufactured or supplied by ProSoft is not fault tolerant and is not designed, manufactured or intended for use in hazardous environments requiring fail-safe performance including and without limitation: the operation of nuclear facilities, aircraft navigation of communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly or indirectly to death, personal injury or severe physical or environmental damage (collectively, "high risk activities"). ProSoft specifically disclaims any express or implied warranty of fitness for high risk activities.

14.3.4 Intellectual Property Indemnity

Buyer shall indemnify and hold harmless ProSoft and its employees from and against all liabilities, losses, claims, costs and expenses (including attorney's fees and expenses) related to any claim, investigation, litigation or proceeding (whether or not ProSoft is a party) which arises or is alleged to arise from Buyer's acts or omissions under these Terms or in any way with respect to the Products. Without limiting the foregoing, Buyer (at its own expense) shall indemnify and hold harmless ProSoft and defend or settle any action brought against such Companies to the extent based on a claim that any Product made to Buyer specifications infringed intellectual property rights of another party. ProSoft makes no warranty that the product is or will be delivered free of any person's claiming of patent, trademark, or similar infringement. The Buyer assumes all risks (including the risk of suit) that the product or any use of the product will infringe existing or subsequently issued patents, trademarks, or copyrights.

- a) Any documentation included with Product purchased from ProSoft is protected by copyright and may not be duplicated or reproduced in any form without prior written consent from ProSoft.
- b) ProSoft's technical specifications and documentation that are included with the Product are subject to editing and modification without notice.
- c) Transfer of title shall not operate to convey to Customer any right to make, or have made, any Product supplied by ProSoft.
- d) Customer is granted no right or license to use any software or other intellectual property in any manner or for any purpose not expressly permitted by any license agreement accompanying such software or other intellectual property.
- e) Customer agrees that it shall not, and shall not authorize others to, copy software provided by ProSoft (except as expressly permitted in any license agreement accompanying such software); transfer software to a third party separately from the Product; modify, alter, translate, decode, decompile, disassemble, reverse-engineer or otherwise attempt to derive the source code of the software or create derivative works based on the software; export the software or underlying technology in contravention of applicable US and international export laws and regulations; or use the software other than as authorized in connection with use of Product.
- f) Additional Restrictions Relating To Software And Other Intellectual Property

In addition to compliance with the Terms of this Warranty, Customers purchasing software or other intellectual property shall comply with any license agreement accompanying such software or other intellectual property. Failure to do so may void this Warranty with respect to such software and/or other intellectual property.

14.3.5 Disclaimer of all Other Warranties

The Warranty set forth in What Is Covered By This Warranty (page 280) are in lieu of all other warranties, express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

14.3.6 Limitation of Remedies **

In no event will ProSoft or its Dealer be liable for any special, incidental or consequential damages based on breach of warranty, breach of contract, negligence, strict tort or any other legal theory. Damages that ProSoft or its Dealer will not be responsible for included, but are not limited to: Loss of profits; loss of savings or revenue; loss of use of the product or any associated equipment; loss of data; cost of capital; cost of any substitute equipment, facilities, or services; downtime; the claims of third parties including, customers of the Purchaser; and, injury to property.

** Some areas do not allow time limitations on an implied warranty, or allow the exclusion or limitation of incidental or consequential damages. In such areas, the above limitations may not apply. This Warranty gives you specific legal rights, and you may also have other rights which vary from place to place.

14.3.7 Time Limit for Bringing Suit

Any action for breach of warranty must be commenced within 39 months following shipment of the Product.

14.3.8 No Other Warranties

Unless modified in writing and signed by both parties, this Warranty is understood to be the complete and exclusive agreement between the parties, suspending all oral or written prior agreements and all other communications between the parties relating to the subject matter of this Warranty, including statements made by salesperson. No employee of ProSoft or any other party is authorized to make any warranty in addition to those made in this Warranty. The Customer is warned, therefore, to check this Warranty carefully to see that it correctly reflects those terms that are important to the Customer.

14.3.9 Allocation of Risks

This Warranty allocates the risk of product failure between ProSoft and the Customer. This allocation is recognized by both parties and is reflected in the price of the goods. The Customer acknowledges that it has read this Warranty, understands it, and is bound by its Terms.

14.3.10 Controlling Law and Severability

This Warranty shall be governed by and construed in accordance with the laws of the United States and the domestic laws of the State of California, without reference to its conflicts of law provisions. If for any reason a court of competent jurisdiction finds any provisions of this Warranty, or a portion thereof, to be unenforceable, that provision shall be enforced to the maximum extent permissible and the remainder of this Warranty shall remain in full force and effect. Any cause of action with respect to the Product or Services must be instituted in a court of competent jurisdiction in the State of California.

Index

Α

Accessed port • 176 Accessing the Data • 40 Accumulator increment, energy • 249 Accumulator increment, gross • 249 Accumulator increment, gross clean oil • 250 Accumulator increment, gross standard • 250 Accumulator increment, mass • 249 Accumulator increment, net • 249 Accumulator increment, water • 250 Accumulator rollover, energy • 208 Accumulator rollover, mass • 208 Accumulator rollover, volume • 208 Accumulator Totalizer and Residue • 47 Accumulator Types • 48 Accumulator, archive period, daily, residue • 231 Accumulator, archive period, daily, totalizer • 231 Accumulator, archive period, hourly, residue • 232 Accumulator, archive period, hourly, totalizer • 231 Accumulators • 47 Active stream number (0-based) • 190 AFC Modbus Address Space • 35 AFC released • 173 AGA 3, Beta ratio • 242, 247 AGA 3, Coefficient of discharge • 247 AGA 3, Coefficient of discharge, Cd • 243 AGA 3, Density extension • 242 AGA 3, Differential pressure in static pressure units • 242 AGA 3, Expansion factor • 247 AGA 3, Expansion factor, Y • 243 AGA 3, Mass flow rate, Qm • 243 AGA 3, Meter tube inside diameter at temperature • 242 AGA 3, Orifice bore diameter at temperature • 242 AGA 3, Pressure extension • 242 AGA 3, Velocity of approach factor • 247 AGA 3, Velocity of approach factor, Ev • 243 AGA 7, Pressure base factor, Fpb • 234 AGA 7, Pressure factor, Fpm • 243 AGA 7, Temperature base factor, Ftb • 234 AGA 7, Temperature factor, Ftm • 243 AGA 8, Compressibility at reference • 241 AGA 8, Compressibility, flowing • 241 AGA 8, Density at reference • 241 AGA 8, Density, flowing • 241 AGA 8, Ideal gas relative density • 241 AGA 8, Molar density at reference • 241 AGA 8, Molar density, flowing • 241 AGA 8, Relative density at reference • 241 AGA 8, Supercompressibility, Fpv • 241 All Product Returns: • 278 Allocation of Risks • 283

Analysis characterization error • 238 Analysis component map • 202 Analysis molar fraction, component 1 • 222 Analysis molar fraction, component 2 • 222 Analysis molar fraction, component 3 • 222 Analysis molar fraction, component 4 • 223 Analysis molar fraction, component 5 • 223 Analysis molar fraction, component 6 • 223 Analysis molar fraction, component 7 • 223 Analysis molar fraction, component 8 • 224 Analysis molar fraction, component 9 • 224 Analysis molar fraction, component 10 • 224 Analysis molar fraction, component 11 • 224 Analysis molar fraction, component 12 • 225 Analysis molar fraction, component 13 • 225 Analysis molar fraction, component 14 • 225 Analysis molar fraction, component 15 • 225 Analysis molar fraction, component 16 • 226 Analysis molar fraction, component 17 • 226 Analysis molar fraction, component 18 • 226 Analysis molar fraction, component 19 • 226 Analysis molar fraction, component 20 • 227 Analysis molar fraction, component 21 • 227 Analysis molar fraction, component 22 · 227 Analysis molar fraction, component 23 · 227 Analysis molar fraction, component 24 • 228 Analysis normalization total error tolerance • 205 API 2540, CPL factor F • 246 API 2540, CPL low density factor A • 245 API 2540, CPL low density factor B • 246 API 2540, Density at API base • 245 API 2540, Density at reference • 245 API 2540, Hydrometer correction factor • 245 API 2540, Pressure correction factor, CPL • 246 API 2540, Temperature correction factor, CTL • 246 API 2540, Vapor pressure, absolute • 245 API 2540, Vapor pressure, gauge • 245 API 2540, Water content correction factor, CSW • 247 App Status LED • 141 Arbitrary event-logged registers #1 through #10 • 176 Archive Accumulators • 51 Archive configuration, daily, archive record template type • 215 Archive configuration, daily, extended file size • 216 Archive configuration, daily, filename character • 215 Archive configuration, daily, item # address • 216 Archive configuration, daily, item # flags • 216 Archive configuration, daily, options • 215 Archive configuration, daily, period accumulator select ·216 Archive configuration, hourly, archive record template type • 216 Archive configuration, hourly, extended file size • 218 Archive configuration, hourly, filename character • 217 Archive configuration, hourly, item # address • 218 Archive configuration, hourly, item # flags • 218 Archive configuration, hourly, options • 217 Archive configuration, hourly, period accumulator select • 218 Archive Data Format • 164

Archive file header, daily - Archive detail record size • 256 Archive file header, daily - Archive record template type • 256 Archive file header, daily - Index of last write, extended · 256 Archive file header, daily - Index of last write, local · 256 Archive file header, daily - Modbus holding register address, header • 256 Archive file header, daily - Modbus holding register address, summary • 257 Archive file header, daily - Modbus input register address, detail • 257 Archive file header, daily - Number of records, extended • 256 Archive file header, daily - Number of records, local • 256 Archive file header, hourly - Archive detail record size • 263 Archive file header, hourly - Archive record template type • 262 Archive file header, hourly - Index of last write, extended • 263 Archive file header, hourly - Index of last write, local • 263 Archive file header, hourly - Modbus holding register address, header · 263 Archive file header, hourly - Modbus holding register address, summary · 263 Archive file header, hourly - Modbus input register address, detail · 263 Archive file header, hourly - Number of records, extended • 263 Archive file header, hourly - Number of records, local • 263 Archive Generation • 53 Archive Locations • 57 Archive Monitor • 63 Archive option, daily - Archive upon event • 216 Archive option, daily - Archive upon period-end • 215 Archive option, daily - Period-select, hourly • 215 Archive option, daily - Reset accumulator # upon event • 216 Archive option, daily - Reset accumulator # upon period-end • 216 Archive option, hourly - Archive upon event • 217 Archive option, hourly - Archive upon period-end • 217 Archive option, hourly - Period-select, hourly • 217 Archive option, hourly - Reset accumulator # upon event · 218 Archive option, hourly - Reset accumulator # upon period-end • 217 Archive Options • 57 Archive Order • 55 Archive Overview • 53 Archive Reports • 62 Archive Types • 54 Archives • 33, 50, 53 Archiving and Event Log • 158 Audit in progress • 188

Audit meter number, latched • 189 Audit meter number, request • 188 Audit Scan • 146 Audit scan down-counter • 188 Audit scan up-counter • 189

В

Backplane Communication and Supervisory Data • 87 Backplane return select, analysis, offset # • 213 Backplane return select, analysis, offset # - Address · 214 Backplane return select, analysis, offset # - Defined · 214 Backplane return select, analysis, offset # - Invert bit 0 · 214 Backplane return select, analysis, offset # - Swap words • 214 Backplane return select, process input, offset # • 214 Backplane return select, process input, offset # -Address • 214 Backplane return select, process input, offset # -Defined • 215 Backplane return select, process input, offset # -Invert bit 0 • 214 Backplane return select, process input, offset # -Swap words • 214 Backplane transfer state • 187 Barometric pressure • 180 Barometric pressure in US units • 179 Basic Metering According to Meter type • 155 Battery Life Advisory • 2 BBRAM LEDs • 142 BP Act and P1, P2, or P3 • 141

С

Cable Connections • 41, 270 Calculate net energy • 196 Can I read the Primary (or Virtual) Slave values using the AFC Manager? • 269 Can I update the molar concentration values dynamically? • 269 Checksum alarm • 173 Checksum alarm - Event log • 183 Checksum alarm - Meter accumulators • 213 Checksum alarm - Meter archive detail, daily • 213 Checksum alarm - Meter archive detail, hourly • 213 Checksum alarm - Meter archive status • 213 Checksum alarm - Meter component analysis • 213 Checksum alarm - Meter configuration • 213 Checksum alarm - Site identification and configuration 183 Checksum alarm - Virtual slave indirect address table · 183 Checksum alarms • 146, 213 Checksum alarms, site • 183 Clean oil mass fraction • 244 Clear all checksum alarms • 183 Cold start • 174 Communication Parameters • 41

Component non-resettable accumulator, component #, residue • 232 Component non-resettable accumulator, component #, totalizer • 232 Composition factor • 243 Compressibility calculation error • 238 Compressibility Factor F • 159 Configurable Archive Registers • 160 Configurable Options • 153 Connect the AFC Module to the AFC Manager • 15 Controlling Law and Severability • 283 Converting a Project • 20 Corner taps • 194 Correction Factors According to Product Phase • 156 C-prime • 244 Current archive, daily, closing timestamp (packed) . 250 Current archive, daily, closing timestamp (packed), bisecond • 250 Current archive, daily, closing timestamp (packed), day 251 Current archive, daily, closing timestamp (packed), hour • 251 Current archive, daily, closing timestamp (packed), minute • 251 Current archive, daily, closing timestamp (packed), month • 251 Current archive, daily, closing timestamp (packed), year • 251 Current archive, daily, cumulative meter alarm -Accumulation overflow • 253 Current archive, daily, cumulative meter alarm -Analysis characterization error • 253 Current archive, daily, cumulative meter alarm -Analysis total not normalized • 253 Current archive, daily, cumulative meter alarm -Analysis total zero • 253 Current archive, daily, cumulative meter alarm -Compressibility calculation error • 253 Current archive, daily, cumulative meter alarm -Differential pressure low • 252 Current archive, daily, cumulative meter alarm - Flow rate low • 252 Current archive, daily, cumulative meter alarm - High water error • 253 Current archive, daily, cumulative meter alarm - input out of range, density • 252 Current archive, daily, cumulative meter alarm - input out of range, differential pressure • 252 Current archive, daily, cumulative meter alarm - input out of range, flow rate • 252 Current archive, daily, cumulative meter alarm - input out of range, pressure • 251 Current archive, daily, cumulative meter alarm - input out of range, temperature • 251 Current archive, daily, cumulative meter alarm - input out of range, water content • 252 Current archive, daily, cumulative meter alarm - Orifice characterization error • 253 Current archive, daily, cumulative meter alarm - Orifice pressure exception • 252

Current archive, daily, cumulative meter alarm -Pressure correction error • 254 Current archive, daily, cumulative meter alarm - Pulse frequency low • 252 Current archive, daily, cumulative meter alarm -Reference density error • 253 Current archive, daily, cumulative meter alarm -Temperature correction error • 254 Current archive, daily, cumulative meter alarm - Vapor pressure error • 254 Current archive, daily, cumulative meter alarms • 251 Current archive, daily, cumulative meter status • 254 Current archive, daily, cumulative meter status -Backplane communications fault • 254 Current archive, daily, cumulative meter status - Cold start • 254 Current archive, daily, cumulative meter status -Measurement configuration changed • 254 Current archive, daily, cumulative meter status - Meter enabled • 254 Current archive, daily, cumulative meter status - Power up • 254 Current archive, daily, event count • 255 Current archive, daily, flowing period (seconds) • 255 Current archive, daily, flowing period fraction • 251 Current archive, daily, item # • 255 Current archive, daily, meter number (1-based) • 254 Current archive, daily, opening timestamp (packed) . 255 Current archive, daily, opening timestamp (packed), bisecond • 255 Current archive, daily, opening timestamp (packed), day • 255 Current archive, daily, opening timestamp (packed), hour • 255 Current archive, daily, opening timestamp (packed), minute • 255 Current archive, daily, opening timestamp (packed), month • 255 Current archive, daily, opening timestamp (packed), year • 255 Current archive, hourly, closing timestamp (packed) . 257 Current archive, hourly, closing timestamp (packed), bisecond • 257 Current archive, hourly, closing timestamp (packed), day • 257 Current archive, hourly, closing timestamp (packed), hour • 257 Current archive, hourly, closing timestamp (packed), minute • 257 Current archive, hourly, closing timestamp (packed), month • 257 Current archive, hourly, closing timestamp (packed), year • 257 Current archive, hourly, cumulative meter alarm -Accumulation overflow • 259 Current archive, hourly, cumulative meter alarm -Analysis characterization error • 260 Current archive, hourly, cumulative meter alarm -Analysis total not normalized • 260

Current archive, hourly, cumulative meter alarm -Analysis total zero • 260 Current archive, hourly, cumulative meter alarm -Compressibility calculation error • 260 Current archive, hourly, cumulative meter alarm -Differential pressure low • 259 Current archive, hourly, cumulative meter alarm - Flow rate low • 259 Current archive, hourly, cumulative meter alarm - High water error • 260 Current archive, hourly, cumulative meter alarm - input out of range, density • 259 Current archive, hourly, cumulative meter alarm - input out of range, differential pressure • 258 Current archive, hourly, cumulative meter alarm - input out of range, flow rate • 258 Current archive, hourly, cumulative meter alarm - input out of range, pressure • 258 Current archive, hourly, cumulative meter alarm - input out of range, temperature • 258 Current archive, hourly, cumulative meter alarm - input out of range, water content • 259 Current archive, hourly, cumulative meter alarm -Orifice characterization error • 259 Current archive, hourly, cumulative meter alarm -Orifice pressure exception • 259 Current archive, hourly, cumulative meter alarm -Pressure correction error • 261 Current archive, hourly, cumulative meter alarm -Pulse frequency low • 259 Current archive, hourly, cumulative meter alarm -Reference density error • 260 Current archive, hourly, cumulative meter alarm -Temperature correction error • 260 Current archive, hourly, cumulative meter alarm -Vapor pressure error • 260 Current archive, hourly, cumulative meter alarms • 258 Current archive, hourly, cumulative meter status • 261 Current archive, hourly, cumulative meter status -Backplane communications fault • 261 Current archive, hourly, cumulative meter status - Cold start • 261 Current archive, hourly, cumulative meter status -Measurement configuration changed • 261 Current archive, hourly, cumulative meter status -Meter enabled • 261 Current archive, hourly, cumulative meter status -Power up • 261 Current archive, hourly, event count • 261 Current archive, hourly, flowing period (seconds) • 261 Current archive, hourly, flowing period fraction • 258 Current archive, hourly, items 9 through 38 • 262 Current archive, hourly, meter number (1-based) • 261 Current archive, hourly, opening timestamp (packed) . 262 Current archive, hourly, opening timestamp (packed), bisecond · 262 Current archive, hourly, opening timestamp (packed), day • 262 Current archive, hourly, opening timestamp (packed), hour • 262

Current archive, hourly, opening timestamp (packed), minute • 262 Current archive, hourly, opening timestamp (packed), month • 262 Current archive, hourly, opening timestamp (packed), year • 262 Current input pulse count • 248 Current master pulse count • 228

Data Archiving • 33 Data Files • 120 Data Integrity • 99 Data Validity and Module Initialization • 99 Date Word • 164 DB9 to RJ45 Adaptor (Cable 14) • 275 Default CPL • 221 Default CTL • 221 Default density at reference • 220 Default energy content • 220 Default Fpv • 220 Default relative density at reference • 219 Default vapor pressure • 220 Densitometer calibration parameter 1 (CalT) • 211 Densitometer calibration parameter 2 (CaIP) • 211 Densitometer calibration parameter 3 (K0) • 211 Densitometer calibration parameter 4 (K1) • 211 Densitometer calibration parameter 5 (K2) • 211 Densitometer calibration parameter 6 (K18/PF1) • 211 Densitometer calibration parameter 7 (K19/PF2) • 212 Densitometer calibration parameter 8 (K20a/TCF) · 212 Densitometer calibration parameter 9 (K20b) • 212 Densitometer calibration parameter 10 (K21a) • 212 Densitometer calibration parameter 11 (K21b) • 212 Densitometer calibration parameter 12 • 212 Densitometer calibration parameter 13 • 212 Densitometer calibration parameter 14 • 212 Densitometer frequency • 234 Densitometer type code • 211 Density calculation select • 246 Density correction • 195 Density Correction • 158 Density correction for pressure • 196 Density units • 193 Density Units • 32 Density, flowing • 242 Description • 102, 103, 109, 112, 113, 115 Differential (Orifice) Meter Overview • 29 Differential pressure alarm threshold • 210 Differential pressure flow threshold • 209 Disable Meters • 92 Disabling the RSLinx Driver for the Com Port on the PC • 270 Disclaimer of all Other Warranties • 282 Disclaimer Regarding High Risk Activities • 281 Do I have to enter all molar concentrations for the gas product? • 268 Downloading the Project to the Module • 21 Downstream static pressure • 194

Ε

Editing the Archive Structure • 59 Enable Meters • 93 End-of-day minute • 179 End-of-hour minute • 179 Event Id Tag • 70, 71 Event log download complete • 183 Event Log Function • 33 Event Log structures • 70 Event log unlocked • 179 Event numbers and Event Log Download • 79 Events • 69, 146 Event-triggered archives and accumulator resets • 72 Example • 44, 47 Example 1 • 169 Example 2 • 170 Extended Archives • 60 Extended site status • 174

F

Firmware product code, group • 172 Firmware product code, group - application class. • 172 Firmware product code, group - platform • 172 Firmware product code, item • 172 Firmware product code, item - number of meters • 172 Firmware product code, item - number of streams • 172 Firmware revision number • 172 Firmware version number • 172 Firmware version number - major version number -172 Firmware version number - minor version number -172 Flow rate alarm threshold • 210 Flow rate flow threshold • 209 Flow Rate Integration with Gas Product • 105, 167 Flow Rate Integration with Liquid Product • 106, 168 Flow rate, energy • 250 Flow rate, gross • 250 Flow rate, gross clean oil • 250 Flow rate, gross standard • 250 Flow rate, mass • 250 Flow rate, net • 250 Flow rate, water • 250 Frequently Asked Questions • 52 Function Blocks • 101

G

Gas • 156 Gas Product Overview • 30 Gas Pulse Measurement • 156 General Features • 32 General Specifications • 151 Gross meter characterization • 192

н

Hard Password • 84 Hard passwords • 174, 179 Hardware Specifications • 154 High water error • 239 How does the AFC Manager transfer the configuration to the module? • 267 How does the module work? • 266 How to Contact Us Technical Support • 277, 278 Hydrometer correction • 195

I

Ignore default flowing density • 195 Input • 102, 110, 111, 112, 113, 114, 116 Input density is at reference • 246 Input density is net oil at reference • 247 Input pulse count, archive reset, daily • 228 Input pulse count, archive reset, hourly • 228 Input scaling, density, default • 201 Input scaling, density, input frozen during calibration • 201 Input scaling, density, module id code • 201 Input scaling, density, range high end • 200 Input scaling, density, range low end • 200 Input scaling, differential pressure, default • 199 Input scaling, differential pressure, input frozen during calibration • 199 Input scaling, differential pressure, module id code • 199 Input scaling, differential pressure, range high end · 199 Input scaling, differential pressure, range low end • 199 Input scaling, flow rate, default • 200 Input scaling, flow rate, input frozen during calibration • 200 Input scaling, flow rate, module id code • 200 Input scaling, flow rate, range high end • 200 Input scaling, flow rate, range low end • 199 Input scaling, pressure, default • 198 Input scaling, pressure, input frozen during calibration • 198 Input scaling, pressure, module id code • 198 Input scaling, pressure, range high end • 198 Input scaling, pressure, range low end • 198 Input scaling, temperature, default • 197 Input scaling, temperature, input frozen during calibration • 198 Input scaling, temperature, module id code • 197 Input scaling, temperature, range high end • 197 Input scaling, temperature, range low end • 197 Input scaling, water content, default • 202 Input scaling, water content, input frozen during calibration • 202 Input scaling, water content, module id code • 202 Input scaling, water content, range high end • 201 Input scaling, water content, range low end • 201 Input/Output Image Files • 90 Install AFC Manager • 13 Install the Module in the Rack • 14 Installing and Configuring the Module • 117 Intellectual Property Indemnity • 281 Interpolate K-factor • 219 Introduction • 9

Isentropic exponent • 219 ISO 5167 (2003) • 194

Κ

K/Meter factor • 220 K-factor • 248

L

LAD 13 GATEWAY • 133 LAD 16 ANALYSIS • 136 I AD 4 ENABL_MTRS • 129 LAD 5 to LAD12 Meters 1 to 8 • 130 LAD14 Modbus Pass-Thru • 134 LAD15 Modbus Master • 135 LAD17 WALLCLOCK • 138 LAD2 MAIN • 126 LAD3 BACKPLANE • 126 Ladder Logic Implementation • 23 Layout • 89 Limitation of Remedies ** • 282 LIMITED WARRANTY • 279, 280 Linear (Pulse) Meter Overview • 28 Liquid • 156 Liquid Correction Factor Details • 158 Liquid Product Overview • 31, 156 Loading an Existing project • 19 Loggable events • 73 Low density range for CPL calculation • 246

Μ

Map of enabled streams • 190 Mass heating value • 244 Measurement configuration changed • 173 Measurement configuration changed, meter # Accumulator rollovers • 185 Analysis component selection • 185 Densitometer • 185 Meter classification • 184 Meter options • 184 Parameter value • 185 Process input calibration / alarm • 184 Process input scaling • 184 Pulse input rollover • 185 Reference conditions • 184 Units • 185 Measurement configuration changed, meter # base · 184 Measurement configuration changed, meter # stream # 185 Analysis mole fraction • 186 Meter/K factor curve • 186

Options • 185 Parameter value • 185 Measurement configuration changed, site • 183 Arbitrary event-logged value • 184 Options • 184 Parameter value • 184 Measurement Standards • 154 Measurement system • 192 Measurement Units • 33 Measuring Water Diluent • 32 Meter 1 Input Results • 121 Output Variables • 121 Meter 1 in alarm • 186 Meter 1 signals and stream-select • 94 Meter 10 in alarm • 187 Meter 11 in alarm • 187 Meter 12 in alarm • 187 Meter 13 in alarm • 187 Meter 14 in alarm • 187 Meter 15 in alarm • 187 Meter 16 in alarm • 187 Meter 2 Input Results • 122 Output Variables • 122 Meter 2 in alarm • 186 Meter 2 signals and stream-select • 94 Meter 3 Input Results • 123 Output Variables • 122 Meter 3 in alarm • 186 Meter 3 signals and stream-select • 95 Meter 4 Input Results • 123 Output Variables • 123 Meter 4 in alarm • 186 Meter 4 signals and stream-select • 95 Meter 5 Input Results • 124 Output Variables • 123 Meter 5 in alarm • 186 Meter 5 signals and stream-select • 96 Meter 6 Input Results • 124 Output Variables • 124 Meter 6 in alarm • 186 Meter 6 signals and stream-select • 97 Meter 7 Input Results • 125 Output Variables • 124 Meter 7 in alarm • 186 Meter 7 signals and stream-select • 97 Meter 8 Input Results • 125 Output Variables • 125 Meter 8 in alarm • 186 Meter 8 signals and stream-select • 98 Meter 9 in alarm • 187 Meter alarm Accumulation overflow • 236 Analysis characterization error • 237

Analysis total not normalized • 237 Analysis total zero • 236 Compressibility calculation error • 237 Differential pressure low • 236 Flow rate low • 236 High water error • 237 input out of range, density • 235 input out of range, differential pressure · 235 input out of range, flow rate • 235 input out of range, pressure • 235 input out of range, temperature • 235 input out of range, water content • 236 Orifice characterization error • 236 Orifice pressure exception • 236 Pressure correction error • 237 Pulse frequency low • 236 Reference density error • 237 Temperature correction error • 237 Vapor pressure error • 237 Meter Alarm Summary • 91 Meter alarms • 235 Meter Alarms • 142 Meter Analysis Function • 109 Meter Archive Fetch • 112 Meter calculation options • 194 Meter Channel Functionality • 27 Meter Channels • 27 Meter control options • 196 Meter Datum Point events • 73, 75 Meter enable • 197 Meter Enabled Summary • 91 Meter factor • 248 Meter number (1-based) • 189 Meter Process Input Controls • 92 Meter Process Input Function • 103 Meter Scan Time • 32 Meter signals and stream-select • 190 Meter status • 189 Backplane communications fault since last archive 189 Cold start, not yet archived • 189 Measurement configuration changed since last archive • 189 Meter enabled, not yet archived • 189 Power up since last archive • 189 Meter tag • 192 Meter tube coefficient of thermal expansion • 209 measured diameter • 209 measurement temperature • 209 Meter type • 192 Meter Type and Product Group Summary • 111 Meter/K-factor linearization, point #, factor • 221 Meter/K-factor linearization, point #, flow rate • 222 Meter-relative Data · 36 Meters in alarm • 186 M-File Supervisory Block • 91 Modbus Address Examples • 36 Modbus Address References • 35 Modbus Addressing Common to Both Primary and Virtual Slaves • 170

Modbus Communication • 41 Modbus Database • 35 Modbus Dictionary Entries • 172 Modbus Gateway Function • 112 Modbus Interface • 153 Modbus Master • 43, 115 Modbus pass-thru Bit region address • 181 Bit region size • 181 Maximum PLC window size • 180 Word region address • 180 Word region size • 180 Modbus Pass-Thru • 43 Modbus Pass-Thru Function • 113 Modbus Port configuration • 264 Modbus slave address, primary • 176 Modbus slave address, virtual • 177 Module Initialization • 25 Module Scan • 101 Molar heating value, MJ/kmol • 244 Molar mass of mixture • 240 MPMS Ch 20.1, Density of produced water, flowing • 244 MPMS Ch 20.1, Water salinity percent by mass • 245 MPMS Ch 20.1, Water temperature correction to API base • 245 MPMS Ch 20.1, Water temperature correction to user base • 244 Multiple Meter Accumulators • 32 Multiplier, energy accumulator • 249 Multiplier, energy flow rate • 249 Multiplier, K-factor flow rate • 248 Multiplier, mass accumulator • 249 Multiplier, mass flow rate • 249 Multiplier, volume accumulator • 249 Multiplier, volume flow rate • 249 MVI46-AFC Backplane Communications • 87 MVI46-AFC Module • 11 MVI46-AFC Sample Ladder Logic • 117

Ν

Net Accumulator Calculation • 32, 51 No Other Warranties • 283 Non-resettable accumulator, energy, residue • 229 Non-resettable accumulator, energy, totalizer • 229 Non-resettable accumulator, gross clean oil, residue • 230 Non-resettable accumulator, gross clean oil, totalizer • 230 Non-resettable accumulator, gross standard, residue • 230 Non-resettable accumulator, gross standard, totalizer · 230 Non-resettable accumulator, gross, residue • 230 Non-resettable accumulator, gross, totalizer • 229 Non-resettable accumulator, mass, residue • 229 Non-resettable accumulator, mass, totalizer • 228 Non-resettable accumulator, net, residue • 229 Non-resettable accumulator, net, totalizer • 229 Non-resettable accumulator, water, residue • 231 Non-resettable accumulator, water, totalizer • 230

Non-Resettable Accumulators • 48 Non-Standard Reference Conditions • 157 Notes • 99 Number of backplane queue allocation failures • 187 Number of backplane queue entries allocated • 187

Number of backplane transfers received by module • 187

Number of backplane transfers sent by module • 187 Number of components • 205

0

On-line Communication & Configuration • 152 Open archive record select (age), daily • 212 Open archive record select (age), hourly • 212 Orifice (Differential) Meter with Gas Product • 104, 165 Orifice (Differential) Meter with Liquid Product • 104, 166 Orifice (Include V-cone) Uses AGA3 1992 / ISO 5167. • 155 Orifice characterization error • 238 Orifice plate coefficient of thermal expansion • 209 measured diameter • 209 measurement temperature • 209 Output • 102, 109, 111, 112, 113, 114, 115

Ρ

Password authorization granted for read • 176 Password authorization waived for read • 176 Accessed port and authorization (read) • 176 Password, read-enable • 176 Password, write-enable • 174 Period-end events • 72 PLC address Meter archive fetch, put • 210 Meter process input etc., get · 210 Meter results, put • 210 Modbus gateway, get & put • 182 Modbus master, get & put • 182 Modbus pass-thru, put • 182 Supervisory, get • 181 Supervisory, put • 181 Wallclock, get & put • 182 PLC halted, offline, or missing • 173 PLC offline • 174 Please Read This Notice • 2 Port #, Authorization waiver, read • 178 Port #, Authorization waiver, write • 178 Port #, Baud code • 177 Port #, CTS timeout • 178 Port #, Data bits • 177 Port #, Delay after data • 179 Port #, Delay before data • 178 Port #, Disable pass-thru • 178 Port #, Modbus mode • 178 Port #, Parity code • 177 Port #, Password authorization waiver • 178 Port #, Stop bits • 177 Port #, Swap mask • 178 Port #, UART parameters and Modbus mode • 177 Port Options • 42 Power up • 173 Pre-defined Header • 164 Pressure correction • 196 Pressure correction error • 240 Pressure Correction Factor, CPL • 157 Pressure, absolute • 234 Previous input pulse count • 228 Previous timer tick count • 242 Primary input • 193 Primary Input = Differential Pressure • 29 Primary Input = Flow Rate • 30 Primary Input = Pulse Count • 28 Primary Input = Pulse Frequency • 29 Primary Slave • 35 Zero (primary slave) • 174 Printing the Configuration Report • 19 Procedures for Return of Units Out of Warranty: • 279 Procedures for Return of Units Under Warranty: • 279 Process input calibration • 191 Process input calibration, density • 192 Process input calibration, differential pressure • 192 Process input calibration, flow rate • 192 Process input calibration, pressure • 192 Process input calibration, temperature • 192 Process input calibration, water content • 192 Process Input Scaling • 33 Process input, scaled float, density • 233 Process input, scaled float, differential pressure • 232 Process input, scaled float, flow rate • 232 Process input, scaled float, pressure • 232 Process input, scaled float, temperature • 232 Process input, scaled float, water content • 233 Process input, scaled integer, density · 234 Process input, scaled integer, differential pressure · 233 Process input, scaled integer, flow rate • 233 Process input, scaled integer, pressure • 233 Process input, scaled integer, temperature • 233 Process input, scaled integer, water content • 234 Process Variable Interface • 32 Process Variables and Calculation Results Registers • 121 Product Batching • 33 Product group • 193 Project name • 181 ProSoft® Product Documentation • 3 Pulse Both Gas and Liquid • 156 Pulse (Linear) Meter with Gas Product • 104, 166 Pulse (Linear) Meter with Liquid Product • 105, 167 Pulse frequency • 248 Pulse frequency alarm threshold • 210 Pulse frequency flow threshold • 209 Pulse Frequency Integration with Gas Product • 106, 168 Pulse Frequency Integration with Liquid Product • 107, 169 Pulse increment • 248 Pulse input rollover • 206 Purchasing Warranty Extension: • 279

Q

Quick Start • 13

R

Radius taps • 194 Record process input range alarms as events • 179 Reference • 151 Reference (contract) pressure • 193 Reference (contract) temperature • 193 Reference density error • 239 Reports • 152 Reset from AFC Manager • 49 Reset from Ladder Logic • 50 Reset resettable accumulator 1 • 191 Reset resettable accumulator 2 • 191 Reset resettable accumulator 3 • 191 Reset resettable accumulator 4 • 191 Reset Upon Archive Period End or Reset Upon Event • 50 Reset When the Accumulator Rollover Value is Reached • 50 Resettable accumulator # select • 206 Resettable accumulator #, residue • 231 Resettable accumulator #, totalizer • 231 Resettable Accumulators • 48 Resetting Configuration Parameters • 20 Retrieving Extended Archives • 60 Return Material Authorization (RMA) Policies and Conditions • 278 Return Unix-style timestamps via virtual slave • 179 Returned Alarm Codes for Meter Data • 107 RS-232 • 272 Modem Connection • 273 Null Modem Connection (Hardware Handshaking) 273 Null Modem Connection (No Hardware Handshaking) • 274 RS-232 Configuration/Debug Port • 270 RS-422 • 274 RS-485 • 275 RS-485 and RS-422 Tip • 275

S

Sample Ladder • 126 Sample Ladder and MVI46-AFC Version Compatibility 119 Scan count • 186 Scan count, calculation • 240 Scan count, process input • 240 Scan period (seconds) • 242 Scratchpad • 37 Security (Passwords) • 83 Select stream 1 • 190 Select stream 2 · 190 Select stream 3 • 190 Select stream 4 • 190 Selected component 1, C1 • 202 Selected component 10, O2 • 203 Selected component 11, IC4 · 204 Selected component 12, NC4 · 204

Selected component 13, IC5 • 204 Selected component 14, NC5 • 204 Selected component 15, C6 • 204 Selected component 16, C7 • 204 Selected component 17, C8 • 204 Selected component 18, C9 • 205 Selected component 19, C10 • 205 Selected component 2, N2 • 202 Selected component 20, He • 205 Selected component 21, Ar • 205 Selected component 22, neoC5 • 205 Selected component 3, CO2 · 202 Selected component 4, C2 • 203 Selected component 5, • 203 Selected component 6, H2O • 203 Selected component 7, H2S • 203 Selected component 8, H2 • 203 Selected component 9, CO • 203 Serial number • 173 Setting the Wallclock • 24 Shrinkage factor • 221 SI units: • 158 Site Datum Point events • 73, 75 Site name • 181 Site options • 179 Site signals • 182 Site Signals • 93 Site status (basic) • 173 Special events • 73, 74 Special Notes • 110 Split-double accumulators • 197 Split-double pulse input • 196 Starting a New Project • 17 Starting AFC Manager • 17 Startup Basics and Frequently Asked Questions • 265 Startup input pulse count • 248 Stream # enabled • 190 Stream component accumulator select • 219 Stream Datum Point events • 73, 77 Stream enable • 219 Stream options • 218 Supervisory Data • 88 Support, Service & Warranty • 277 Supported Meters • 153 System Requirements • 13

Т

Temperature correction • 195 Temperature correction error • 239 Temperature Correction Factor CTL • 158 Temperature Correction Factor, CTL • 157 Temperature, absolute • 234 The Event Log • 69 Time Limit for Bringing Suit • 283 Time Word • 164 Timestamp Date and Time Format • 164 To use a densitometer • 31 Treat analysis as process input • 197 Troubleshooting • 141

U

Units - Energy accumulator units • 207 Units - Energy flow rate period • 207 Units - Energy flow rate units • 207 Units - Mass accumulator units • 207 Units - Mass flow rate period • 207 Units - Mass flow rate units • 207 Units - Primary input characteristics • 206 Units - Primary input flow rate period • 207 Units - Primary input measured quantity • 206 Units - Primary input measured quantity and flow rate period • 206 Units - Primary input units • 206 Units - Volume accumulator units • 208 Units - Volume flow rate period • 208 Units - Volume flow rate units • 208 Update Notice • 10 Upstream pressure, absolute • 234 US units: • 159 Use meter factor to full precision • 218 User LEDs • 141 Using AFC Manager • 17

V

Vapor pressure error • 240 Vapor pressure via TP-15 • 196 V-cone/Wedge coefficient of discharge • 210 V-cone/Wedge device • 194 Verifying Correct Operation • 22 Virtual Slave • 22, 37 Virtual Slave Example Application • 38 Viscosity (cP) • 219 Volumetric heating value • 244

W

Wallclock (packed) • 175 Wallclock (packed), bisecond • 175 Wallclock (packed), day • 175 Wallclock (packed), hour • 175 Wallclock (packed), minute • 175 Wallclock (packed), month • 175 Wallclock (packed), year • 175 Wallclock at audit start, day • 188 Wallclock at audit start, hour • 188 Wallclock at audit start, minute • 189 Wallclock at audit start, month • 188 Wallclock at audit start, second • 189 Wallclock at audit start, year • 188 Wallclock Function • 102 Wallclock, day • 175 Wallclock, hour • 175 Wallclock, minute • 175 Wallclock, month • 174 Wallclock, second • 175 Wallclock, year • 174 Water Content of Liquids • 156 Water density at API reference (kg/m3) • 221 Water temperature error • 240 Wedge Meter Applications • 154, 159

What are the accumulator's totalizer and residue values? • 268 What Is Covered By This Warranty • 280, 282 What Is Not Covered By This Warranty • 280 What is the difference between Net Accumulator and Gross Accumulator? • 268 What is the password used for? • 267 What is the Virtual Modbus Slave? • 267 What is the Wallclock? • 269 When are the archives generated? • 269 Why can't the AFC Manager connect to the module? • 266 Why do I have to enable or disable a meter? • 266 Why do I receive an • 267 Why do the accumulator values not update? • 269 Why does the AFC Manager show a • 268 Why does the card not calculate results, or why did it stop calculating results? • 266 Why is the Molar Analysis button disabled? • 268 Why should I use the AFC Manager? • 266 Write daily archive • 191 Write hourly archive • 191

Y

Your Feedback Please • 2